
Data Mining and Knowledge Discovery, 11, 295–321, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10618-005-0005-7

Making SVMs Scalable to Large Data Sets using
Hierarchical Cluster Indexing
HWANJO YU hwanjoyu@cs.uiowa.edu
Department of Computer Science, University of Iowa

JIONG YANG jiong@eecs.cwru.edu
Department of Computer Science, Case Western Reserve University

JIAWEI HAN hanj@cs.uiuc.edu

XIAOLEI LI xli10@uiuc.edu
Department of Computer Science, University of Illinois at Urbana-Champaign

Received January 1, 2004; Accepted June 1, 2005

Published online: 19 August 2005

Abstract. Support vector machines (SVMs) have been promising methods for classification and regression
analysis due to their solid mathematical foundations, which include two desirable properties: margin maximization
and nonlinear classification using kernels. However, despite these prominent properties, SVMs are usually not
chosen for large-scale data mining problems because their training complexity is highly dependent on the data
set size. Unlike traditional pattern recognition and machine learning, real-world data mining applications often
involve huge numbers of data records. Thus it is too expensive to perform multiple scans on the entire data set, and
it is also infeasible to put the data set in memory. This paper presents a method, Clustering-Based SVM (CB-SVM),
that maximizes the SVM performance for very large data sets given a limited amount of resource, e.g., memory.
CB-SVM applies a hierarchical micro-clustering algorithm that scans the entire data set only once to provide an
SVM with high quality samples. These samples carry statistical summaries of the data and maximize the benefit
of learning. Our analyses show that the training complexity of CB-SVM is quadratically dependent on the number
of support vectors, which is usually much less than that of the entire data set. Our experiments on synthetic and
real-world data sets show that CB-SVM is highly scalable for very large data sets and very accurate in terms of
classification.

1. Introduction

Support vector machines (SVMs) have been promising methods for data classification and
regression analysis (Vapnik, 1998; Burges, 1998; Joachims, 1998; Chang and Lin 2001;
Smola and Scholkopf, 1998; Yu et al., 2002). Their successes can be attributed to their solid
mathematical foundations, which yield several salient properties:

A preliminary version of the paper, “Classifying Large Data Sets Using SVM with Hierarchical Clusters”, by
H. Yu, J. Yang, and J. Han, appeared in Proc. 2003 Int. Conf. on Knowledge Discovery in Databases (KDD’03),
Washington, DC, August 2003. However, this submission has substantially extended the previous paper and
contains new and major-value added technical contribution in comparison with the conference publication.

296 YU ET AL.

• Margin maximization: The classification boundary functions of SVMs maximize the
margin, which, in machine learning theory, corresponds to maximizing the generalization
performance. (See Section 2 for more details.)

• Systematic nonlinear classification via kernel tricks: SVMs efficiently handle nonlinear
classifications using kernel tricks, which implicitly transforms the input space into a high
dimensional feature space.

The success of SVMs in machine learning naturally leads to its possible extension to
large-scale data mining. However, despite SVMs’ prominent properties, they are not as
favorably used in large-scale data mining as in pattern recognition or machine learning.
The main reason is that the training complexity of SVMs is highly dependent on the size of
the data set. (It is known to be at least quadratic to the number of data points. Refer to Chang
and Lin (2001) for more discussions on the complexity of SVMs.) Many real-world data
mining applications often involve millions or billions of data records. For such large data
sets, existing SVM implementations (1) generate system failures due to memory blowup,
or (2) take “forever” to finish training with unbounded memory. In our experiments in
Section 5, two efficient SVM implementations, LIBSVM and Active SVM, both generated
system failures for large data sets.

Researchers have proposed various revisions of SVMs to increase the training efficiency
by either mutating or approximating it. However, these solutions are still not appropriate
for very large data sets where even multiple scans of the data are too expensive to perform.
(see Section 7 for the discussions on related work.)

This paper presents a new approach for scalable and reliable SVM classification, called
Clustering-Based SVM (CB-SVM). It is designed specifically for handling very large data
sets given a limited amount of system resource, e.g., memory. When the size of the data
set is large, traditional SVMs tend to perform worse when trained with the entire data than
with a set of fine-quality samples (Schohn and Cohn, 2000). The SVM-based selective
sampling (or active learning) techniques try to select the training data intelligently to
maximize the performance of SVM, but they normally require many scans of data set
(Schohn and Cohn, 2000; Tong and Koller, 2000) (Section 7). Our CB-SVM applies a
hierarchical micro-clustering algorithm that scans the entire data set only once to provide
an SVM with high quality samples. These samples carry statistical summaries of the data
such that the learning quality of the SVM is maximized. CB-SVM is scalable in terms of
the training efficiency while maximizing the performance of SVM with bounded memory.
The hierarchical micro-clusters conceptually play the role of indexing an SVM. By using
the hierarchical micro-clustering algorithm BIRCH (Zhang et al., 1996), CB-SVM also
automatically controls the trade-off between memory size and classification accuracy.

The key idea of CB-SVM is to use the hierarchical micro-clustering technique to get finer
description at places close to the classification boundary and coarser description at places
far from the boundary. This is efficiently processed as follows. CB-SVM first constructs two
micro-cluster trees called CF-trees from positive and negative training data respectively.
In each tree, a node in a higher level is a summarized representation of its children nodes.
After constructing the two trees, CB-SVM starts training an SVM only from the root nodes
of the CF-trees. Once it generates a “rough” boundary from the root nodes, it selectively
declusters only the data summaries near the classification boundary into lower (or finer)

MAKING SVMS SCALABLE TO LARGE DATA SETS 297

levels in the CF-tree structure. The hierarchical representation of the data summaries is
a perfect base structure for CB-SVM to effectively perform the selective declustering.
CB-SVM repeats this selective declustering process down to the leaf level.

CB-SVM can be used to classify very large data sets of relatively low dimensionality,
such as streaming data or data in large data warehouses. It performs especially well where
random sampling is not effective. This occurs when the “important” data occur infrequently
or when the incoming data includes irregular patterns, which results in different distribu-
tions between training and testing data. We discuss this more in detail in Section 5.1.3.
Our experiments on the network intrusion data set (Section 5.2), a good example which
shows that random sampling could hurt, show that CB-SVM is scalable for very large
data sets while still yielding high classification accuracy. Due to the limitations of the
clustering-based indexing structure, CB-SVM performs not as well for high dimensional
data. Developing an indexing structure for high dimensional data is an important future
research direction.

To the best of our knowledge, the proposed method is currently the only SVM for very
large data sets that tries to generate the best results with bounded memory.

The remainder of the paper is organized as follows. We first overview SVM in Section 2.
In Section 3, we introduce a hierarchical micro-clustering algorithm for very large data
sets, originally studied by Zhang et al. (1996). In Section 4, we present the CB-SVM
algorithm that applies the hierarchical micro-clustering algorithm to a standard SVM to
make the SVM scalable for very large data sets. Section 5 demonstrates experimental results
on artificial and real data sets. Section 6 presents an extension of CB-SVM to the SVM
nonlinear kernels. We discuss the related work in Section 7 and conclude our study in
Section 8.

2. SVM overview

In machine learning theory, given a set of training data set {(x, y)} (y is the label of x),
the optimal class boundary function (or hypothesis) g(x) is the one that gives the best
generalization performance, i.e., performance on unseen examples rather than the training
data. Classification performance on the training data is not regarded as a good evaluation
measure for a hypothesis, because the hypothesis is usually overfitted for that particular set
of data through training. SVM is a supervised learning method that tries to maximize the
generalization performance by maximizing the margin (Burges, 1998; Vapnik, 1998). The
margin in SVM denotes the distance from the class boundary to the closest data points in
the feature space. In situations where a linear boundary is insufficient, SVM also supports
nonlinear classification using kernel tricks.

In SVM, the problem of computing a margin-maximizing boundary function is specified
by the following quadratic programming (QP) problem:

minimize : W (α) = −
l∑

i=1

αi + 1

2

l∑

i=1

l∑

j=1

yi y jαiα j k(xi , x j)

298 YU ET AL.

subject to :
l∑

i=1

yiαi = 0

∀i : 0 ≤ αi ≤ C

l denotes the number of training data. α is a vector of l variables, where each component αi

corresponds to a training data (xi, yi). Lastly, C is the soft margin parameter which controls
the influence of the outliers (or noise) in the training data.

The kernel k(xi, xj) for linear boundary function is xi · xj, a scalar product of two data
points. The nonlinear transformation of the feature space is performed by replacing k(xi,
xj) with an advanced kernel, such as a polynomial kernel (xT xi + 1)p or a RBF kernel
exp(− 1

2σ 2 ||x − xi ||2). An advanced kernel is a function that operates on the input data
but has the effect of computing the scalar product of their images in a usually much
higher-dimensional feature space (or even an infinite-dimensional space). This has several
advantages. First, it allows one to work implicitly with hyperplanes in highly complex
spaces, which could yield better classification results. Second, it is an attractive computa-
tional short-cut, because it foregoes the expensive creation of a complicated feature space.

Another characteristic of SVM is that its boundary function is described by the support
vectors (SVs), which are data points located closest to the class boundary. The above QP
problem computes a vector α, where each element specifies a weight on each data point
(xi, yi). The set of data points whose corresponding αi is greater than zero is exactly the
set of SVs. The data points whose αi’s are less than or equal to zero do not contribute to
the boundary function at all. In other words, computing an SVM boundary function can be
viewed as finding data points with nonzero weights in α.

There have been many attempts to revise the original QP formulation so that it can
be solved by a QP solver more efficiently (Mangasarian and Musicant, 2000; Fung and
Mangasarian, 2001; Agarwal, 2002). (See Section 7 for more details.) In contrast to those
papers, we do not revise the original QP formulation of SVM. Instead, we try to provide
a smaller but high quality data set that is beneficial to effectively computing the SVM
boundary function by applying a hierarchical clustering algorithm. Our CB-SVM algorithm
substantially reduces the total number of data points for training an SVM while trying to
keep the high quality SVs that best describe the boundary.

3. Hierarchical micro-clustering algorithm for large data sets

The hierarchical micro-clustering algorithm we present here and will apply to our CB-SVM
in Section 4 was originally studied by Zhang et al. (1996) and is called BIRCH. It introduces
the concept of a “micro-cluster” (Zhang et al., 1996), which stores a statistical summary
representation of a group of data points that are so close together that they are likely to
belong to the same cluster. Our hierarchical micro-clustering algorithm has the following
characteristics.

• It constructs a micro-cluster tree, called CF (Clustering Feature) tree, in one scan of the
data set given a limited amount of resources (i.e., available memory and time constraints)
by incrementally and dynamically clustering incoming multi-dimensional data points.

MAKING SVMS SCALABLE TO LARGE DATA SETS 299

• Since a single scan of data does not allow backtracking, localized inaccuracies may exist
depending on the order of data input. Fortunately, the CF tree captures the major distri-
bution patterns of the data and provides enough information for CB-SVM to perform.

• It handles noise or outliers (data points that are not a part of the underlying distribution)
effectively as a by-product of the clustering.

Other hierarchical clustering algorithms have also been developed, including STING
(Wang et al., 1997), CURE (Guha et al., 1998), Chameleon (Karypis et al., 1999). STING is
a grid-based clustering method in which the spatial data is divided with equal space without
considering the data distribution. Chameleon has shown to be powerful at discovering
arbitrarily shaped clusters of high quality, but its complexity in the worst case is O(n2),
where n is the number of data points. CURE produces high-quality clusters with complex
shapes, and its complexity is also linear to the number of objects. However, its parameter
in general has a significant influence on the results. Setting them to maximize performance
is a non-trivial task.

The CF tree of BIRCH carries spherical shapes of hierarchical clusters and captures
the statistical summaries of the entire data set. It provides an efficient and effective data
structure for CB-SVM. BUBBLE, an revision of the BIRCH algorithm, was proposed later
(Ganti et al., 1999) for arbitrary metric spaces. It constructs a similar structure called CF∗

tree for clustering. CF∗ tree assigns an actual object in a cluster as the cluster center to
facilitate clustering in any distance space. Due to its similarities to the original CF tree, it
is an alternative structure for CB-SVM.

3.1. Clustering feature and CF tree

First, we define some basic concepts. Given N d-dimensional data points in a cluster: {xi}
where i = 1, 2, . . . , N, the centroid C and radius R of the cluster are defined as,

C =
∑N

i=1 xi

N
(1)

R =
(∑N

i=1 ||xi − C ||2
N

) 1
2

(2)

where R is the average distance from all the member points to the centroid.
The concept of the clustering feature (CF) tree is at the core of the hierarchical micro-

clustering algorithm which makes the clustering incremental without expensive computa-
tions. A CF vector is a triplet which summarizes the information that a CF tree maintains
for a cluster.

Definition 1 (Clustering feature (Zhang et al., 1996)). Given n d-dimensional data points
in a cluster: {xi} where i = 1, 2, ..., n, the CF vector of the cluster is defined as a triple:
CF = (n, LS, SS), where n is the number of data points in the cluster, LS is the linear sum
of the n data points, i.e.,

∑
n

i=1 xi, and SS is the component-wise square sum of the n data
points, i.e.,

∑
n

i=1 xi
2.

300 YU ET AL.

Theorem 1 (CF Additivity Theorem (Zhang et al., 1996)). Assume that CF1 = (n1, LS1,
SS1) and CF2 = (n2, LS2, SS2) are the CF vectors of two disjoint clusters. Then the CF
vector of the cluster formed by merging the two disjoint clusters is:

C F1 + C F2 = (n1 + n2, L S1 + L S2, SS1 + SS2) (3)

Refer to Zhang et al., 1996 for the proof.
From the CF definition and additivity theorem, we can see that the CF vectors of

clusters can be stored and calculated incrementally and accurately as clusters are merged.
The centroid C and the radius R of each cluster can be also computed from the CF
vector.

As mentioned before, the CF serves as an efficient summary for a set of data points.
It can save space significantly for densely packed data points, and it is also sufficient for
calculating all the necessary information for building the hierarchical micro-clusters. All
of these properties combine to facilitate computing an SVM boundary for very large data
sets.

3.1.1. CF tree. A CF tree is a height-balanced tree with two parameters: branching factor
b and threshold t. A CF tree of height h = 3 is shown in the right side of Figure 1. Each
nonleaf node consists of at most b entries of the form (CFi, childi), where (1) i = 1, 2, . . .,
b, (2) childi is a pointer to its i-th child node, and (3) CFi is the CF of the cluster represented
by childi. A leaf node has only a leaf entry, which contains just the CF for that node. The
tree is hierarchical in the following sense: the CF at any node contains information for
all data points in that node’s subtree. Lastly, all leaf entries have to satisfy the threshold t
constraint, which restricts the radius of an entry to be less than t.

The tree size is a function of t. The larger t is, the smaller the tree is. The branching factor
b can be determined by memory page size such that a leaf or a nonleaf node fits in a page.

The CF tree is a compact representation of the data set, because each entry in a leaf node
is not a single data point but a cluster, which absorbs many data points within a radius of t
or less.

Figure 1. Example of the SVM boundary trained from the root entries of positive and negative trees.

MAKING SVMS SCALABLE TO LARGE DATA SETS 301

3.2. Algorithm description

A CF tree is built up dynamically as new data objects are inserted. Insertion is similar to
that of a B+-tree. The sketch is given below.

1. Identifying the appropriate leaf: Starting from the root, it traverse the CF tree down to
the leaf level by choosing the child node whose centroid is closest to the new data object
at each level.

2. Modifying the leaf: If the leaf entry can absorb the new data object without violating the
t threshold condition, update the CF vector of the entry and terminate. Otherwise, add a
new leaf entry. If adding a new entry violates the b threshold (i.e., too many children),
split the parent node by choosing the farthest pair of entries as seeds and redistribute the
remaining entries based on the closeness.

3. Modifying the path to the leaf: If the previous step of modifying a leaf entry caused a
node split, check the parent node for satisfaction of the branching factor constraint. If
the parent node violates the b threshold as well, split it and recursively traverse back up
to the root while performing the same checks.

Due to the limited number of entries in a node, a highly skewed input could cause two
subclusters that should have been in one cluster split across different nodes, and vice versa.
These infrequent but undesirable anomalies are handled in the original BIRCH algorithm by
further refinement with additional data scans. However, we do not perform such refinements,
because the infrequent and localized inaccuracy do not heavily impact the performance of
CB-SVM.

3.2.1. Threshold determination. The choice of the threshold t is crucial for building the
CF tree whose size fits in the available memory; because if t is too small, we run out of
memory before all the data are scanned. The original BIRCH algorithm initially sets t very
low, and iteratively increases t until the tree fits into memory. Zhang et al. proved that
rebuilding the tree with a larger t requires a re-scan of the data inserted in the tree so far
and at most h extra pages of memory, where h is the height of the tree (Zhang et al., 1996).
The heuristics for updating ti is also provided in (Zhang et al., 1996). Due to the space
limitation and to keep the focus of the paper, we skip the details of our implementation.
In our experiments, we set the initial threshold t1 intuitively based on the number of data
points n, the dimensionality d, and the value range rd of each dimension such that t1 is
proportional to n × d × rd. Usually, the tree of t1 fits in memory.

3.2.2. Outlier handling. After the construction of a CF tree, the leaf entries that contain far
fewer data points than average are considered to be outliers. A non-trivial amount of outliers
or noise in the training data is undesirable because it complicates the boundary function and
could prevent the SVM boundary from converging in the quadratic programming. Therefore,
we would like to eliminate these outliers during training. The precise determination of
outlier entries is achieved by a threshold value. A non-zero but small outlier threshold can
significantly improve the classification performance of CB-SVM. This is especially evident
when the data set size is large compared to the number of dimensions and the boundary

302 YU ET AL.

functions are simple. The rationale behind it is analogous to having a low VC dimension
in machine learning theory.

We enable the outlier handling with a low threshold in our experiments in Section 5
because the type of data that we target has a large number of data points with relatively low
dimensionality, and the boundary function is linear to the VC dimension m + 1 where m is
the number of dimensions. See Section 5 for more details.

3.2.3. Analysis. A CF tree that fits in memory can have at most M
P nodes, where M is the

size of memory and P is the size of a node. The height h of a tree is logb
M
P , independent

of the data set size. If we assume that memory is unbounded and the number of the leaf
entries is equal to the number of data points N (i.e., a very small t threshold), then h = log
b N.

Insertion of a node into a tree requires the examination of O(b ∗ h) entries, as traversing
through the tree needs at most b ∗ h examinations. The cost per entry is proportional to
the dimension d. Thus, the cost of inserting N data points is O(N × d × b × h). In case
of rebuilding the tree due to the poor estimation of t1, additional re-insertions of the data
already inserted has to be added into the cost. Then the cost becomes O(k × N × d ×
b × h) where k is the number of the rebuildings. If we only consider the dependence on
the data set size, the computation complexity of the algorithm is O(N). Experiments from
the original BIRCH algorithm have also shown the linear scalability of the algorithm with
respect to the number of data points.

4. Clustering-based SVM (CB-SVM).

In this section, we present the CB-SVM algorithm which trains a very large data set using the
hierarchical micro-clusters (i.e., CF tree) to construct an accurate SVM boundary function.

The key idea of CB-SVM can be viewed as similar to that of selective sampling (or
active learning), i.e., selecting the data that maximizes the benefit of learning. Classical
selective sampling for SVMs chooses and accumulates the low margin data at each round,
which are points that are close to the boundary in the feature space. Low margin data are of
interest because they have higher chances to become the SVs of the boundary for the next
round (Tong and Koller, 2000; Schohn and Cohn, 2000). Based on this idea, we decluster
the node entries near the boundary to get finer sampling close to the boundary and coarser
sampling far from the boundary. In this manner, we induce the SVs, the description of the
class boundary, as fine as possible while keeping the total number of training data points
as small as possible.

While traditional selective sampling needs to scan the entire data set at each round to
select the closest data point, CB-SVM runs on the CF tree, which can be constructed in a
single scan of the entire data set and carries the statistical summaries that facilitate efficient
and effective construction of an SVM boundary. The sketch of the CB-SVM algorithm is
as follows.

1. Construct two CF trees from positive and negative data set independently.

MAKING SVMS SCALABLE TO LARGE DATA SETS 303

2. Train an SVM boundary function using the centroids of the root entries, i.e., the entries
in the root node of the two CF trees. If the root node contains too few entries, train using
the entries of the nodes at the second levels of the trees.

3. Decluster the entries near the boundary into the lower level in the CF trees. The newly
declustered child entries are added to the training set.

4. Construct another SVM from the centroids of the entries in the training set, and repeat
from step 3 until nothing is added to the set.

The CF tree is a suitable base structure for CB-SVM to efficiently perform selective
declustering. The clustered data provide better summaries for SVM than random samples
because random sampling is susceptible to biased or skewed input. Random samples may
generate undesirable outputs especially when the probability distributions of training and
testing data are not similar, which is common in practice. We discuss this in detail in
Section 5.

4.1. CB-SVM description

Let us first consider linearly separable cases.
Let positive tree Tp and negative tree Tn be the CF trees built from the positive data set and

the negative data set respectively. We first train an SVM boundary function g using only the
centroids of the root entries in Tp and Tn. Note that each entry (or cluster) Ei contains all the
necessary information to efficiently compute its centroid Ci and radius Ri. Figure 1 shows
an example of the SVM boundary with the root clusters and the corresponding positive
tree.

After the initial boundary function g is computed, we find the low margin clusters that
are close to the boundary and decluster them into finer levels in the CF tree. Let support
clusters be clusters whose centroids are SVs of the boundary g, e.g., the bold circles in
figure 1. Let Ds be the distance from the boundary to the centroid of a support cluster s.
If we are using hard margins, Ds is constant for all s. Also let Di be the distance from the
boundary to the centroid of cluster Ei. Then, we consider a cluster Ei which satisfies the
following constraint as a low margin cluster.

Di − Ri < Ds (4)

where Ri is the radius of the cluster Ei. Descriptively, a low margin cluster is a cluster whose
closest distance to the classification boundary is less than Ds.

The clusters that satisfy the constraint Eq. (4) are of interest, because their subclusters
could become support clusters of the boundary. Figure 2 shows an example. On the left
side, five clusters (circles with gray parts) initially satisfy the constraint Eq. (4); three of
them are the support clusters, shown in bold. These five clusters are declustered into finer
levels, shown in the right side of the figure. The smaller and more precise support clusters
found in the next iteration are shown in bold. Note that the CF tree uses the “average”
radius instead of the “maximal” radius of a cluster for efficiency (see Eq. (2).). Thus, it is
possible that a few sub-clusters are outside the circles.

304 YU ET AL.

Figure 2. Declustering of the low margin clusters.

The subclusters whose parent clusters do not satisfy the constraint Eq. (4) cannot become
support clusters of the boundary g in the next iteration. This is because their parent clusters
are farther away from the boundary than the current SVs. From this, we have the following
remark.

Remark 1 (Declustering constraint) For any cluster Ei, let Ri be the radius of the cluster
and Di be the distance from the class boundary to the centroid of the cluster. Given a
separable set of positive and negative clusters E = {Ei

+} ∪ {Ei
−} and the SVM boundary

g of the set, the subclusters of Ei have the possibilities to be the support clusters of the
boundary g only if Di − Ri < Ds, where Ds is the distance from the boundary to the centroid
of a support cluster in the case of hard constraints.

The example we illustrated in Figure 2 was a linearly separable case with hard constraints
on the SVM. In practice, soft constraints are usually necessary to cope with noise in the
training set. Using soft constraints generates the SVs with different distances from the
boundary. That is, the margin f(s)/||w|| (Vapnik, 1998) will be different for different support
vector s. Thus, we use the average margin, Ds

′ for the declustering constraint:

D′
s =

∑
x∈S

f (x)
||w||

|S| (5)

where S is the set of support vectors.
Tables 1 and 2 describe the CB-SVM algorithm.

4.2. CB-SVM analysis

As discussed in Section 3.2.3, building a CF tree has cost O(N) where N is the number
of data points. We disregard the number of dimensions in our analysis since it is linearly
dependent. Once the CF tree is built, the training time of CB-SVM becomes dependent on
the number of leaf entries in the tree instead of the number of data points.

MAKING SVMS SCALABLE TO LARGE DATA SETS 305

Table 1. CB-SVM.

Input: - positive data set P , negative data set N
Output: - a boundary function g

Functions:

- HC(S): return a hierarchical cluster tree T from a data set S
- getRootEntries(T): return the entries in the root node of a tree T

- getChildren(S): return the children entries of an entry set S

- getLowMargin(g, S): return the low margin entries from a set S which are close to the boundary g
(See Table 2)

Algorithm:

// Construct a positive and a negative tree from P and N respectively

1. Tp = HC(P); Tn = HC(N);

// Put the positive and negative root entries in initial training set S
2. S := {getRootEntries(Tp) ∪ getRootEntries(Tn)};

3. Repeat

3.1. g := SVM.train(S); // construct a boundary g

3.2. S ′ := getLowMargin(g, S); // compute the low margin entries S ′ from S using g

3.3. S := S − S ′; // exclude the low margin data from S
3.3. S ′ := getChildren(S ′);
3.4. Exit if S ′ = ∅;

3.5. S := S ∪ S ′; // include the children of the low margin data to the training set S
4. Return g;

Table 2. getLowMargin(g, S).

Input: - a boundary function g, a entry set S
Output: - a set of the low margin entries S ′

Algorithm:

// return the average distance of the support vectors from the boundary g

1. DSV := getAveDistanceOfSVs(g);

// return the data whose margin is smaller than DSV

2. S ′ := getLowerMarginData(DSV , S);

3. Return S ′;

Let us assume t(SVM) = O(N2) where t(�) is the training time of algorithm �. The
number of the leaf entries is at most bh. Thus, t(SVM) becomes O(b2h).

Let support entries be leaf entries that contain SVs. Let r be the percentage of
training entries that are support entries, averaged over all training iterations. Formally,
r = 1/k

∑k
i=1 si/bi where bi is the number of training entries and si is the number of

support entries in iteration i of k total. Usually, s 	 b and 0 < r 	 1 for standard SVMs
with large data sets.

306 YU ET AL.

Theorem 2 (Training Complexity of CB-SVM). If the number of leaf entries in a CF
tree is equal to the number of training data points N, then CB-SVM trains asymptotically
1/r2h−2 times faster than standard SVMs given the CF tree, where r is the average percentage
of SVs in all training iterations and h is the height of the tree (h = logb N).

Proof. If we approximate the number of iterations in CB-SVM I ≈ h (the height of CF
tree), then the training complexity of CB-SVM given the CF tree is:

t(CBSVM) =
h∑

i=1

ti (CBSVM)

where ti(CBSVM) is the training complexity of the i-th iteration of CB-SVM. The number
of training data points Ni at the i-th iteration is:

Ni = b − s + bs − s2 + · · · + bsi−2 − si−1 + bsi−1

= (b − s)(1 + s + s2 + · · · + si−2) + bsi−1

= (b − s)
si−1 − 1

s − 1
+ bsi−1

where b is the number of data points in a node, and s is the number of the SVs among the
data. If we assume t(SVM) = O(N2), by approximation of s−1 ≈ s,

ti (CBSVM) = O
([

bsi−2 + 1 − b

s
− si−1 + bsi−1

]2)

= O
([

bsi−1
]2)

If we accumulate the training time of all iterations,

t(CBSVM) = O

(
h∑

i=1

[bsi−1]2

)
= O

(
b2

h−1∑

i=0

s2i

)

= O

(
b2 s2h − 1

s2 − 1

)
≈ O

(
b2s2h−2

)

If we replace s with br since r = s/b,

t(CBSVM) = O
([

bhrh−1
]2) = O

(
b2hr2h−2

)

Therefore, t(CBSVM) trains asymptotically 1/r2h−2 times faster than t(SVM) which is
O(b2h) for N = bh. �

MAKING SVMS SCALABLE TO LARGE DATA SETS 307

From Theorem 2, where t(CBSVM) ≈ O(b2 s2h−2), we can see that the training time of
CB-SVM is quadratically dependent on the number of support vectors (sh) which is much
less than that of the entire data (bh). Normally r 	 1, especially for very large data sets.
So, the performance difference between CB-SVM and a standard SVM goes higher as the
data set becomes larger.

5. Experimental evaluation

In this section, we provide empirical evidence of our analysis of CB-SVM using synthetic
and real data sets and discuss the results. All the experiments are conducted on a Pentium
III 800 MHz machine with 906 MB memory.

5.1. Synthetic data set

5.1.1. Data generator. To verify the performance of CB-SVM in a realistic environment
while providing visualization of the results, we perform binary classifications on two-
dimensional data sets generated as follows.

1. We randomly created K clusters each with the following properties. (1) The center point
C is randomly chosen in the range [Cl, Ch] for each dimension independently. (2) The
radius R is randomly chosen in the range of [Rl, Rh]. (3) The number of points n in each
cluster is also randomly chosen in the range of [nl, nh].

2. Let Cx
i be the X-axis value of cluster Ei’s centroid, and let θ be a threshold value between

Cl and Ch. We labeled cluster Ei as positive if Cx
i < θ − Ri and negative if Cx

i > θ + Ri.
Clusters whose Cx

i did not satisfy either of these conditions, i.e., clusters that lied across
the threshold value on the X-axis, were completely removed. In this manner, we forced
the clusters to be linearly separable.

3. Once the characteristics of each cluster are determined, data points for the cluster are
generated according to a 2D independent normal distribution whose mean is the center
C and whose standard deviation is the radius R. The class label of each point is inherited
from the label of its cluster. Note that due to the properties of the normal distribution,
the maximum distance between a point in the cluster and the centroid is unbounded.
In other words, a point may be arbitrarily far from its belonging cluster. We refer to
these points as “outsiders”. Because of these points, the data set becomes not completely
linearly separable, which is more realistic.

5.1.2. SVM parameter setting. We used the LIBSVM1 (version 2.36) implementation
and used ν-SVM with linear kernel. We enabled the shrinking heuristics for fast training
(Joachims, 1998). ν-SVM has an advantage over standard SVMs: the parameter ν has a
semantic meaning which denotes the upper bound of the noise rate and the lower bound of
the SV rate in training data (Chang and Lin, 2001). Thus, a very low ν (e.g., 0.01) performs
very well when the data size is very large and noise is relatively small. For fair evaluation,
we optimized ν using the Hold-out testing technique for each method (Devroye et al., 1996).
Hold-out testing divides the training data into two sets: one for training and another for

308 YU ET AL.

Table 3. Data generation parameters for figure 3.

Parameter Values

Number of clusters K 50

Range of C [Cl, Ch] [0.0, 1.0]

Range of R [Rl, Rh] [0.0, 0.1]

Range of n [nl, nh] [0, 10000]

θ 0.5

Figure 3. Synthetic data set in a two-dimensional space. ‘|’: positive data; ‘−’: negative data.

validating. In our experiments, we used two-thirds for training and one-third for validating.
The testing data is generated separatly. It is computationally efficient while estimating
the generalization performance fairly well (Devroye et al., 1996). The alternative, cross
validation, takes too long as the size of our data set is very large.

5.1.3. Results and discussion on a “large” data set. Figure 3(a) shows an example data
set generated according to the parameters in Table 3. Data generated from the clusters on
the left side are positive (‘|’), and data on the right side are negative (‘−’).

Figure 3(b) shows 0.5% randomly sampled data from the original data set of Figure 3(a).
As mentioned previously, using random samples for training could hurt the SVM perfor-
mance. We give two particular reasons below.

1. In practice, the areas around the class boundaries tend to be sparse, because cluster
centers (which are dense) are unlikely to cross over the class boundaries. As a result,
because random sampling tries to reflect the original data distribution, many points near
the cluster centers will be sampled but few points around the boundaries will be included.
As figure 3(b) shows, most of the samples came from dense areas in figure 3(a). These
points only increase the training time of SVM; they do not contribute to the SVs of the
boundaries.

MAKING SVMS SCALABLE TO LARGE DATA SETS 309

Figure 4. Intermediate results of CB-SVM. ‘|’: positive data; ‘−’: negative data.

2. Random sampling is ineffective when the probability distributions of training and testing
data are different. The samples only reflect the distribution of the training data and could
miss significant regions of the testing data. We show an example in Section 5.2.

Figure 3(c) shows the training data points at the last iteration in CB-SVM. We set t1 =
0.01, b = 100, and the outlier threshold to the standard deviation. It generated a CF tree of
h = 3, and CB-SVM iterated three times.

Recall that the training data points of CB-SVM are not the actual data but rather sum-
maries of their clusters. Thus they tend not to have narrowly focused data points as it does
in the random sampling. Also, the areas far from the boundaries, which are unlikely to
contribute to the SVs, have very sparse data points, because the clusters representing those
areas would not be declustered in the process of CB-SVM.

Figures 4(a) and (b) show the intermediate data points that CB-SVM generated at the
first and second iterations respectively. The data points in figure 4(a) are the centroids of the
root entries, which are very sparse. Figure 4(b) shows denser points around the boundary
which are declustered into the second level of the CF tree. Finally, figure 3(c) shows an
even better data distribution for SVM by declustering the support entries to the leaf level.

For fair evaluation, we generated a testing set using the same clusters and radii but
different probability distributions by randomly re-assigning the number of points for each
cluster. We report the absolute number of false predictions (# of false negative + # of false
positive) on the testing data set, because the data size is so big (compared to the number
of false predictions) that the relative accuracy measure would not show much difference
between them.

Table 4 shows the performance results on the testing data set. CB-SVM based on the
clustering-based samples outperforms the standard SVM with the same number of random
samples. The “Number of data points” for CB-SVM in Table 4 denotes the number of
training data points at the last iteration as shown in Figure 3(c). The “training time” for
CB-SVM in the table indicates only time spent on SVM training. Notice that it is almost
equal to that of 0.5% random samples, reasonable because both methods generated similar
number of data points. The “sampling time” for CB-SVM indicates the time spent on

310 YU ET AL.

Table 4. Performance results on synthetic data set (# of training data = 113,601, # of testing data = 107,072).
FP:false positive; FN:false negative; Sampling time for CB-SVM: time for constructing the CF tree.

Original CB-SVM 0.5% samples

Number of data points 113601 597 603

SVM Training time (sec.) 163.223 0.003 0.003

Sampling time (sec.) 0.0 10.841 4.301

of false predictions 69 85 240

(# of FP, # of FN) (49, 20) (72, 13) (217, 23)

Table 5. Data generation parameters for the very large data set.

Parameter Values

Number of clusters K 100

Range of C [Cl, Ch] [0.0, 1.0]

Range of R [Rl, Rh] [0.0, 0.1]

Range of n [nl, nh] [0, 1000000]

θ 0.5

gathering the 597 data points of Figure 3(c). As one would expect, this takes longer than
random sampling, because it involves the construction of CF trees.

Note that the long construction time of the CF tree is partly caused by our non-optimized
implementation of the hierarchical micro-clustering algorithm. However, as we will show
in the next section, this construction cost will become less of an issue when the data size is
very large. This is because SVM training is O(N2) while CF tree construction is only O(N).
Thus as N increases, the cost of training will dominate the cost of building the CF tree.

5.1.4. Results and discussion on a “very large” data set. We generated a much larger data
set according to the parameters of Table 5 to verify the performance of CB-SVM compared
to RAN (random sampling), SEL (Schohn and Cohn, 2000) (selective sampling or active
learning with SVM), and ASVM (Mangasarian and Musicant, 2000) (active support vector
machine). ASVM is one of the most efficient linear SVM algorithms.2 Table 6 shows the
performance results of these methods on the “very large” data set. We could not run the
standard SVM on more than 5% of the entire data set due to our limited resources (i.e.,
available memory and time). For ASVM, we could only run it with up to 10% of the data
set. Running it with 20% exceeded our system resources and generated a system error.
We ran SEL 10 times and recorded the average. We discuss SEL and ASVM further in
Section 7.

SEL and CB-SVM show lower error rates than RAN and ASVM. The total training
time of CB-SVM (T-Time + S-Time) was much shorter than that of SEL, because SEL
needs to scan the entire data set at each iteration to select the closest data point. Because
SEL requires many iterations to acquire sufficient training data, the I/O cost becomes quite
expensive. SEL’s error rates are close to that of CB-SVM as their basic idea is similar,

MAKING SVMS SCALABLE TO LARGE DATA SETS 311

Table 6. Performance results on the very large data set (# of training data = 23,066,169, # of testing data
= 233,890). S-Rate: sampling rate; T-Time: training time (Sec.); S-Time: sampling time (Sec.); ASVM: active
SVM; SEL: selective sampling.

S-Rate # of data # of errors T-time S-time

RAN (0.0001%) 23 6285 0.00012 823.21

RAN (0.001%) 226 2353 0.00098 825.29

RAN (0.01%) 2333 1119 0.03 826.41

RAN (0.1%) 23273 1011 6.41 834.49

RAN (1%) 230380 1009 1189.03 837.98

RAN (5%) 1151714 1008 20754.19 843.28

ASVM (1%) 230380 1161 26.39 838.49

ASVM (5%) 1152901 1031 187.03 831.13

ASVM (10%) 2303769 995 521.38 833.91

SEL 307 952 54841.93

CB-SVM 2893 876 1.641 2531.35

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1000 1500 2000 2500 3000

of

 e
rr

or
s

T-Time + S-Time

CB-SVM
ASVM

RAN

Figure 5. Performance on the very large data set.

which implies that for large data sets, SVM may perform better with a set of fine quality
samples than a large amount of random samples.3

Figure 5 shows the error rates against total training time for RAN, ASVM, and CB-SVM.
We vary the sampling rate for RAN, ASVM, and also the parameter t1 for CB-SVM to
trade-off training time and error rate. ASVM can train on more samples than RAN with
the same training time. Thus ASVM outperformed RAN for a large data set given the same
training time. The dashed line of ASVM in Figure 5 denotes estimated error rates given the
previous data; We could not actually test it due to the memory limitation of ASVM. CB-
SVM outperforms ASVM as the data becomes very large. The training time of CB-SVM
is mainly the CF tree construction time.

312 YU ET AL.

5.2. Real data set.

In this section, we experiment on a network intrusion detection data set from the UCI KDD
archive which was used for the KDD Cup in 1999.4 This data set consists of about five
million training data and three hundred thousand testing data. As previously noted, CB-
SVM works better than random sampling especially when the training and testing data have
different distributions. The network intrusion data set is a good example, because the testing
data is not from the same probability distribution as the training data, and it also includes
attack types not seen in the training data. The datasets contain a total of 24 training attack
types, with an additional 14 types in the test data only. This is because they were collected
in different time periods, which makes the task more realistic (and more difficult). Our
experiments on this data set show that our method based on the clustering-based samples
significantly outperforms the random sampling having the same number of samples.

5.2.1. Experiment setup. Each data object consists of 34 continuous features. We normal-
ized the feature values to a value between 0.0 and 1.0 by dividing them by their maximum
values. We set t1 = 0.5 for the CF tree because the number of features in this data set is about
50 times larger than that in our synthetic data sets. The outlier threshold was tuned with a
lower value, because the outliers in the network intrusions could have valuable information.
However, tuning the outlier threshold involves some heuristics depending on the data set
and the boundary function. Further definition and justification on the heuristics for specific
types of problems is a subsequent future work. We used the linear kernel which performed
very well (over 90% accuracy) for this data set.

5.2.2. Results. Our task is to distinguish normal network connections from attacks. Table 7
shows the performance results of RAN, ASVM, SEL, and CB-SVM. Running SVM with
a larger amount of samples did not improve the performance much for the same reason
as discussed in Section 5.1.4. SEL and CB-SVM generated better results than RAN and
ASVM, and the total training time of CB-SVM was much smaller than that of SEL. We
run SEL with the same parameters as in Section 5.1.4.

6. CB-SVM for nonlinear classification

In this section, we present a new declustering constraint for SVM nonlinear kernels, so that
CB-SVM is also applicable to nonlinear classification by replacing function getLowMar-
gin(g,S) (Table 2) in the CB-SVM algorithm of Table 1 with a new getLowMargin(g,S)
function (Table 8).

The current declustering constraints of CB-SVM are not directly applicable to SVM
nonlinear kernels, because the statistical summaries (e.g., centroid and radius) computed in
the input space cannot be used in the new feature space transformed by nonlinear kernels:
distances in the new feature space are different from those in the input space. Thus, the
declustering constraint Di − Ri < Ds is not meaningful in the new feature space. Computing
the radius in the nonlinear kernel space is possible by using the kernel trick for distances
introduced in Scholkopf et al. (2000). However, maintaining the centroid in the kernel space
cannot be done incrementally. Thus, we introduce an artificial sampling technique for the

MAKING SVMS SCALABLE TO LARGE DATA SETS 313

Table 7. Performance results on the network intrusion data set (# of training data = 4,898,431, # of testing data
= 311,029). S-Rate: sampling rate; T-Time: training time (Sec.); S-Time: sampling time (Sec.); SEL: selective
sampling.

S-Rate # of data # of errors T-Time S-Time

RAN (0.01%) 515 25092 0.12 503.11

RAN (0.1%) 4917 24930 6.89 505.91

RAN (1%) 49204 24834 610.49 511.78

RAN (5%) 245364 24829 15938 519.73

ASVM (1%) 49204 25129 109.76 508.93

ASVM (5%) 245364 24887 646.18 512.79

ASVM (10%) 490566 24740 1438.51 513.49

SEL 747 22942 94049.93

CB-SVM 4090 20938 7.71 4794.84

Table 8. getLowMargin(g, S) for nonlinear kernels.

Input: - a boundary function g, a entry set S
Output: - a set of the low margin entries S ′

Algorithm:

1. S ′ = ∅;

2. Do loop for s in S;

// return artificial samples created around the border of cluster s

2.1. BS = createBorderSamples(s);

// if any of the samples on the border is misclassified, the cluster needs to be declustered.

2.2. if any of the samples in BS is misclassified by g, then S ′ = S ′ ∪ s;

3. Return S ′;

declustering constraint for nonlinear kernels. We present the artificial sampling technique
in the Section 6.1 and verify the performance of our CB-SVM using a commonly-used
nonlinear classification data sets: the checkerboard (Section 6.2) and the covertype data set
(Section 6.3).

6.1. Declustering constraint for nonlinear kernels

An SVM classification function with a nonlinear kernel is a nonlinear curve in input space
but a linear function (i.e., a hyperplane) in feature space. To identify the clusters located
close to the boundary, we generate artificial samples around the border of each cluster
and test them using the current boundary function. If the samples generated from a cluster
show inconsistent classification results for the current boundary function, it implies that
the current boundary passes through the cluster. Such clusters are then considered the low
margin clusters, which are candidates for declustering. Note that the basic idea here is the

314 YU ET AL.

(a) (b)

Figure 6. Example of nonlinear boundary function in input space. ‘+’: positive cluster center, ‘o’: negative
cluster center.

same as the linear case: find clusters close to the current boundary function. It is just the
discovery process that is different.

To illustrate, consider Figure 6(a) which shows an example of a nonlinear function
in a two-dimensional input space. (‘+’ denotes a positive cluster center and ‘o’ denotes
a negative cluster center.) SVM with a nonlinear kernel may draw a nonlinear function
boundary shown in the figure, which correctly classifies two groups of the center points. The
boundary passes through eight clusters which are shown in bold circles in Figure 6(b). To
determine whether a cluster intersects the boundary function, we generate artificial samples
around the border of the cluster. If the boundary passes through the cluster, the artificial
samples would show inconsistent classification results. In Figure 6(b), all eight clusters
would show inconsistent results: they all have portions of their borders on different sides
of the boundary function. To maximize the accuracy of this new declustering constraints
while minimizing the number of artificial samples for efficiency, we only sample from the
border of each cluster. Since we know the center C and radius R of each cluster, we can
easily control the sampling process.

6.2. Experiment on a checkerboard data set

To evaluate the effectiveness of the new declustering constraint for nonlinear kernels, we
generated an artificial data set, checkerboard (Figure 8(a)), which is commonly used to
evaluate SVM nonlinear kernels, especially the Gaussian kernels. Gaussian kernels are
known to be the most complex and powerful.5

To create the artificial samples in the checkerboard data, we generated two samples for
each dimension of a cluster as described in Figure 7. More samples might be needed as the
number of dimensions increases and the boundary becomes more complex. More artificial
samples result in longer training time because there are more data to be evaluated to check

MAKING SVMS SCALABLE TO LARGE DATA SETS 315

Figure 7. Example of createBorderSamples(s) which generates two samples for each dimension.

Figure 8. Experiment on a checkerboard data set. ‘+’: positive data; ‘·’: negative data.

the de-clustering constraint. We chose to sample two data per dimension based on the
knowledge that each dimension has two extreme points from the centroid. If we project all
the points down to a single dimension, given the centroid C, there exists two points D1 and
D2 such that |C − D1| = |C − D2| = R in that projection. This heuristic performs very well
on our nonlinear data sets which have relatively small dimensions.

Using the new declustering constraint for nonlinear kernels, Figure 9(a), (b), and (c)
show intermediate stages of CB-SVM on the checkerboard data set. Figure8(b) shows the
data distribution after the 4-th iteration, which reduced the total number of training data
ten times but generated the same quality of support vectors for the boundary. Thus, the
total training time was significantly reduced while the quality of classification function was
maintained.

Figure 10 shows the error rates against the training time for RAN and CB-SVM. Since the
data distribution of training and testing set are the same, RAN with more samples performed
very well. However, CB-SVM required much shorter training times to achieve similar
accuracy numbers as it excluded unnecessary data points located far from classification
boundary.

316 YU ET AL.

Figure 9. Intermediate results of CB-SVM.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000

of

 e
rr

or
s

T-Time + S-Time

CB-SVM
RAN

Figure 10. Performance on the checkerboard data set.

6.3. Experiment on a real data set

In this section, we experiment using the covertype data set from the UCI machine learning
repository6. This data set consists of about 581,000 data objects. We randomly divided them
into a big training set and a small testing set to evaluate the training performance of SVM
and CB-SVM with a nonlinear kernel. A linear kernel generated very poor performance
(e.g., below 40% accuracy) while the Gaussian kernel performed very well (e.g., over 80%
accuracy). Table 10 and Figure 11 show the experiment results. RAN performs very well
with a higher sampling rate. However, CB-SVM takes a much shorter training time to
achieve similar results.

7. Related work

Our work is in some respect related to: (1) SVM fast implementations, (2) SVM approxi-
mations, (3) on-line SVM or incremental and decremental SVM for dynamic environments,
(4) selective sampling (or active learning) for SVM, and (5) random sampling techniques
for SVM.

MAKING SVMS SCALABLE TO LARGE DATA SETS 317

Table 9. Performance results on the checkerboard data set (# of training data = 100,000, # of testing data =
100,000). Time: training time + sampling time (Sec.).

S-Rate # of errors Time

RAN (1%) 6908 4.7

RAN (10%) 1514 93.59

RAN (50%) 448 1023.81

RAN (100%) 259 4109.69

CB-SVM 27830 7.3

3522 8.8

1511 82.64

884 162.39

Table 10. Performance results on the checkerboard data set (# of training data = 569,382, # of testing data =
11630). Time: training time + sampling time (sec.).

S-Rate # of errors Time

RAN (1%) 2166 158.09

RAN (2%) 1852 993.46

RAN (10%) 1114 35994.7

RAN (20%) 894 139625

CB-SVM 5378 70.39

2219 72.92

1449 868.82

Many algorithms and implementation techniques have been developed for training SVMs
efficiently since the running time of the standard QP algorithms grows too fast. Most
effective heuristics to speed up SVM training are to divide the original QP problem into
small pieces, thereby reducing the size of each QP problem. Chunking, decomposition
(Joachims, 1998; Collobert and Bengio, 2001), and sequential minimal optimization (Platt,
1998) are some well-known techniques. Our CB-SVM algorithm runs on top of these
techniques to handle very large data sets by condensing the training data into the statistical
summaries of data groups such that coarse summaries are made for “unimportant” data and
fine summaries are made for “important” data.

SVM approximation is a class of methods that tries to improve the computational effi-
ciency while keeping the semantics intact. It does this by altering the QP formulation to the
extent that it keeps the original SVM semantics but makes it easier to solve by a QP solver
(Fung and Mangasarian, 2001; Agarwal, 2002). Active SVM (Mangasarian and Musicant,
2000) is a particular example that is especially designed for handling very large data sets.
Active SVM is currently known as one of the most efficient linear SVM algorithms for such
domains. However, it is limited to linear classification, and it does not perform as well as

318 YU ET AL.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 1000 2000 3000 4000 5000 6000 7000

of

 e
rr

or
s

T-Time + S-Time

CB-SVM
RAN

Figure 11. Performance on the covertype data set.

CB-SVM on very large data sets partially because it does not handle the limits of system
resources well. Also its training complexity is quadratic to the number of dimensions.

Online SVMs or incremental and decremental SVMs have been developed to handle
dynamically incoming data efficiently (Syed et al., 1999; Cauwenberghs and Poggio, 2000;
Kivinen et al., 2001). For these methods, a SVM model is usually incrementally constructed
and maintained. However, in these scenarios, newer data tend to have a higher impact on
the SVM model than older data. More recent data have a higher chance to be the SVs of the
SVM model than older data. Therefore, these methods are not suitable for analysis tasks
where equal treatment of all data is desired.

Selective sampling or active learning is yet another class of methods. It tries to intel-
ligently sample a small number of training data from the entire data set that maximizes
the quality of learning, i.e., learning maximally with a minimum number of data points
(Greiner et al., 1996; Tong and Koller, 2000; Schohn and Cohn, 2000). The core of the
active learning technique is to select the data intelligently such that the degree of learning is
maximized by the data. A common active learning paradigm iterates a training and testing
process as follows: (1) construct a model by training an initially given data set, (2) test
the entire data set using the model, (3) by analyzing the testing output, select the data
(from the entire data set) that will maximize the degree of learning for the next round, (4)
accumulate the data to the training data set, and train them to construct another model, and
(5) repeat from steps (2) to (5) until the model becomes accurate enough. The idea of the
SVM selective sampling is to select data close to the boundary in the feature space at each
round, because the data near the boundary have higher chances to be SVs in the next round,
i.e., a higher chance to refine the boundary (Tong and Koller, 2000; Schohn and Cohn,
2000). They iterate until there exists no data nearer to the boundary than the SVs. However,
an active learning system needs to scan the entire data set at every iteration to select the
data, which generates too much I/O cost for very large data sets.

Some random sampling techniques (Watanabe et al., 2001; Lee and Mangasarian, 2001)
have been also developed to reduce the training time of SVM for large data sets. For
document classification, Bundled-SVM (Shih et al., 2002) is developed to reduce the size

MAKING SVMS SCALABLE TO LARGE DATA SETS 319

of training data by merging multiple documents into one. Other sampling algorithms have
been developed to mine data streams (Domingos and Hulten, 2000) and to quickly find
interesting patterns in databases (Scheffer and Wrobel, 2002). They draw samples until the
result becomes similar to what one would get from the entire dataset.

To our best knowledge, CB-SVM is the only method that tries to maximize the SVM
performance given limited system resources.

8. Conclusions and future work

This paper proposes a new method called CB-SVM (Clustering-Based SVM) that integrates
a scalable clustering method with an SVM method and effectively runs SVM for very large
data sets. Existing SVMs cannot feasibly handle such data sets due to their high complexity
on the data size. CB-SVM applies a hierarchical micro-clustering algorithm that scans the
entire data set only once to provide an SVM with high quality micro-clusters that carry the
statistical summaries of the data. CB-SVM tries to generate the best SVM boundary for
very large data sets given bounded system resources. It uses the philosophy of hierarchical
clustering where progressive deepening can be conducted when needed to find high quality
boundaries for the SVM. Our experiments on synthetic and real data sets show that CB-SVM
is very scalable for very large data sets while generating high classification accuracy.

However, CB-SVM suffers in classifying high dimensional data due to the fact that clus-
tering methods do not scale well to high dimensional data. Developing a high dimensional
indexing structure for SVM is an interesting direction for future work.

Acknowledgments

The work was supported in part by National Science Foundation under grants No. IIS-02-
09199/IIS-03-08215 and an IBM Faculty Award. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

Notes

1. http://www.csie.ntu.edu.tw/∼cjlin/libsvm
2. See http://www.cs.wisc.edu/dmi/asvm/ for the ASVM implementation.
3. We ran the SEL with δ = 5 (starting from one positive and one negative sample and adding five samples

at each round), which gave fairly good results among others. δ is commonly set below ten. If δ is too high,
its performance converges slower, which ends up with a larger amount of training data to achieve the same
accuracy, and if δ is too low, SEL may need to undergo too many iterations (Schohn and Cohn, 2000; Tong
and Koller, 2000).

4. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
5. In machine learning theory, the model complexity or the power of a classification function is often measured

by VC-dimension. SVMs with Gaussian kernels have infinite VC-dimensions (Burges, 1998), meaning that it
is able to classify arbitrary partitionings of a data set.

6. http://ftp.ics.uci.edu/pub/machine-learning-databases/covtype/

320 YU ET AL.

References

Agarwal, D.K. 2002. Shrinkage estimator generalizations of proximal support vector machines. In Proc. ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD’02), pp. 173–182.

Burges, C.J.C. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge
Discovery, 2:121–167.

Cauwenberghs G. and Poggio, T. 2000. Incremental and decremental support vector machine learning. In Proc.
Advances in Neural Information Processing Systems (NIPS’00), pp. 409–415.

Chang, C.-C. and Lin, C.-J. 2001. Training nu-support vector classifiers: Theory and algorithms. Neural Compu-
tation, 13:2119–2147.

Collobert, R. and Bengio, S. 2001. SVMTorch: Support vector machines for large-scale regression problems.
Journal of Machine Learning Research, 1:143–160.

Devroye, L. Gyorfi, L., and Lugosi, G. (Eds.), A Probabilistic Theory of Pattern Recognition. Springer-Verlag,
1996.

Domingos P. and Hulten, G. 2000. Mining high-speed data streams. In Proc. ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining (KDD’00).

Fung, G. and Mangasarian, O.L. 2001. Proximal support vector machine classifiers. In Proc. ACM SIGKDD Int.
Conf. Knowledge Discovery and Data Mining (KDD’01), pp. 77–86.

Ganti, V. Ramakrishnan, R., and Gehrke, J. 1999. Clustering large datasets in arbitrary metric spaces. In Proc. Int.
Conf. Data Engineering (ICDE’98).

Greiner, R. Grove, A.J., and Roth, D. 1996. Learning active classifiers. In Proc. Int. Conf. Machine Learning
(ICML’96), pp. 207–215.

Guha, S. Rastogi, R. and Shim, K. 1998. CURE: An efficient clustering algorithm for large databases. In Proc.
ACM SIGMOD Int. Conf. Management of Data (SIGMOD’98), pp. 73–84.

Joachims, T. 1998a. Text categorization with support vector machines. In Proc. European Conf. Machine Learning
(ECML’98), pp. 137–142.

Joachims, T. 1998b. Making large-scale support vector machine learning practical. In Advances in Kernel Methods:
Support Vector Machines, A.J. Smola B. Scholkopf, C. Burges, (Eds.) Cambridge, MA: MIT Press.

Karypis, G. Han, E.-H., and Kumar, V. 1999 Chameleon: Hierarchical clustering using dynamic modeling.
Computer, 32:(8)68–75.

Kivinen, J. Smola, A.J., and Williamson, R.C. 2001. Online learning with kernels. In Proc. Advances in Neural
Information Processing Systems (NIPS’01), pp. 785–792.

Lee Y.-J. and Mangasarian, O.L. 2001. RSVM: Reduced support vector machines. In SIAM Int. Conf. Data
Mining.

Mangasarian, O.L. and Musicant, D.R. 2000. Active support vector machine classification. Tech. Rep., Computer
Sciences Department, University of Wisconsin at Madison.

Platt, J. 1998. Fast training of support vector machines using sequential minimal optimization. In Advances in
Kernel Methods: Support Vector Machines, A.J. Smola B. Scholkopf, and C. Burges (Eds.) Cambridge, MA:
MIT Press.

Scheffer T. and Wrobel, S. 2002. Finding the most interesting patterns in a database quickly by using sequential
sampling. Journal of Machine Learning Research.

Schohn, G. and Cohn, D. 2000. Less is more: Active learning with support vector machines. In Proc. Int. Conf.
Machine Learning (ICML’00), pp. 839–846.

Scholkopf, B. Williamson, R.C. Smola, A.J., and Shawe-Taylor, J. 2000. SV estimation of a distribution’s support.
In Proc. Advances in Neural Information Processing Systems (NIPS’00), pp. 582–588.

Shih, L. Chang, Y.-H. Rennie, J., and Karger, D. 2002. Not too hot, not too cold: The bundled-svm is just right!.
In Proc. the Workshop on Text Learning at the Int. Conf. on Machine Learning.

Smola, A.J. and Scholkopf, B. 1998. A tutorial on support vector regression. Tech. Rep., NeuroCOLT2 Technical
Report NC2-TR-1998-030.

Syed, N. Liu, H., and Sung, K. 1999. Incremental learning with support vector machines. In Proc. the Workshop
on Support Vector Machines at the Int. Joint Conf. on Articial Intelligence (IJCAI’99).

Tong, S. and Koller, D. 2000. Support vector machine active learning with applications to text classification. In
Proc. Int. Conf. Machine Learning (ICML’00), pp. 999–1006.

MAKING SVMS SCALABLE TO LARGE DATA SETS 321

Vapnik, V.N. 1998. Statistical Learning Theory. John Wiley and Sons.
Wang, W. Yang, J., and Muntz, R.R. 1997. STING: A statistical information grid approach to spatial data mining.

In Proc. Int. Conf. Very Large Databases (VLDB’97), pp. 186–195.
Watanabe, O. Balczar, J.L. Dai, Y. 2001. A random sampling technique for training support vector machines. In

Int. Conf. Data Mining (ICDM’01), pp. 43–50.
Yu, H. Han, J., and Chang, K.C. 2002. PEBL: Positive-example based learning for Web page classification using

SVM. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD’02), pp. 239–248.
Zhang, T. Ramakrishnan, R., and Livny, M. 1996. BIRCH: An efficient data clustering method for very large

databases. In Proc. ACM SIGMOD Int. Conf. Management of Data (SIGMOD’96), pp. 103–114.

