
Design Automation for Embedded Systems (2021) 25:161–176
https://doi.org/10.1007/s10617-021-09247-9

CAD synthesis tools for floating-gate SoC FPAAs

Sihwan Kim1 · Sahil Shah1 · Richard Wunderlich1 · Jennifer Hasler1

Received: 28 November 2017 / Accepted: 8 March 2021 / Published online: 22 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We present a tool framework to compile and program mixed-signal circuits and systems
on Floating-Gate (FG) based mixed-signal System-on-Chips (SoC) consisting of a digital
processor and Field Programmable Analog Array (FPAA) fabric. We have modified the
configuration of Verilog-to-Routing (VTR) to cover analog circuits and developed a tool
called vpr2swcs to create the list of FG switches, that is going from a high level block
description of the system to the addresses and bias values on the SoC. This tool enables
users to generate macro blocks and customize block location while designing mixed-signal
systems on the FPAA and also enables using routing fabric, composed of FGs, for Vector
MatrixMultiplication (VMM), a computing element for an analog neural network. The paper
demonstrates system level examples using this tool flow, where the experimental results have
been proved in other publications.

Keywords Floating-Gate · FPAA · CAD synthesis · vpr2swc

1 Analog-digital mixed system design

Automated or semi-automated Computer-Aided Design (CAD) tools have played a decisive
role in the development and design of digital and mixed-signal systems. In digital systems
such as Field-Programmable Gate Array (FPGA) [1], automated synthesis tools convert a
Hardware Description Language (HDL) design written by a system designer into a routing
and logic information [2,3]. This helps system designers to focus on various applications such
as image processing [4] or deep neural networks [5,6]. In analog systems, semi-automated
design tools (e.g. Cadence Virtuoso) provide numerous functions to help users to design,
simulate, and verify the circuits. Although CAD tools in digital and analog systems have
achieved remarkable progress for decades in each area, the application designer still does not
have a unified system for digital-analog design flow; it is required to define digital and analog
parts at the first stage, test each custom IC/FPGA, and integrate two parts at the system level
in Fig. 1.

B Jennifer Hasler
jennifer.hasler@ece.gatech.edu

Sihwan Kim
k.sihwan@gmail.com

1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-021-09247-9&domain=pdf
http://orcid.org/0000-0002-3930-965X

162 S. Kim et al.

Verilog
RTL & Logic synthesis

/ VTR
Digital IC

/ FPGA

Circuit Analog ICDesign tool
(e.g. Cadence Virtuoso)

Application

+

Digital

Analog

FG FPAA

IC

Application

Synthsis tool

(x2c)
Circuit + Logic

Digital + Analog

Fig. 1 Comparison of two different hardware implementation flows. To implement an application (e.g. speech
recognition), system designers have been taking a traditional approach to separate the algorithm into digital
and analog parts, which results in using different tools and requiring efforts on digital/analog interface after
testing each custom IC. Floating-Gate (FG) FPAA system provides a mixed-signal design and test flow on
FPAA ICs, which is enabled by a synthesis tool, “x2c” meaning Xcos to Chip, compiling the design into
necessary hardware files (e.g. switch list)

As a large-scale Field ProgrammableAnalogArray (FPAA) [7] to provide a unifiedmixed-
signal system, Floating-Gate (FG) System-on-Chip (SoC) FPAAs, including analog-digital
mixed arrays and FG programming infrastructure with micro-processor and SRAM [8], have
been developed. Tools for graphical high-level design environment [9] and FG programming
algorithms to precisely target FGs [10] have been integrated for seamless connection to the
FPAA.

The focus of this work is on CAD tools to bridge the gap between the high-level user
design and the hardware, which are essential for FPAA productive use and development
since individuals could only go as far as the tools are capable. The first motivation for the
tools is to use existing, working FPAA devices. Devices have been characterized [11], used
in classes by multiple students [12] and numerous collaborators [13]. The compilation tools
generating a switch list for the FG programming are based on Versatile Place and Route
(VPR) due to its capability as well as a possibility of improvements and contribution from a
wider CAD community. A secondmotivation is to explore different FPAA architectures. This
paper describes the CAD tool developed for compiling mixed signal systems on an FPAA.
Though the tools are generic to be used with different architecture of an FPAA or an FPGA
in this work we have used a large-scale FG FPAA [8] architecture.

This works illustrates the hardware configuration of FG SoC FPAA in Sect. 2 and com-
pare compilation tools for FPGAs, FPAAs, and FG FPAAs in Sect. 3. Section 4 introduces a
compilation flow with new CAD tools and solutions for the challenges on applying a digital
design tool to analog design. We will introduce advanced tools and Vector Matrix Multipli-
cation (VMM) blocks for supporting high-level system designs in Sect. 5 and the system
compilation examples in Sect. 6. Section 7 includes the conclusion and discussion.

123

CAD synthesis tools for floating-gate SoC FPAAs 163

LUT

CLB
: Local routing switches

+ Digital elements

F/F

CAB
: Local routing switches

+ Analog elements

CLB CAB CAB CLB CLB

CLB CAB CAB CLB CLB

I/O

I/O

I/O I/O I/O I/O I/O

CLB CAB CAB CLB CLB

CLB CAB CAB CLB CLB

I/O

I/O

I/O

I/O

I/O

I/O

�P ADC, DAC I/O PAD

Global routing switches

GND

GND

CAB / CLB Lines GND GND

GND

GND

GND GND

(Routing) N

S

W E

C-block:

Routing to CABs / CLBs

S-block:

Routing to Routing

I/O I/O I/O I/O I/O

FG FPAA fabric array

SRAMIC PCB USB

Email

POP

email

Xcos design (e.g. low pass filter)

CLB CAB

CLB CAB

I/O

I/O

I/O I/O
G

N
D

Row

address

Column

address

Programming device

G
lo

b
al

 l
in

es

FPAA Fabric

Fig. 2 FG SoC FPAA system. FPAA fabric array consisting of Computational Analog Blocks (CAB), Com-
putational Logic Blocks (CLB), Input/Output blocks (I/O), and Connection (C)/Switch (S) blocks for routing,
interfaces withμP, DACs, and ADCs on IC and I/O Pads on PCB. Non-volatile and reconfigurable FG devices
are employed for connections in routing fabric, as well as configuration of analog/digital elements (e.g. bias
current, logic table). An open-source design environment for mixed-signal system in Xcos/scilab is provided
with GUI

2 System design with reconfigurable hardware

The large-scale FG FPAA enables reconfigurable digital-analog system design, as well as
analog computation with power consumption at μW level (e.g., Analog VMM calculation
using low current in nA range). The 1000× energy efficiency improvement [14,15] compared
to digital solutions empowers a whole range of low-power embedded applications such
as always-ON context-aware processors [8], acoustics [16], vision, and robotics [17]. This
section introduces the configuration of the FG SoC FPAA and the compilation tool flow.

Figure 2 shows the architecture of an FPAA array, a chip photo [8] including FPAA array,
an Xcos design example with GUI, and the external interfacing devices available for pro-
gramming them. The FPAA fabric array consists of Computational Analog Blocks (CAB),
Computational Logic Blocks (CLB), Input and Output (I/O) blocks, and routing switches
for connecting them. Certain application requires analog or digital processing whereas some
require seamless integration of both analog and digital components (e.g., classifiers, Ana-
log to Digital Converters (ADC), Digital to Analog Converters (DAC), etc.) and the FPAA
architecture enables this by having both CABs and CLBs.

CAB and CLB consist of FG-based analog and digital elements with local intra-block
routing fabric. I/O blocks provide access to μP, DACs, and ADCs on the IC for built-in self
test as well as I/O Pads on Printed Circuit Board (PCB) for applying or measuring the voltage

123

164 S. Kim et al.

Analog/Digital Circuit

(.xcos)

Architecture

Files for

different ICs

(.xml) (.py)

Netlist (.blif)
I/O list (.pads)

Netlist (.net)
Placement (.place)

Route (.route)

Switches (.swcs)

XCOS Library

(.sce)
sci2blif

VPR

vpr2swcs

Out[0]

Vdd

G
N

D

In[0]

In[1]

OTA

.subckt ota in[0]=net1

in[1]=net2 out[0]=net3

#ota_bias=1e-9

net1 9 0 0 #ana_buf[0]

net2 9 0 1 #int[1]

out:net3 11 0 0 #tgate[0]

CLB CLB CLBCAB CAB CLB CLBCAB CAB CLB CLBCAB CAB CAB

CLB CAB CAB CAB

I/O I/O I/O I/O I/O I/O I/O

CLB CLBCLBCAB

I/O

I/O CAB CAB CLB CAB
(e.g.)

(a) (b)

285 288 0 0

238 336 0 0

351 208 2e-6 2

row
column

current
switch type

Fig. 3 x2c compilation flow. a Compilation tools and the resulting files. sci2blif converts graphical design file
(.xcos) into blif netlist file (.blif) and I/O list (.pads). VPR places the blocks and calculates necessary tracks
for global routing. vpr2swc maps the FG addresses based on the place and route information. b Snapshot of
VPR usage in an example. VPR provides a graphical interface, where a user can check the place and route
results visually

or current externally. Non-volatile and reconfigurable FG devices form the routing fabric,
where the FG node is shared with the programming pFET device indirectly. Global routing
structure for inter-block connections consists of Connection (C) blocks connecting global
lines to local lines in CAB, CLB and Switch (S) blocks connecting between bidirectional
global lines.

The FG SoC FPAA interfaces with user systems such as laptop, tablet, or smartphone
through USB, which also supplies the system power for the IC and its infrastructure on
the PCB. PCB includes power management components such as charge pumps, and voltage
regulators and interfacing chip between USB and μP.

We provide a mixed-signal system design environment using Xcos in Scilab [18] and a
Graphical User Interface (GUI) for compiling and testing the system, which are based on
open-source codes. On the GUI, “New Design” starts a new application design, “Compile
Design” creates necessary files for programming FG devices and built-in self test of the
system. “Program Design” sends programming files to the USB-connected FG FPAA IC and
programs FG devices. “Take Data” tests the system and shows measured output data. For the
users who do not have access to FG FPAA ICs, “Send Email” enables testing of the design
by compiling it to a remote system via a simple PoP protocol [13].

3 Tools for FPGAs, FPAAs, FG FPAAs

This section introduces differentCADtools used forFPGAsandFPAAsand tool requirements
for FG FPAAs.

FPGAs have look-up tables as a basic unit which has enabled reconfigurable and repro-
grammable digital system design post-fabrication of ICs, for over three decades based on
CAD tools’ support. Verilog-to-Routing (VTR) [2,19] is one of the open-source tools for
FPGAs, where ODIN II transforms a given digital circuit described in a Verilog code to a
Berkeley Logic Interchange Format (BLIF) [20] netlist, ABC optimizes BLIF netlist by syn-

123

CAD synthesis tools for floating-gate SoC FPAAs 165

thesizing logic and performing technology mapping, and Versatile Place and Route (VPR)
maps the BLIF to the placement of CLBs and routing track configuration on the FPGA
architecture.

Similarly, reconfigurable analog CAD tools for CAB-based FPAAs have been proposed
[21,22]. A tool called Generic Reconfigurable Array Specification and Programming Envi-
ronment (GRASPER) [22] is a solution for an automated place and route in FPAA systems.
This tool takes a SPICE netlist as an input, places analog circuits based on Modified Hyper-
edge Coarsening (MHEC) order of cells [23], and generates optimized switches.

In case of FG SoC FPAA one has to handle both CAB and CLB with an integrated
processor; it has been essential to develop a new automated design flow enabling mixed-
signal applications, as well as for it to be an open-source software for wider adoption and
development of such tools. Although one might consider a modified version of GRASPER
as an option, the tool has limitations in scalability on different hardware architectures and
capability to cover digital circuits. Also, the high-level graphical interface of GRASPER
is based on MATLAB Simulink, which constrains the outreach of the tool set. One might
consider utilizing Verilog and extending ODIN II but the compilation tool needs to fit with
the high level design tool, sci2blif [9], provide a graphical design environment, and convert
the design to a BLIF file directly.

4 CAD tools for mixedmode design

We propose a tool set to provide a high-level graphical design environment in Xcos/Scilab.
Our tool compiles a system to a switch list, which is transferred to the FG SoC FPAA and
programmed for the application, while handling heterogeneous elements for mixed-signal
circuits in different hardware architectures, as well as relying on a completely open-source
code. Figure 3a shows the proposed compilation flow integrating three different open-source
tools, sci2blif [9],VPR [19], and vpr2swc. In the next subsections, we summarize sci2blif and
VPR and the following subsection focuses on vpr2swc developed in this work and solutions
to challenges caused by using VPR for analog design.

4.1 sci2blif: Xcos→ blif

Xcos is a graphical system design environment in Scilab, which is an open-source software
with similar functions to Matlab. A user designs a system in Xcos by dragging blocks from
a palette browser, connecting blocks’ inputs and outputs, and setting parameters such as
bias current or DC voltage conditions. Analog and digital elements and basic functional
blocks (e.g. I/O, ADC, DAC, LPF, etc.) are predefined in the Xcos library, also user-defined
functional blocks can be added to the library through a macro block generation tool.

sci2blif converts block level information in Xcos into a blif netlist and a pad file, which
are inputs to VPR. The blif netlist has a description of the block, connections, and parameters.
Each FG parameter in a block is described with “�” and “&.” A pad file includes necessary
input/output information and connected I/O blocks.

sci2blif also builds a file set to be transferred to SRAM and generates assembly codes to
be executed by μP. For example, the tool converts the user-defined input vector to a HEX file
when it compiles “ARBGEN”block,which is aDACapplying voltage values stored in SRAM
at a given frequency. “Measure Voltage” block, an ADC using FG device and programming
infrastructure in the IC, requires the tool creating a specific assembly code interfacing with

123

166 S. Kim et al.

VPR

.blif
(Input)

.pads
(Input)

(.route)

(.place)

Global routing

Place
-fix_pins

-route_chan_width =“17”

-timing_analysis = “Off”

-nodisp

vpr2swcs

Customize

Architecture file (.xml)

Architecture file (.py)

CAB

6

6

6

6

<pb_type> Analog elements <\pb_type>

<pb_type> Macro blocks <\pb_type>

<interconnection>

<complete name input output>

<direct name input output>

<\interconnection>

CLB

4

<pb_type> ble

<pb_type> look-up table <\pb_type>

<pb_type> ff <\pb_type>

<interconnection>

<complete name input output>

<\interconnection>

<\pb_type>

2

4

2

4 2

4 2

W
6 6

6

6

Pads (I/O)

E

N

S

block x y
a 0 1
b 1 3
c 2 1

Net 1
Source (1,2) Class: 1
Opin (1,2) Pin: 4
Chanx (1,1) Track: 1
Chany (2,2) Track: 3
Ipin (1,3) Pad: 1
Sink (1,3) Pad: 1

Opin 4

C-block
(Chanx)

Ipin 1

T
ra

ck
 1

Track 3

S-block

C-block
(Chany)

Ipin 2

Opin 4

Local routing
+ FG parameters

: FG (sel.)

: FG (unsel.)

Array information

io_n, io_n, io_n, io_n

io_w, clb, cab, cab, cab, io_e

io_w, clb, cab, cab, cab, io_e

io_w, clb, cab, cab, cab, io_e

io_s, io_s, io_s, io_s

FG offsets for global routing

Pin(6)

T
ra

ck
(1

7
)

w

S-block

e

s

n

Pin #, Track #, Direction (e.g. ws)

C-block

Channx

Pin(6)

Channy

P
in

(6
)

P
in

(6
)

Track(17)

Offset (row, col)

FG offsets for local routing

& FG parameters

CAB : Analog elements, Macro blocks

CLB : ble, lookup table

I/O : T-gate, Buffer, GPIO

Offset (row, col)

Route
-route

Connection, Bias

Switch list
(Output)

Fig. 4 Detailed tool flow and configuration of VPR and vpr2swc. Architecture file (.xml) for VPR requires
new definitions for analog elements and macro blocks in CAB and modification of CLB and I/O blocks
corresponding to the hardware. vpr2swc creates a switch list of global routing, local routing, and FGparameters
for analog and digital devices based on the architecture file (.py) including array information, offsets, and FG
parameters

μP for data acquisition. The structure and compilation of assembly language modules are
beyond the scope of this discussion and will be presented elsewhere.

4.2 VPR: blif→ route

We utilizeVPR tool to calculate optimized place of blocks. Figure 3b shows a graphical result
of VPR for a mixed-signal system. The VPR architecture file is customized to include CABs,
as well as CLBs, in the fabric array. The global routing structure is directly applied to VPR,
where S-blocks switch the direction of routing (North, South, East, West).

Figure 4 shows how to configure the VPR architecture file and specify the tool options
in our compilation flow. Architecture file with “.xml” extension requires definition of array
blocks, which are I/O pad blocks, CABs, and CLBs. North, South, East, and West I/O pad
blocks have 6 pins connecting the array. CAB uses <pb_type> tag, to specify the properties
of a complex block, for defining analog elements and macro-blocks consisting of analog
elements. CAB includes the definition of 24 pins (6 pins in each direction), which can be
assigned to input or output. <Interconnection> tag maps inputs and outputs of each block to
CAB’s pins. <complete> tag connecting input/output to any pin at the output/input is used
for general blocks, while <direct> tag is used for specified blocks such as Vector-Matrix
Multiply (VMM). Similarly in CLB, Look-Up-Tables (LUT) and Flip-Flops (FF) in BLE are
defined as a complex block with the <pb_type> tag, the <complete> tag connects inputs
and outputs of blocks to CLB pins. CLB has 16 input and 8 output pins (4 input and 2 output
pins to each direction).

Based on the architecture file, VPR places and routes the elements from blif netlist and
pads information. The use of “-fix_pins” option locks each I/O pad to a desired location

123

CAD synthesis tools for floating-gate SoC FPAAs 167

listed in the pads file and results in the output file (.place) which includes details such as
block name and locations. In certain applications one can customize the .place file where
the system designer can assign a specific location for a block in the Xcos design. The option
“-route” invokes this functionality to create a route file (.route) including switch/source block
locations and track numbers.

VPR runs with a default options of “-nodisp” which hides the graphical interface, “-
route_chan_width = 17” indicating the number of tracks, “timing_analysis = Off” turning off
the timing analysiswhile performing global routing.Although the global routing optimization
in this paper is based on congestion information, which minimizes the parasitic capacitance,
a timing driven optimization can be integrated into this system by measuring and modeling
line resistance and capacitance [24].

4.3 vpr2swc: route to switch list

As thefinal step of the compilation process, a vpr2swc code developed in python calculates FG
addresses and creates a switch list. Figure 4 shows the configuration of vpr2swc architecture
file and how to map global and local routing elements and FG devices to their physical
addresses.

The architecture file (.py) includes information on physical arrangement of the array and
offsets for FG devices, which varies according to different FG FPAA IC architecture. Row
and column addresses of CAB, CLB, I/O blocks are described in the array information. The
.py file defines FG offsets for global routing, where Chanx in C-block connects horizontal
tracts to vertical pins, Chany in C-block connects vertical tracks to horizontal pins, and the
tracks intersect in S-block, as well as local routing and analog/digital/I/O devices in blocks.

vpr2swc reads and parses routing file to get necessary information for global routing. The
routing of each net begins on a Opin (a certain output pin), goes through Chanx and Chany,
and ends on a Ipin (a certain input pin). (x,y) location and pin/track numbers of each channel
are described at each line. Based on pin, track, and FG offsets defined in the architecture file,
the tool creates C-block FG switch addresses from pin number in Opin/Ipin and track number
in Chanx/Chany and S-block FG switch addresses from track numbers in two adjacent Chanx
or Chany.

A list of local switches and FG parameters in CAB/CLB/I/O blocks, handled by VPR
as black boxes, is generated based on the FG offsets defined in the architecture file and
block location information assigned by the placement. vpr2swc parses the placement file and
integrates circuit parameter information described in blif netlist.

Figure 5 shows detailed configuration of blocks, including local routing and elements in
the recent FG FPAA IC [8]. Local switches in routing map enables connection of local lines,
which are inputs/outputs of block elements, to global lines from C-block, to the power rails
gnd/Vdd , as well as interconnection between local lines. Each FG switch in the routing map
corresponds to an FG address which shares the same FG node and has a row and column
address.

Analog elements in CAB include two Operational Transconductance Amplifiers (OTA)
using a FG device for bias current, two OTAs using FG devices for the input transistors and a
bias current, four capacitors using FG devices for selecting capacitor sizes, two nFETs, two
pFETs, four Transmission gates (T-gate), and two N-mirrors. Digital elements in CLB are
comprised of eight Basic Logic Elements (BLEs) made of 4-input Look-Up Tables (LUT),
a Flip-Flop (FF), and FG switches for the logic configuration. A FG switch is set to program
the user-defined logic and is embedded in the LUT. The FG switch also enables a sequential

123

168 S. Kim et al.

G
N

D

Global Lines

V
d

d

Local Lines (Out)

: FG switch

Routing map

Local switch

G
lo

b
al

 L
in

es
L

o
ca

l
L

in
es

 (
In

)

FG address map (e.g.)

0 1 2 3 1314 1516 3132

4
5

32

33

25
26

28

29

36 37 52 53

Column address

R
o
w

 a
d
d
re

ss

Out<0>
In<0>

In<1>

Out<2>
In<4>

In<5>

In<12>

In<13>

In<20>

In<21> Out<12>

GND GND

In<28> Out<16>

256fF

128fF

64fF
In<8> Out<4>

FG OTA (x2)

OTA (x2) nFET (x2) pFET (x2)

Capacitor (x4) T-gate (x4)

N-mirror (x2)

Analog elements

Digital elements
BLE (x8)

Out<32>
4-input LUT

Flip-Flop
D Q

QR

Global lines

In<0>
In<1>
In<2>
In<3>

Global Lines

I/O elements

�P,

DAC,

ADC

Pad

(PCB)

Out<8>

In<16>

In<17>

Out<10>

L
o
ca

l
L

in
es

<
0
>

-<
4
>

<0>

<1>

<2>

<3>

<4>

Local switch

FG Logic
Table

CAB / CLB

I/O block

Fig. 5 FG mapping for local routing and analog/digital/I/O elements. vpr2swc calculates row and column
address from FG address map sharing FG node with each corresponding FG device in the routing map.
Local switch matrix in the routing map connects global routing lines, gnd, and Vdd to input/output of ana-
log/digital/I/O elements. Local switches in I/O block connect global routing lines to I/O elements as well as
DACs, ADCs, μP. vpr2swc adds FG device addresses in the elements (e.g. OTA, FG LUT, I/O buffers) into
the switch list

or combinational logic based on whether the output is either routed through a FF or not
respectively. Local switches of I/O block enable connection to pad on PCB as well as DAC,
ADC, General-Purpose Input/Output (GPIO) that interface with the μP. A user could also
route the output via a digital or analog buffer, or choose an unbuffered pad.

4.4 Challenges on applyingVPR to Heterogeneous systems

Since VPR and blif netlist have been developed for the description of logic gates in FPGAs,
extending it to heterogeneous systems is accompanied by two big challenges, listed in Fig. 6.
One challenge is to handle the input/output directionality of analog circuits. Logic circuits,
e.g. AND gate, function with explicitly defined input and output ports. On the other hand, the
ports of analog circuits are close to a concept of bus, which requires bidirectional definition
depending on the application. As an example a Shift Register (SR) block could be configured
in multiple ways. A user could compile a shift register having either 16 inputs/1 output or
1 inputs/16 inputs for a variety of usages. We modified CAB definition in VPR architecture
file to map each physical port to have either input or output, which enables bus concept of
input/output for analog blocks.

Another challenge is conflict arising from connection of multiple outputs. VPR does not
allowmultiple drivers for a single net since it is regarded as a logical error in digital circuits. In
analog circuits, however, multiple outputs on a single node is important for its functionality.
For example, a voltage divider using two OTAs requires combining two outputs of OTAs to a
single node, a Winner-Take-All (WTA) circuit has an architecture which requires a common

123

CAD synthesis tools for floating-gate SoC FPAAs 169

Directionality of input / output

Confilicts on multiple outputs

Unidirectional Input / Output

FG FPAA

In1

In2
Out

DFF

D Q

(e.g.) Shift Register (SR)

In/Out

D

Clk

In
/O

u
t

DFF

D Q

In
/O

u
t

DFF

D Q

In
/O

u
t

AIn Out

(e.g.)Voltage divider

FPGA

CLB

(e.g.) AND

Bidirectional Input / Output

CAB
Bus A

B
u
s

B

SR 1in -16out

SR 16in - 1out

FG FPAAFPGA

BIn Out

CIn Out

Incompatibility of multiple

outputs on a single node.

Multiple outputs on a single node

by output joint block or macro block.

AIn Out

BIn Out

CIn Out

Joint

A
In1

Out

B
In2

CIn Out

GND

Macro block

(e.g.) WTA

In

Out

OutIn

O
u

t

GND

GND

OutIn

O
u

t

Joint

Fig. 6 Challenges on applyingVPR to analog system.Directionality of input/output:VPR originally designed
for FPGA handles element blocks with explicitly defined inputs and outputs, which functions on logic circuits
(e.g. AND gate). On the other hand, input or output of analog circuits are required to be defined bidirectionally.
The architecture file of FG FPAA defines global lines in CAB as bus A/B, which allows analog blocks to have
different definition on the same global line depending on the application. The example of Shift Register (SR)
shows two blocks defined differently with same bus. Conflicts on multiple outputs: Although VPR does not
provide multiple drivers for a single net, it is a required function for analog circuits, shown in the examples
of voltage divider or WTA. We enable this functionality by using output joint blocks in global routing or
generating macro block with local routing

current bias and hence multiple outputs of the WTA have to be connected to an input. A
macro block approach provides a solution by routing locally inside the CAB, encapsulating
complex circuits with interconnections on a node for multiple outputs. As a global routing
level solution, we provide a joint block allowing multiple inputs to be driven by an output,
which is compatible with VPR.

5 Advanced design tools and VMM

The tools introduced so far enabled compilation of the user’s designby creating a switch list. In
this section, we introduce advanced tools for generatingmacro block and customizing block’s
location to support complicated and specific system design, as well as designing Vector-
Matrix Multiply (VMM) blocks to enable power and area efficient computation by using
routing FG devices. Figure 7 shows the whole compilation flow integrating two advanced
tools.

5.1 Macro block: encapsulating complex circuits

The tool abstracts complex mixed signal circuits to a high-level block by two different
methods of encapsulation as illustrated in Fig. 8. The first is macro-blif block integrating
circuits into a blif netlist. The tool extracts the inputs, outputs, interconnections, and FG
parameters from the original circuit design and adds a compilation description of the macro
block to the Xcos library. For internal nets, unique net names using the user-defined macro

123

170 S. Kim et al.

Fig. 7 Compilation flow with
advanced tools. A tool generating
a user-defined macro block
encapsulates a complex analog
circuits into a high-level block in
Xcos library and architecture
files. The tool also customizes the
location of the block which could
be specified by a user in the Xcos
design and used as a parameter
by the placer

Analog/Digital Circuit

(.xcos)

Architecture File

(.xml) (.py)

Netlist (.blif)

I/O list (.pads)

Netlist (.net)

Placement (.place)

Route (.route)

Switches (.swcs)

Xcos Library

(.sce)
sci2blif

VPR

vpr2swcs

Macro-blif

Macro-CAB

Macro block design

(.xcos)

Block location
Customization

block name are assigned to avoid errors which may arise from overlapped net names in a
blif file. The second is macro-CAB block integrating circuits into FG switches in a CAB.
The macro-CAB block generation tool provides a Xcos file where analog elements and
interconnection FG switches in CAB are predefined, which includes mapping information
of each FG address corresponding to each FG device. A new user-defined macro-CAB block
is designed by modifying the provided Xcos file. FG devices are used for interconnecting
analog element by connecting their inputs to outputs or gnd/Vdd , as well as for setting the
bias value of a circuit, for example a bias of an OTA, by specifying a targeted current. After
the inputs, outputs, and names of parameters with default values are set by the user in the
Xcos design, the tool generates a macro-CAB block, which encapsulates the users design,
and its necessary files to add Xcos library and architecture files for VPR and vpr2swc.

Macro-CABblock enables compact design, whichmeans efficient area and lower parasitic
capacitors, using the limited number of analog elements in a CAB. On the other hand, macro-
blif block is not limited by the number of elements in the CAB and hence is suitable for
system-level design.

5.2 Customization of block location

Customizing the placement of blocks in a specific CAB in the FPAA fabric is required for
certain applications. For example, a ramp ADC calibrated with a CAB needs to be compiled
at a fixed location, since the slope of the ramp changes depending on the capacitor mismatch
and biasing current. A Gm-C filter which is sensitive to parasitic node capacitance is also an
example, where we can calculate routing capacitance based on [8] when the block location
is fixed, and set the filter parameters.

For Customizing the placement of blocks, a user sets the location of the block in the Xcos
design by changing a block parameter, “Fix_location”. The tool searches the block name in
the placement (having a suffix .place) file and swaps the location for the defined value.

123

CAD synthesis tools for floating-gate SoC FPAAs 171

A

B

C

D

E

F

Xcos

(e.g. Common drain)

In1

In2 Out

In3

A C

B

 FILB-orcaMledom tiucric xelpmoC on global routing
Bus A

B
u

s
B

Macro-CAB on local routing

Xcos Library (.sce)

- Com_drain -

Com_drain

- Volt_div -

Macro-BLIF
GUI

GUI
Xcos (e.g. Voltage divider)

Macro-CAB
Volt_div

.subckt nfet in[0]=net1 in[1]=vdd out[0]=net2

.subckt nfet in[0]=net3 in[1]=net2 out[0]=gnd

.subckt volt_div in[0]=net1 out[0]=net2

#volt_div_fg &volt_div_ota = 2e-6

&volt_div_fgota = 2e-6 &

Architecture File (.xml)
<pb_type> Volt_div <\pb_type>

<interconnection>

<complete cab.in Volt_div.in>

<complete Volt_div.out cab.out>

<\interconnection>

Architecture File (.py)

volt_div.in[0], [29,0]

volt_div.out[0], [0,17]

volt_div_fg, [[33,1],[32,15],...]

volt_div_ota, [32,62]

volt_div_fgota, [32,58]

(.blif)

Fig. 8 Automated generation tool for macro blocks integrating a complex circuit model into a single block. A
tool for macro-blif block encapsulating the circuit on global routing adds the compilation description to Xcos
library. Another tool for macro-CAB block encapsulating the circuit on local routing adds the information to
Xcos library and architecture files for VPR and vpr2swc

5.3 AnalogVMM: computation with routing

Vector-MatrixMultiply (VMM)block is a core component for variety of signal processing and
machine learning algorithms, performing a multiply operation between a vector inputs and a
matrix of weights trained. FG devices on routing nodes, storing the weight and converting a
voltage input linearly into a current, enable a power-efficient and compact implementation of
VMMs. Figure 9a shows examples of the application, an analog classifier combining VMM
with aWTA [25] and an image convolution combiningVMMwith shift register and integrator
[26].

Figure 9b illustrates an example of 8×8VMMimplementationwith amacro-CABblock in
local routing. In local routing fabric, FG devices connected to inputs (Vin) are programmed to
a target current level corresponding to each weight value. The converted currents in a row are
summed to each output (Iout) through a programmed switch. To pair the weight matrix with
dedicated FG switches in the local routing, the inputs/outputs of VMM block are assigned
to fixed global lines by using “direct” option in the architecture file.

Based on the VMM blocks, which are special type of macro-CAB blocks, it is easy to
extend a VMM block with large number of input/output by using macro-blif block. An
example of 16 × 16 VMM with shift register is shown in Fig. 9c. The description in the
architecture file for blif file includes four of 8× 8 VMMs and a shift register.

6 System examples

Table 1 shows several system design examples based on the compilation using the proposed
tools in thiswork and implemented in our FPAASoC [8]. The table includes number of blocks
in the placement file and number of FG devices created in the switch list. In this section,

123

172 S. Kim et al.

Classification

Image convolution

(e.g.) vmm16x16 - SR

WVin

VMM (Vector-Matrix Multiply)

Iout

Iout = W Vin

Winner-Take-All (WTA)

Shift Regster

VMM (Macro-CAB)

(a)

(b)(c)

VMM (Macro-blif)

Integrator

<pb_type> vmm8x8 <\pb_type>
<interconnection>
<direct cab.in[7:0] vmm8x8.in[7:0]>
<direct vmm8x8.out[7:0] cab.out[7:0]>
<\interconnection>

.blif

Architecture File (.xml)

Architecture File (.py)

vmm8x8_fg, [[33,10], [32,11], ...]

vmm8x8_weight[0:63], [[32,2], [32,3],

[32,4], ...]

.subckt vmm8x8 in[0]=net1 ... out[0]=net17 ...

#vmm8x8_fg & vmm8x8_weight= [50e-9, ...]

.subckt vmm8x8 in[0]=net8 ... out[0]=net25 ...

#vmm8x8_fg & vmm8x8_weight= [50e-9, ...]

.subckt shift_register in[0]=net17 ... out[0]=net33

#shift_register_fg

Global Lines

L
o
ca

l
L

in
es

Vin1 Iout1 Vin2 Iout2

W11

W12

W13

S W21

W22

W23

S

Vin8 Iout8

W81

W82

W83

(e.g.) Vmm8x8

S: Switch program

W: Weight (Target program)

VMM

Fig. 9 Vector-Matrix Multiply (VMM). aApplications using VMM. bVMMmacro-CAB block conducting a
multiply operation between a input voltage vector and a weight matrix stored in the FG by using local routing
FG devices. c A large number of input/output VMM using a macro-blif block

Table 1 System compilation examples

No. of blocks No. of FGs Refs.

CAB CLB I/O

DAC+Com_drain+ADC 2 0 2 40

DAC+Volt_div+ADC 2 0 2 44

ABC+ ABC 1 1 4 63 [8]

DAC+LPF+ADC 2 0 1 39 [13]

Universal approximator 7 0 4 222 [9]

Speech processing 5 0 3 131 [27]

Speech classifier 19 0 5 995 [8]

we illustrate three different systems built using a low pass filter, universal approximator, and
a speech classifier as a complex system design example using macro blocks, where each
functionality of the system has been proved with experimental data [8,9,13,27].

123

CAD synthesis tools for floating-gate SoC FPAAs 173

Low pass filter + ADC

Universal Approximator (XOR)

Speech Classifier

Vref

LPF

W(x100nA)
4 0 0 0
0 4 4 0
3 2 2 0

0 000

VMM 4x4

WTAX

Y

Macro-CAB

ADC

Macro-CAB

Vbias

Amplitude Detect

Macro-CAB

(a)

(b)

(c)

BPF

Macro-blif

Fig. 10 System examples using FG SoC FPAA. a DAC + Low-Pass Filter (LPF) + ADC. b Universal approx-
imator. XOR is implemented by using VMM + WTA. c Speech classifier

6.1 Low pass filter and ADC

Figure 10a shows a Xcos design and the VPR result of a first-order low-pass filter (LPF)
system with a DAC and an ADC. An OTA connecting the output to (-) input and a FG
device ADC using FG infrastructure are integrated into macro-CAB blocks, respectively.
A dedicated circuit converting user-defined input vector into a voltage on FG SoC FPAA
is utilized. The tool creates switch list based on the VPR placement and routing, and the
experimental results have been proved in [13].

6.2 Universal approximator

A boolean function XOR using a VMM and Winner-Take-All (WTA) is an example of
universal approximator [25]. Figure 10b shows the Xcos design, weight information, the
expected input/output logic, and the resulted VPR placement and routing. The second and
third input of the circuit and the weights forms the XOR output on the third output of the
WTA. A macro-blif block including VMM,WTA, and a bias current FG nFET mirror circuit
is implemented. A shift register block and GPIO logic signals are employed to measure the
third output of WTA. The experimental results based on the compiled switch list have been
introduced in [9].

123

174 S. Kim et al.

6.3 Speech classifier

Figure 10c shows an example of speech classification detecting aword in a sentence.Amacro-
CAB block, “Speech,” in Xcos design integrates band-pass filter (BPF), amplitude detection,
and low-passfilter (LPF).Twelve speechblocks performcontinuous-timedecompositionwith
different Q values on BPF. AVMM+WTA block classify each of the resulting spectrum into
simple symbols. A shift register block andADC are employed tomeasure intermediate nodes.
Location of speech blocks are customized for the performance, the experimental results have
been shown in [8].

7 Summary and discussion

This paper presented a mixed-signal co-design environment using FG SoC FPAAs. The
tools developed in this work take an essential role in the compilation flow, converting a user’s
Xcos design into a switch list and enabling experimentalmeasurements in the same integrated
design tool framework. The tool set is an open source setup provided in a Virtualbox package
with Linux Ubuntu OS1.

We expect our tools to empower a wider community for analog and digital system design-
ers, as well as share the opportunities with VTR community. This paper opens up interesting
questions in the optimization capabilities of the VPR. For example, we employed a “Joint”
block to solve the incompatibility problem of multiple outputs on a single node, which results
in using an extra block. Also, a constraint on the VPR array structure, in which CAB/CLB
should be arranged in a column direction, limits the flexibility of the array structures. We
believe that an extended version of VTR/VPR covering both FPGA and FPAA can cope with
the problems in easier and more efficient way.

This paper starts the discussion on formulating the benchmarks for analog andmixed com-
putation. Benchmarks imply understanding computation, which required the effort of this
paper and parallel efforts to reach a point where developing a reasonable benchmark is pos-
sible. A benchmark likely would be composed of components seen in Fig. 10, although they
are not at the necessary complexity for a well formulated benchmark. The initial benchmarks
include small number of CLBs and CABs, howerver, we believe more complicated system-
level benchmarks (e.g., Image convolution, image classification or speech recognition) will
fully utilize most of digital and analog blocks.

One can infer more about the computation by choosing the right benchmark. Digital
computation benchmarks are about matrix equation solutions (e.g.LINPACK [28]), including
LU decomposition. Analog computation benchmarks would look at different optimization
metrics such as Ordinary Differential Equations (ODE) and Partial Differential Equations
(PDE) [29]. Or Digital/Analog mixed-signal computation [30] could be a good benchmark.
The system examples illustrated in this paper show, what the benchmarks can be, on the path
and are beginning to be clear for such systems. These would be the critical next steps as we
move forward from our efforts.

Acknowledgements The authors would like to thank Suma George for her help while debugging the tools at
the early stage of development and Sung Kyu Lim for valuable comments and advice on the tools.

1 http://users.ece.gatech.edu/phasler/FPAAtool/index.html.

123

http://users.ece.gatech.edu/phasler/FPAAtool/index.html

CAD synthesis tools for floating-gate SoC FPAAs 175

References

1. Betz V, Rose J,Marquardt A (2012) Architecture and CAD for deep-submicron FPGAs, vol 497. Springer,
Berlin

2. Rose J, Luu J, Yu CW, Densmore O, Goeders J, Somerville A, Kent KB, Jamieson P, Anderson J (2012)
“The VTR project: Architecture and CAD for FPGAs from verilog to routing,” In: Proceedings of the
ACM/SIGDA international symposium on field programmable gate arrays, ser. FPGA ’12. New York,
NY, USA: ACM, 2012, pp 77–86

3. Kim J, Kim KT, Chung E-Y (2018) “Cad tool flow for variation-tolerant non-volatile stt-mram lut based
fpga,” In: Proceedings of the 2018 7th international conference on software and computer applications,
2018, pp 312–316

4. Saegusa T, Maruyama T, Yamaguchi Y (2008) “How fast is an fpga in image processing?” In: 2008
international conference on field programmable logic and applications. IEEE, 2008, pp 77–82

5. Nurvitadhi E, Venkatesh G, Sim J, Marr D, Huang R, Ong Gee Hock J, Liew YT, Srivatsan K, Moss
D, Subhaschandra S et al. (2017) “Can fpgas beat gpus in accelerating next-generation deep neural
networks?” In: Proceedings of the 2017 ACM/SIGDA international symposium on field-programmable
gate arrays, pp 5–14

6. Ma Y, Cao Y, Vrudhula S, Seo J-s (2018) Optimizing the convolution operation to accelerate deep neural
networks on fpga. IEEE Trans Very Large Scale Integr (VLSI) Syst 26(7):1354–1367

7. Kutz HM, Williams TJ, Sullam BS, Snyder WS, Shutt JH, Byrkett BE, Mar M, Thiagarajan E, Kohagen
NW, Wright DG et al. (2019) “Combined analog architecture and functionality in a mixed-signal array,”
Jul. 2019, uS Patent 10,345,377

8. George S, Kim S, Shah S, Hasler J, Collins M, Adil F, Wunderlich R, Nease S, Ramakrishnan S (2016)
A programmable and configurable mixed-mode FPAA SoC. IEEE Trans Very Large Scale Integr (VLSI)
Syst 24(6):2253–2261

9. CollinsM, Hasler J, George S (2016) An open-source tool set enabling analog-digital-software co-design.
J Low Power Electron Appl 6(1):3

10. Kim S, Hasler J, George S (2016) Integrated floating-gate programming environment for system-level
ICs. IEEE Trans Very Large Scale Integr (VLSI) Syst 24(6):2244–2252

11. Kim S, Shah S, Hasler J (2017) Calibration of floating-gate soc fpaa system. IEEE Trans Very Large Scale
Integration (VLSI) Syst 25(9):2649–2657

12. Hasler J, Natarajan A, Shah S, Kim S (2017) “Soc fpaa immersed junior level circuits course,” In: 2017
IEEE international conference on microelectronic systems education (MSE), May 2017, pp 7–10

13. Hasler J, Shah S, Kim S, Lal IK, Collins M (2016) Remote system setup using large-scale field pro-
grammable analog arrays (fpaa) to enabling wide accessibility of configurable devices. J Low Power
Electron Appl 6(3):14

14. Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78(10):1629–1636
15. Hasler J, Marr H (2013) Finding a roadmap to achieve large neuromorphic hardware systems. Front

Neurosci 7:118
16. Shah S, Teague CN, Inan OT, Hasler J (2016) “A proof-of-concept classifier for acoustic signals from the

knee joint on a fpaa,” In: 2016 IEEE SENSORS, Oct 2016, pp 1–3
17. Koziol S, Hasler P, Stilman M (2012) “Robot path planning using field programmable analog arrays,” In:

2012 IEEE international conference on robotics and automation, May 2012, pp 1747–1752
18. Enterprises S et al (2012) Scilab: Free and open source software for numerical computation. Scilab

Enterprises, Orsay, France, p 3
19. Luu J, Goeders J, Wainberg M, Somerville A, Yu T, Nasartschuk K, Nasr M, Wang S, Liu T, Ahmed N,

Kent KB, Anderson J, Rose J, Betz V (2014) VTR 7.0: Next generation architecture and CAD system for
FPGAs. ACM Trans Reconfigurable Technol Syst 7(2):6:1-6:30

20. Berkeley U (1992) Berkeley logic interchange format (blif). Oct Tools Distrib 2:197–247
21. Doboli A, Vemuri R (2003) Exploration-based high-level synthesis of linear analog systems operating at

low/medium frequencies. IEEE Trans Comput-Aided Des Integr Circuits Syst 22(11):1556–1568
22. Baskaya F, Anderson DV, Hasler P, Lim SK (2009) “A generic reconfigurable array specification and

programming environment (grasper),” In: 2009 European conference on circuit theory and design, Aug
2009, pp 619–622

23. Baskaya F, Reddy S, Lim SK, Anderson DV (2006) Placement for large-scale floating-gate field-
programable analog arrays. IEEE Trans Very Large Scale Integr (VLSI) Syst 14(8):906–910

24. Hasler J, Kim S, Adil F (2016) Scaling floating-gate devices predicting behavior for programmable and
configurable circuits and systems. J Low Power Electron Appl 6(3):13

25. Ramakrishnan S, Hasler J (2014) Vector-matrix multiply and winner-take-all as an analog classifier. IEEE
Trans Very Large Scale Integr (VLSI) Syst 22(2):353–361

123

176 S. Kim et al.

26. Schlottmann CR, Shapero S, Nease S, Hasler P (2012) A digitally enhanced dynamically reconfigurable
analog platform for low-power signal processing. IEEE J Solid-State Circuits 47(9):2174–2184

27. Natarajan A, Hasler J (2017) Modeling, simulation and implementation of circuit elements in an open-
source tool set on the fpaa. Analog Integr Circuits Signal Process 91(1):119–130

28. Dongarra JJ, Luszczek P, Petitet A (2003) The linpack benchmark: past, present and future. Concurr
Comput: Practice Exp 15(9):803–820

29. Hasler J (2016) “Opportunities in physical computing driven by analog realization,” In: 2016 IEEE
international conference on rebooting computing (ICRC), Oct 2016, pp 1–8

30. OvtcharovK, RuwaseO,Kim J-Y, Fowers J, Strauss K, Chung ES (2015)Accelerating deep convolutional
neural networks using specialized hardware. Microsoft Res Whitepaper 2(11):1–4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	CAD synthesis tools for floating-gate SoC FPAAs
	Abstract
	1 Analog-digital mixed system design
	2 System design with reconfigurable hardware
	3 Tools for FPGAs, FPAAs, FG FPAAs
	4 CAD tools for mixed mode design
	4.1 sci2blif: Xcos rightarrow blif
	4.2 VPR: blif rightarrow route
	4.3 vpr2swc: route to switch list
	4.4 Challenges on applying VPR to Heterogeneous systems

	5 Advanced design tools and VMM
	5.1 Macro block: encapsulating complex circuits
	5.2 Customization of block location
	5.3 Analog VMM: computation with routing

	6 System examples
	6.1 Low pass filter and ADC
	6.2 Universal approximator
	6.3 Speech classifier

	7 Summary and discussion
	Acknowledgements
	References

