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Abstract. Intrinsically disordered regions in proteins are relatively frequent and important for our understanding
of molecular recognition and assembly, and protein structure and function. From an algorithmic standpoint,
flagging large disordered regions is also important for ab initio protein structure prediction methods. Here we first
extract a curated, non-redundant, data set of protein disordered regions from the Protein Data Bank and compute
relevant statistics on the length and location of these regions. We then develop an ab initio predictor of disordered
regions called DISpro which uses evolutionary information in the form of profiles, predicted secondary structure
and relative solvent accessibility, and ensembles of 1D-recursive neural networks. DISpro is trained and cross
validated using the curated data set. The experimental results show that DISpro achieves an accuracy of 92.8%
with a false positive rate of 5%. DISpro is a member of the SCRATCH suite of protein data mining tools available
through http://www.igb.uci.edu/servers/psss.html.
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1. Introduction

Proteins are fundamental organic macromolecules consisting of linear chains of amino
acids bonded together by polypeptide bonds and folded into complex three-dimensional
structures. The biochemical function of a protein depends on its three-dimensional structure,
thus solving protein structures is a fundamental goal of structural biology. Tremendous
efforts have been made to determine the three-dimensional structures of proteins in the
past several decades by experimental and computational methods. Experimental methods
such as X-ray diffraction and NMR (Nuclear Magnetic Resonance) spectroscopy are used
to determine the coordinates of all the atoms in a protein and thus its three-dimensional
structure. While most regions in a protein assume stable structures, some regions are
partially or wholly unstructured and do not fold into a stable state. These regions are
labeled as disordered regions by structural biologists.

Intrinsically disordered proteins (IDPs) play important roles in many vital cell functions
including molecular recognition, molecular assembly, protein modification, and entropic
chain activities (Dunker et al., 2002). One of the evolutionary advantages of proteins with
disordered regions may be their ability to have multiple binding partners and potentially
partake in multiple reactions and pathways. Since the disordered regions may be determined
only when the IDPs are in a bound state, IDPs have prompted scientists to revaluate
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the structure-implies-function paradigm (Wright and Dyson, 1999). Disordered regions
have also been associated with low sequence complexity and an early survey of protein
sequences based on sequence complexity predicted that a substantial fraction of proteins
contain disordered regions (Wootton, 1994). This prediction has been confirmed to some
extent in recent years by the growth of IDPs in the Protein Data Bank (PDB) (Berman
et al., 2000), which currently contains about 26,000 proteins and 16,300,000 residues. Thus
the relatively frequent occurrence of IDPs and their importance for understanding protein
structure/function relationships and cellular processes makes it worthwhile to develop
predictors of protein disordered regions. Flagging large disordered regions may also be
important for ab initio protein structure prediction methods. Furthermore, since disordered
regions often hamper crystallization, the prediction of disordered regions could provide
useful information for structural biologists and help guide experimental designs. In addition,
disordered regions can cause the poor expression of a protein in bacteria, thus making it
difficult to manufacture the protein for crystallization or other purposes. Hence, disordered
region predictions could provide biologists with important information that would allow
them to improve the expression of the protein. For example, if the N or C termini regions
were disordered, they could be omitted from the gene.

Comparing disorder predictors can be difficult due to the lack of a precise definition of
disorder. Several definitions exist in the literature including loop/coil regions where the
carbon alpha (Cα) on the protein backbone has a high temperature factor and residues in
the PDB where coordinates are missing as noted in a REMARK465 PDB record (Linding
et al., 2003). Here, consistent with Ward et al. (2004), we define a disordered residue as
any residue for which no coordinates exist in the corresponding PDB file.

Previous attempts at predicting disordered regions have used sequence complexity, sup-
port vector machines, and neural networks (Wootton, 1994; Dunker et al., 2002; Linding
et al., 2003; Ward et al., 2004). Our method for predicting disordered regions, called DISpro,
involves the use of evolutionary information in the form of profiles, predicted secondary
structure and relative solvent accessibility, and 1D-recursive neural networks (1D-RNN).
These networks are well suited for predicting protein properties and have been previously
used in our SCRATCH suite of predictors, including our secondary structure and relative
solvent accessibility predictions (Pollastri et al., 2001a, 2001b; Baldi and Pollastri, 2003).

2. Methods

2.1. Data

The proteins used for the training and testing of DISpro were obtained from the PDB in
May 2004. At that time, 7.6% (3,587) of the protein chains in the PDB obtained by X-ray
crystallography contained at least one region of disorder at least three residues in length.
Most of these disordered regions were short segments near the two ends of protein chains
(N- and C-termini).

We first filtered out any proteins that were not solved by X-ray diffraction methods, were
less than 30 amino acids in length, or had resolution coarser than 2.5 Å. Next, the proteins
were broken down into their individual chains. For the creation of our training and testing
sets, we selected only protein chains that had sections of disordered regions strictly greater
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than three residues in length. The determination of residues as being ordered or disordered
is based on the existence of an ATOM field (coordinate) for Cα atom of a given residue
in the PDB file. If no ATOM records exist for a residue listed in the SEQRES record, the
residue is classified as disordered.

We then filtered out homologous protein chains using UniqueProt (Mika and Rost, 2003)
with a threshold HSSP value of 10. The HSSP value between two sequences is a measure of
their similarity taking into account both sequence identity and sequence length. An HSSP
value of 10 corresponds roughly to 30% sequence identity for a global alignment of length
250 amino acids.

Secondary structure and relative solvent accessibility were then predicted for all the
remaining chains by SSpro and ACCpro (Pollastri et al., 2001a, b; Baldi and Pollastri,
2003). Using predicted, rather than true secondary structure and solvent accessibility,
which are easily-obtainable by the DSSP program (Kabsch and Sander, 1983), introduces
additional robustness in the predictor, especially when it is applied to sequences with little or
no homology to sequences in the PDB. The filtering procedures resulted in a set of 723 non-
redundant disordered chains. To leverage evolutionary information, PSI-BLAST (Altschul
et al., 1997) is used to generate profiles by aligning all chains against the Non-Redundant
(NR) database, as in (Jones, 1999; Przybylski and Rost, 2002; Pollastri et al., 2001b). As in
the case of secondary structure prediction, profiles rather than primary sequences are used
in the input, as explained in next section. Finally, these chains were randomly split into ten
subsets of approximately equal size for ten-fold cross-validated training and testing. The
final dataset is available at: http://www.ics.uci.edu/∼baldig/scratch/.

The final dataset has 215,612 residues, 6.4% (13,909) of which are classified as disor-
dered. Of the 13,909 disordered residues, 13.8% (1,924) are part of long regions of disorder
(≥30 AA). Figure 1 shows a histogram of the frequency of disordered region lengths in our
dataset.

2.2. Input and output of neural networks

The problem of predicting disordered regions can be viewed as a binary classification
problem for each residue along a one dimensional (1-D) protein chain. The residue at
position i is labeled as ordered or disordered. A variety of machine learning methods can be
applied to this problem, such as probabilistic graphical models, kernel methods, and neural
networks. DISpro employs 1-D recursive neural networks (1D-RNN)(Baldi and Pollastri,
2003). For each chain, our input is the 1-D array I, where the size of I is equal to the number
of residues in the chain and each entry Ii is a vector of dimension 25 encoding the profile
as well as secondary structure and relative solvent accessibility at position i. Specifically,
twenty of the values are real numbers which correspond to the amino acid frequencies in the
corresponding column of the profile. The other five values are binary. Three of the values
correspond to the predicted secondary structure class (Helix, Strand, or Coil) of the residue
and the other two correspond to the predicted relative solvent accessibility of the residue
(i.e., under or over 25% exposed).

The training target for each chain is the 1-D binary array T, whereby each Ti equals 0 or
1 depending on whether residue at position i is ordered or disordered. Neural networks (or
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Figure 1. Frequency of lengths of disordered regions.

other machine learning methods) can be trained on the data set to learn a mapping from the
input array I onto an output array O, whereby Oi is the predicted probability that residue at
position i is disordered. The goal is to make the output O as close as possible to the target
T.

2.3. The architecture of 1-D-recursive neural networks (1D-RNNs)

The architecture of the 1D-RNNs used in this study is derived from the theory of prob-
abilistic graphical models, but use a neural network parameterization to speed up belief
propagation and learning (Baldi and Pollastri, 2003). 1D-RNNs combine the flexibility of
Bayesian networks with the fast, convenient, parameterization of artificial neural networks
without the drawbacks of standard feedforward neural networks with fixed input size. Under
this architecture, the output Oi depends on the entire input I instead of a local fixed-width
window centered at position i. Thus, 1D-RNNs can handle inputs with variable length and
allow classification decisions to be made based on contextual long-ranged information out-
side of the traditional local input window. Since 1D-RNNs use weight sharing in both their
forward and backward recursive networks (see below), only a fixed number of weights are
required to handle propagation of long-ranged information. This is in contrast to local win-
dow approaches, where the number of weights (parameters) typically grows linearly with
the size of the window, increasing the danger of overfitting. Nevertheless, it is important
to recognize that since the problem of disordered region prediction can be formulated as a



ACCURATE PREDICTION OF PROTEIN DISORDERED REGIONS 217

standard classification problem, other machine learning or data mining algorithms such as
feed forward neural networks or support vector machines can in principle be applied to this
problem effectively, provided great care is given to the problem of overfitting.

The architecture of the 1D-RNN is described in figures 2 and 3 and is associated with a
set of input variables Ii, a forward H F

i and backward H B
i chain of hidden variables, and a set

Oi of output variables. In terms of probabilistic graphical models (Bayesian networks), this
architecture has the connectivity pattern of an input-output HMM (Bengio and Frasconi,

Figure 2. 1D-RNN associated with input variables, output variables, and both forward and backward chains of
hidden variables.

Figure 3. A 1D-RNN architecture with a left (forward) and right (backward) context associated with two
recurrent networks (wheels).
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1996), augmented with a backward chain of hidden states. The backward chain is of course
optional and used here to capture the spatial, rather than temporal, properties of biological
sequences.

The relationship between the variables can be modeled using three separate neural
networks to compute the output, forward, and backward variables respectively. These
neural networks are replicated at each position i; (i.e., weight sharing). One fairly general
form of weight sharing is to assume stationarity for the forward, backward, and output
networks, which leads to a 1D-RNN architecture, previously named a bidirectional RNN
architecture (BRNN), and is implemented using three neural networks NO , NF , and NB in
the form

Oi = NO
(
Ii , H F

i , H B
i

)

H F
i = NF

(
Ii , H F

i−1

)

H B
i = NB

(
Ii , H B

i+1

)
(1)

as depicted in figure 3. In this form, the output depends on the local input Ii at position i,
the forward (upstream) hidden context H F

i ∈ IRn and the backward (downstream) hidden
context H B

i ∈ IRm , with usually m = n. The boundary conditions for H F
i and H B

i can
be set to 0, i.e. H F

0 = H B
N+1 = 0 where N is the length of the sequence being processed.

Alternatively these boundaries can also be treated as a learnable parameter. Intuitively, we
can think of NF and NB in terms of two “wheels” that can be rolled along the sequence.
For the prediction at position i, we roll the wheels in opposite directions starting from the
N- and C-terminus and up to position i. We then combine the wheel outputs at position i
together with the input Ii to compute the output prediction Oi using NO .

The output Oi for each residue position i is computed by two normalized-exponential
units, which is equivalent to one logistic output unit. The error function is the relative
entropy between the true distribution and the predicted distribution.

All the weights of the 1D-RNN architecture, including the weights in the recurrent
wheels, are trained in supervised fashion using a generalized form of gradient descent on
the error function, derived by unfolding the wheels in space. To improve the statistical
accuracy, we average over an ensemble of five trained models to make prediction.

3. Results

We evaluate DISpro using ten-fold cross validation on the curated dataset of 723 non-
redundant protein chains. The resulting statistics for DISpro are given in Table 1, including
a separate report for the special subgroup of long disordered regions(>30 residues), which
have been shown to have different sequence patterns than N- and C-termini disordered
regions (Li et al., 1999). Performance is assessed using a variety of standard measures
including correlation coefficients, area under the ROC curves, Accuracy at 5% FPR (False
Positive Rate), Precision [TP/(TP + FP)], and Recall [TP/(TP + FN)]. The accuracy at 5%
FPR is defined as [(TP + TN)/(TP + FP + TN + FN)] when the decision threshold is set
so that 5% of the negative cases are above the decision threshold. Here, TP, FP, TN, and
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Table 1. Results for DISpro on 723 non-homologous protein chains.

Accuracy

Dataset Corr. Coef. ROC area (5% FPR) Precision Recall

All disorder 0.589 0.878 92.8% 75.4% 38.8%

Long disorder
(≥30 AA)

0.255 0.789 94.5% 22.1% 25.9%

Figure 4. ROC curve for DISpro on set of 723 protein chains.

FN refer to the number of true positives, false positives, true negatives, and false negatives
respectively.

The area under the ROC curve of DISpro computed on all regions is .878. An ROC area
of .90 is generally considered a very accurate predictor. An area of 1.00 would correspond
to a perfect predictor and an area of .50 would correspond to a random predictor. At 5%
FRP, the TPR is 92.8% for all disordered regions. DISpro achieves a precision and recall
rate of 75.4 and 38.8% respectively, when the decision threshold is set at .5. Figure 4
shows the ROC curves of DISpro corresponding to all disordered regions and to disordered
regions 30 residues or more in length. It shows that the long disordered regions are harder
to predict than the shorter disordered regions.

We have also compared our results to those of other predictors from CASP5 (Ward et al.,
2004) (Critical Assessment of Structure Prediction). The set of proteins from CASP5 should
be considered a fair test since each chain had a low HSSP score (<7) in comparison to our
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Table 2. Summary of comparison results for six predictors using the proteins from CASP5. Results for predictors
other than DISpro were reported by Ward et al. (2004).

Predictor Corr. coef. ROC area Accuracy (5% FPR)

DISpro 0.51 0.935 93.2%

DISOPRED2 0.52 0.900 93.1%

Dunker VLXT 0.31 0.809 91.4%

Dunker VL2 0.36 0.786 91.8%

Obradovic VL3 0.38 0.801 92.1%

FoldIndex 0.26 0.738 91.0%

training set. Table 2 shows our results in comparison to other predictors. DISpro achieves
an ROC area of 0.935, better than all the other predictors. The correlation coefficient of
DISpro is 0.51, roughly the same as DISOPRED2. The accuracy of DISpro at a 5% FPR
is 93.2% on the CASP5 protein set. Thus, on the CASP5 protein set, DISpro is roughly
equal or slightly better than all the other predictors on all three performance measures.
DISOPRE2 and DISpro performance appear to be similar and significantly above all other
predictors.

4. Conclusion

DISpro is a predictor of protein disordered regions which relies on machine learning
methods and leverages evolutionary information as well as predicted secondary structure
and relative solvent accessibility. Our results show that DISpro achieves an accuracy of
92.8% with a false positive rate of 5% on large cross-validated tests. Likewise, DISpro
achieves an ROC area of 0.88.

There are several directions for possible improvement of DISpro and disordered region
predictors in general that are currently under investigation. To train better models, larger
training sets of proteins with disordered regions can be created as new proteins are deposited
in the PDB. In addition, protein sequences containing no disordered regions, which are
currently excluded from our current datasets, may also be included in the training set to
decrease the false positive rate.

Our results confirm that short and long disordered region behave differently and therefore
it may be worth training two separate predictors. In addition, it is also possible to train a
separate predictor to detect whether a give protein chain contains any disordered regions or
not using another machine learning technique, such as kernel methods, for classification,
as is done for proteins with or without disulphide bridges (Frasconi et al., 2002). Results
derived from contact map predictors (Baldi and Pollastri, 2003) may also be used to try
to further boost the prediction performance. It is reasonable to hypothesize that disordered
regions ought to have poorly defined contacts. We are also in the process of adding to
DISpro the ability to directly incorporate disorder information from homologous proteins.
Currently, such information is only used indirectly by the 1D-RNNs. Prediction of disor-
dered regions in proteins that have a high degree of homology to proteins in the PDB should
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not proceed entirely from scratch but leverage the readily available information about dis-
ordered regions in the homologous proteins. Large disordered regions may be flagged and
be removed or treated differently in ab initio tertiary structure prediction methods. Thus it
might be useful to incorporate disordered region predictions into the full pipeline of protein
tertiary structure prediction. Finally, beyond disorder prediction, bioinformatics integra-
tion of information from different sources may shed further light on the nature and role
of disordered regions. In particular, if disordered regions act like reconfigurable switches
allowing certain proteins to partake in multiple interactions and pathways, one might be
able to cross-relate information from pathway and/or protein-protein interaction databases
with protein structure databases.
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