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Abstract This paper presents an approach for event-triggered wireless sensor network
(WSN) application modeling, aiming to evaluate the performance of WSN configura-
tions with regards to metrics that are meaningful to specific application domains and
respective end-users. It combines application, environment-generated workload and com-
puting/communication infrastructure within a high-level modeling simulation framework,
and includes modeling primitives to represent different kind of events based on different
probabilities distributions. Such primitives help end-users to characterize their application
workload to capture realistic scenarios. This characterization allows the performance eval-
uation of specific WSN configurations, including dynamic management techniques as load
balancing. Extensive experimental work shows that the proposed approach is effective in
verifying whether a given WSN configuration can fulfill non-functional application require-
ments, such as identifying the application behavior that can lead a WSN to a break point
after which it cannot further maintain these requirements. Furthermore, through these exper-
iments, we discuss the impact of different distribution probabilities to model temporal and
spatial aspects of the workload on WSNs performance, considering the adoption of dynamic
and decentralized load balancing approaches.
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1 Introduction

Wireless Sensor Networks (WSN) are used to monitor some environment condition and
basically can work in two different ways: proactive and reactive [4]. Following a proactive
way, the sensor nodes periodically sense the environment and send each new value to a
gateway. Such periodic behavior generates several packages and transmissions that could be
avoided in certain applications [30]. Considering that end-users are only interested in hearing
from the network when certain events occur [29,30], event-driven or reactive applications
can be designed.

Sophisticated reactive WSN applications have complex requirements, demanding that
the application experts are also involved in its design [27]. In the end-user point of view,
reactive applications can be abstractly specified as triggered events that are generated by
the environment and must be handled by the system. As these professionals are not trained
to specify computational applications in detail, the application should be also abstractly
specified [26].

Usually, application-specific WSN must be designed to meet non-functional application
requirements. As an embedded system, WSNs have limited resources (energy source, mem-
ory, processing capability) and additionally, the WSNs designers should define required
redundancy and number of nodes to achieve desired coverage area, as well as determine net-
work topology, which significantly impact on their design [35]. As large-scale and complex
networked systems, its design requires several decisions, which influence systems efficiency,
costs, and coverage [9].A critical design aspect is the evaluation of aWSNconfigurationwhen
running a given application, which cannot be based on prototypes or low-level simulations
that are costly and time consuming.

WSNs are used to monitor real environments, where different events can happen at differ-
ent times and at different places. Thus, to evaluate a WSN configuration, several application
scenarios should be considered varying the load distribution in the network area and the
frequency of events using the appropriated probabilistic models [10]. The definition of these
scenarios is very important in the evaluation of the network efficiency as well as in the
evaluation of dynamic management strategies. In the embedded systems domain, high-level
modeling primitives have been used to model complex applications, abstracting details [18],
and enabling early systems behavior evaluations.

As highlighted in [5], the physical environment plays a fundamental role especially when
the energy consumption ofWSNs is considered.Considering the event-triggered applications,
the computational load is also defined by the events detected from the environment. In this
context, the application workload specification should be centered on the description of these
events, when and where they happen.

On event-driven WSN, a relevant dynamic management strategy is load balancing, since
commonly network solutions include redundancy to achieve desired coverage area. As more
than one node can sense the same event, load balancing techniques can improve the network
lifetime and service availability avoiding that the same event be processed by more than one
node [3,15]. Temporal and spatial aspects of event-triggered WSN applications can impact
significantly in the efficiency of load balancing techniques, which are not widely explored in
previous work.

Following [21], several works have contributed to facilitate the development of WSN
applications using high-level abstractions, models and simulation frameworks. However,
these works address challenges on WSN programming and code generation, or on WSN
simulations focusing mainly on network aspects [11,19,24]. Moreover, the mentioned and
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several others simulators are centered onnode,whichmeans that the application are composed
of simple periodic tasks (sensor reading and send messages, e.g.) programmed to run on each
node. This approach is suited for periodic (or proactive) applications, where the nodes are
only responsible to read values and send to the gateway. However, to support event-triggered
(reactive) applications, the cooperation with environment simulators is necessary to generate
the load, turning the whole simulation more complex.

Here,wepropose primitives for application loadmodeling, addressing temporal and spatial
aspects and targetinghigh-level simulationof event-triggeredWSN.Suchprimitives help end-
users to characterize their application workload based on probabilistic models and check the
performance of specific WSN configurations when running realistic scenarios. Experiments
explore different aspects of events and show how they impact on network lifetime and service
availability, evaluating scenarios without and with dynamic load balancing techniques. Thus,
our experimental results also shows the impact of these aspects on the efficiency of state-of-
the-art load balancing algorithms [3,8].

The paper is organized as follows: Sect. 2 discusses previous work on WSN simulation.
Section 3 presents the state-of-the-art on load balancing for event-triggeredWSNs. Section 4
introduces the proposed approach. Section 5 presents the experimental work and respective
analysis. Section 6 concludes and points out directions for future work.

2 Related work

2.1 Modeling and simulation

Several works have addressed WSN simulation [11], resulting in simulators or frameworks
like Semsim [24], TOSSIM [19], J-Sim [33] and TikTak [20]. The most of these focus on
the WSN hardware simulation or do not yet consider event-triggered applications. In such
works, application tasks are often periodic and simulated over a single node, or they are not
modeled at all and only the low-level aspects of the network protocols and radio channel are
taken into account.

Furthermore, there is little support to themodeling of realistic scenarios where the applica-
tion load varies according to physical and natural phenomena models (with a few exceptions
based on complex application-specific simulators are used to mimic the environment behav-
ior, as proposed in [14] for fire monitoring). Even most recent works that focus on WSN
performance analysis adopt workload based on uniformly distributed random variables [3].
This simplification is not suitable for all natural phenomena and for event-triggered appli-
cations, where appropriated probabilistic models should be used to determine the event
frequency and position. Recently, probabilistic models were used in [10] to represent the
event frequency for dynamic data storage estimation.

When evaluating an application whose objective is the monitoring of movement (e.g.
animal tracking, ocean currents, and gas leak) themovement pattern should be also considered
[31]. For instance, an animal mobility model based on probabilistic behavior was proposed in
[23] for wildlife tracking andmonitoring applications. However, this model does not consider
all aspects of theWSN application load (such as software tasks used to process data generated
by the environment). Similar to [10,23], our work proposes modeling primitives to facilitate
the adoption of probabilistic distributions to describe all aspects of an event.

As part of Ptolemy II [2], VisualSense [28] is a framework for high-level WSN modeling
and simulation. Although VisualSense primitives focus mainly on platform modeling, it is a
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relevant effort since can be easily extended. We extend the VisualSense, including applica-
tion modeling primitives based on probabilistic models in order to support the performance
evaluation of WSN when running realistic scenarios.

This paper expands upon [1], where the impact of temporal and spatial aspects from
event-triggered applications on WSNs was discussed. That work was the first to integrate
probabilistic application load characterisation intoWSN simulation, but without consider any
load balancingmechanism.Here,we explore this integration to better analyse the efficiency of
dynamic load balancing strategies for event-triggeredWSNs. Thus, several new experiments
were conductedwith the proposed applicationworkloadmodel combinedwith two prominent
distributed dynamic load balancing techniques [3,8].

2.2 Load balancing

Works commonly faces the load balancing in WSN as a problem of communication among
nodes, presentingmethods to better routing the data traffic through the network [6,13,17,22].
It happens because they consider that the network senses the environment in a proactive way,
which means, all nodes have the same tasks to process. We focus here on reactive WSNs
where the events trigger the network which generates tasks to be processed by the nodes.

When targeting event-triggered WSN applications, the load balancing should explore the
sensor redundancy since several nodes can be triggered by the same event but only one has
to process the tasks it produces. The problem of task mapping on distributed systems has
investigated, considering different platforms as multi-cores, and as well as sensor networks.
The approaches for task mapping can be divided in static as in [25,36] and dynamic as in [3,
8,15,32]. Static approaches are limited since cannot effectively adapt to network conditions.

Different approaches have proposed for dynamic WSN load balancing, which mainly
differs among each other from the adopted heuristics like genetic algorithm [15] and bio-
inspired [32]. In these works, centralized solutions have proposed to balance energy usage
while extending the network lifetime.

Moreover, recently works have focused on distributed approaches given the distributed
nature of WSN. Ferreira et al. [8] and Ipek et al. [3] have proposed different distributed
dynamic solutions for WSN load balancing based on social insects colonies behavior. In [3],
an interaction process is used to determine which node will process a sensed event inspired
in queens differentiation mechanism through signal pheromones. In [8], nodes mimic ants
division of work behavior to dynamically choose nodes that will be responsible to process
sensed events. As said before, here we have evaluated these two most recent and prominent
dynamic load balancing approaches.

3 Distributed dynamic load balancing in WSNs

In WSN, the network lifetime or its service availability depends on the discharge of nodes
batteries. As WSN solutions include redundancy to achieve desired coverage area, more
than one node sense the same area at same time. This redundancy motivates the adoption of
dynamic coordinationmechanisms to achieve loadbalancing, saving energy and consequently
improving the network lifetime. When targeting event-triggered WSN applications, the load
balancing can be more useful, since several nodes can be triggered by the same event.

The ant-based approach [3] aims to allowWSN nodes to decide individually which event
to process triggered by the events emergence on the environment. In this approach, nodes
decide probabilistically, on-the-fly, which events to perform applying a decision process
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inspired by the ants theoretical model of response threshold. This approachs general idea is
to divide the work among the nodes sensing the same area, considering the number of nodes
who sensed an event at the same time; and the number of times a given node was previously
engaged in events processing.

When an event occurs, it produces stimulus for the nodes sensing the event’s location
area. The produced stimulus is computed based on the number of neighbors which sensed
the event and the maximum number of neighbors that could have sensed the same event.
This information is determined by communication, as nodes broadcast to the neighborhood
a simple message indicating that an event was sensed. To capture the nodes working history,
each one has an internal response threshold that changes over time. This threshold manages
the node sensitiveness in such way that nodes become more sensitive to the stimulus of an
event it is performing and less sensitive to the next events. Thus, when nodes detect events,
they will decide which ones to process according to their probability computed using events
stimulus and their internal response threshold.

The Pheromone Signaling (PS) approach [8] is based on the bees hormonal system, which
ensures every beehive has only one queen. Through this approach, nodes are periodically
differentiated from other nodes to indicate their duties. Some nodes, called Queen Nodes,
are allowed to process the sensed events, while remaining ones, called Worker Nodes, stay
in stand-by.

Nodes differentiate themselves through a periodic transmission of pheromone by Queen
Nodes and its retransmission by recipients to their neighborhood. The retransmission is
limited to a number of hops and the amount of pheromone is decreased each time it is
propagated. Through this process PS limits the range of influence of each Queen Node,
aiming to keep, as much as possible, the coverage of the WSNs sensing area. Nodes became
a Queen Node based on their internals threshold and pheromone level. The differentiation
happens whether the node does not receive enough pheromone from their neighbors to keep
their internal pheromone level above their internal threshold. The internal pheromone level
increases over time as the node receives pheromones from their neighbors. To compensate
it, the internal pheromone level of all nodes is decreased periodically.

4 Proposed approach

Basically, the design of an application-specific WSN can be divided in two layers: plat-
form and application. When designing an application-specific WSN, the platform should
be designed and configured according to the application requirements. For fast and easy
design space exploration (DSE), it should be possible to change the platform or its configu-
rations (e.g. number of nodes, network topology, node positions, radio transmitting power)
and evaluate the system efficiency when running the target application.

In order to facilitate the evaluation of WSN configurations, we provide high-level prim-
itives to model computation and communication load of reactive WSN applications. As
illustrated in Fig. 1, environment aspects are incorporated to the application model in our
approach, since that load is generated by events captured from the environment. Events rep-
resent the cost of the computation and communication tasks required by the application. Such
costs are directly related to the time tasks take to execute, the energy they require, and the
platform resources they occupy. These costs aremostly platform-specific, but can be obtained
through platform profiling, and then used within a simulation model in order to analyze the
efficiency of a given design solution.
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Fig. 1 Proposed approach for event-driven application workload modeling

4.1 Application modeling

The proposed application modeling is focused on non-functional aspects of the application,
so the computation tasks are abstracted away, and our model only represents the costs (time,
energy, resources) associated with them. Our approach differs from others, incorporating
temporal and spatial aspects from the environment into the application level in order to better
characterize the workload of reactive WSN applications.

WSN reactive applications commonly monitor events, whose types depend on which kind
of natural phenomenon the application end-user is interested in observe, as for instance
temperature dynamics, humidity, moving objects (as vehicles and animals), among others.
Flood monitoring, forest fire detection, intrusion detection, habitat monitoring are examples
of applications with different phenomena of interest. In a fire detection application, sensors
read temperature, humidity, and smoke in order to determine if there is a fire event or not.
Considering the habitat monitoring, an application subdomain is the movement tracking of
animals in a given monitoring area, where the interesting event is the movement. In this case,
end-users want to know when the animal is moving, in which direction, and yet in which
frequency it changes its position.

An event occurs into the environment in a given spatial location, in a given time, and is
related to a natural phenomenon (e.g. temperature, humidity, sound, and light). Events are
only sensed by a given sensor node if this node is active at the events time, the event occurs
in its sensing area and if the event type is supported by this node. Thus, to represent events,
three aspects are relevant, which are: spatial, temporal, and functionality. Spatial is related
to events location, temporal is related to the time when this event occurs, while functionality
indicates the type of sensor enabled to capture this phenomenon. Varying and combining
these three aspects, one can define different events covering the most interesting natural
phenomena. For example, we define that an event is static if there is no spatial variation, and
atomic when it occurs in a specific time (without temporal variation) and is not repeated. A
periodic event is that recurs at intervals.

Uncertainty and variability are present in the modeling of natural phenomena [34], which
motivates the use of probabilisticmodels tomodel these phenomena. In this work, we propose
to represent WSN interesting events using stochastic models, which are built through field
observation of the correspondent natural phenomenon by the end-user. These stochastic
models determine the probability of a given event occur at a given time and at a specific
position to simulate the spatial and temporal variations from the real-world events. These
models can be represented using histograms or spectrograms and should be loaded into the
simulator.

Based on this event classification and definitions mentioned before, we propose high-level
primitives to model events in a WSN reactive application. Figure 2 illustrates the proposed
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Fig. 2 Proposed primitives for application modeling

primitives organized in a class hierarchy like a metamodel. This hierarchy addresses the
temporal, spatial and functionality aspects from events. On the top of this hierarchy is the
BasicEvent, which is an abstract class that generalizes our concept of event, defining the
events attributes (e.g. position, and trigger time). To address the functionality aspect, any
event has a type represented by the EventType class.

BasicEvent is specialized by AtomicEvent and PeriodicEvent classes, which represent
atomic and periodic events, respectively. An atomic event is static for nature in our hierar-
chy, but we propose to specialize it to represent an atomic static event whose position and
trigger time are determined by a stochastic model, which is named as StochasticStaticEvent.
Stochastic models can use any probability distribution, and be depicted by a histogram (2D
variables) or a spectrogram (3D variables). A periodic event is that recurs at intervals, thus
the PeriodicEvent class has an extra attribute named period, which represents the duration
of one cycle in a repeating event.

PeriodicEvent can be used to represent static or mobile events. The StochasticPeriodic-
StaticEvent subclass represents a recurrent static event. When an event changes position, it
is modeled using the SimpleMobileEvent or some of its subclasses. The StochasticPeriod-
icJumperEvent can be used tomodel a big set of non-simultaneous static events whose spatial
distribution can be defined by stochastic models, accelerating the simulation.

A mobile event is generalized by the SimpleMobileEvent class, which defines attributes to
describe the movement parameters, such as direction, speed and time between changes.
Such attributes are used to determine the new position for a mobile event, and can be
also represented by probability distributions, for instance using StochasticMobileEvent or
FullyStochasticMobileEvent primitives. StochasticMobileEvent has initial position, direc-
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tion, speed, and time between direction changes determined by stochastic models, but trigger
time fixed in zero, which means that the event starts on the beginning of simulation. In
FullyStochasticMobileEvent all these parameters including triggertime are based on stochas-
ticmodels. The variability of these parameters is represented by spectrograms and histograms,
which define the probability distributions. For example, when representing events associated
with birds monitoring, a 3D Normal function spectrogram can express the presence of young
birds around the nest. A histogram with a Poisson function can represent for example the
probability of each one move at the interval of 1 h. The data represented by these curves are
used to raffle a new value for the parameters during the simulation. For the experiments ran
in this paper, we defined also the RandomMobileEvent. This subclass is a simplified version
of SimpleMobileEvent, where the event new position is given by a small random decrease or
increase on its current position.

As referenced before, an event is the basis of our approach for modeling WSN reactive
applications load.Using the proposed primitives is possible to represent these events, covering
the three main aspects. Although to evaluate efficiency, another aspect should be specified
that is related to the cost to process and communicate this event. The event computation load
can be yet represented as a graph of tasks, where each task can have a different cost. These
costs are platform-dependent and will be discussed in Sect. 4.2.

4.2 Platform modeling and simulation

To simulate and observe the behavior of an application-specific WSN, we also defined a
high-abstraction platformmodel for timing and energy consumption evaluation. Our platform
model is composed of nodes connected by a wireless communication channel with limited
range to form a given network topology. Nodes can be sensors nodes, intermediate nodes
or sink nodes. Sensor nodes have a limited sensing area, which defines whether they can
be affected by a specific environmental event or not. According to a sink-to-gateway-based
architecture [26], a sink is an intermediate node among the gateway and the wireless sensor
network itself. This sink is connected on the same radio channel as the sensor nodes.

Nodes are distributed across the area of interest and end-to-end connections among then
are built, respecting the channel range and considering a way to every node to achieve the
sink in a multi-hop fashion. Such information is then stored locally by each node in routing
tables. If a node is inactive or dead (e.g. faulty, out of battery), connections can be dynamically
rebuilt, finding anotherway to connect nodes avoiding inactive nodes.Our approach is flexible
enough to model many routing algorithms and rerouting policies.

When an event is captured by a node, its corresponding processing tasks are executed and a
message is sent to the sink. To simulate this processing, our sensor nodes have a CPU, which
abstractly models the execution of tasks. Currently, we assume a FIFO-scheduled CPU,
but it would be trivial to support e.g. round-robin, priority preemptive or non-preemptive
schedulers. As mentioned before, an event can be associated to a graph of tasks and each
task can have different costs. Such costs then determine for how long a CPU is busy and how
much energy it dissipates while processing a given task. Each node has a gateway, which
determines its way to achieve the sink. Thus, if the node A captures an event, it sends a
message to node B, its gateway, that will forward it for its gateway, until achieve the sink.
Every event-detection triggers one or several message transmissions, depending on the sensor
position and its distance to the sink.

Both sensor and sink nodes have a source of energy (in the current model, a non-
rechargeable battery) and parameters are used to model nodes initial and current energy
levels. To simulate the nodes battery discharging, during the simulation, sensors and sinks

123



Application modeling for performance evaluation... 277

will have their current battery recalculated according to their activities. This discharging
process is based on CPU cycles and costs defined for each operation mode. A node can be
operating in the modes idle, processing or communicating, where idle means also sensing
without any processing, assuming that the components responsible for sensing are always
working. We assume that the reception cost for the radio is included into the idle cost. The
communication cost is related only to the send message operation, thus only the node that
send the message discharges its battery, but a message that take several hopes cost for every
node that forward it.

In order to simulate an application running in different platforms, one can change the
number of sensor nodes, the number of sinks, the position of the all nodes, the range of
channels, and dimension of the interesting area. For fast simulation, we adopted a discrete-
events based approach, and in this case, the mentioned battery discharging occurs only when
some event is triggered, accelerating the simulation. Alternatively, the user can adopt a
simulation based on wall-clock time. In this case, the simulation cycle will respect the wall-
clock, facilitating the behavior visualization graphically, but the simulation will run slower
than in the discrete-event based one.

The approach described in this paper was implemented as EBORACUM [7], an open-
source extension of Ptolemy II and VisualSense.

5 Experiments

5.1 Hypothesis

The energy consumption in the WSN and consequently its lifetime and service availability
depend on the application workload, which means that depending on events frequency and
their position, the WSN service availability will vary. Commonly the WSNs are evaluated
using hypothetical workload based on uniform distribution [14]. However, as our experiments
will show, the use of different probability distributions to model temporal and spatial aspects
of the load can enormously impact on the network service availability and also affect the
efficiency of load balancing strategies.

In the experiments, we demonstrate it varying the distribution for event spatial aspects
(Uniform, 3D Bell curve, 3D Inverted Bell curve), temporal aspects (Uniform, Normal and
Poisson), and also modifying the movement pattern. Firstly, we are discussing how it impacts
on the network service availabilitywithout consider any load balancing strategy. Furthermore,
we discuss also the after-effects of the sameprobabilitiesmodels on the efficiency of ant-based
and pheromone signaling load balancing algorithms.

5.2 Experimental setup

The proposedmodeling primitive hierarchywas built based on Ptolemy II and all concepts are
derived from the TypedAtomicActor. Our approach facilitates the generation of simulation
parameterized scenarios which are loaded on Ptolemy II GUI through a benchmark generator
written in Java. This generator was used to validate our primitives and to automatically
generate the experimental scenarios. A scenario describes an application-specific WSN that
can be based on a real-life use-case or artificial test environments. The network behavior can
be analyzed by data reports or graphically on Ptolemy II GUI.

In our experiments, we consider a simulation model composed of 49 sensor nodes uni-
formly scattered (or 7× 7 mesh) through a square 810 km2 area (900 m × 900 m) and one
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Fig. 3 Screenshot of the simulation model

sink located on the side, as shown in Fig. 3. Nodes are depicted as small blue circles. Nodes
sensing and communication radius are depicted as the translucent greater circles with (120m)
and without a white border (160 m), respectively. Communication paths are depicted by the
black lines and the area of interest is defined by the square enveloping the mesh. The sink is
the small black circle out of the area of interest. As we will discuss further, it is important
to remark that there are 24 nodes in the borders with part of its sensing area outside of the
area of interest, 4 of them in the corners. Corner nodes have almost twice the area outside
the area of interest than the other border ones. The red square depicts an event sensed by 4
nodes simultaneously as it happens inside these nodes’ sensing radius.

The nodes are connected to one of its four neighbors (the closest to the sink) or directly
to the sink. Nodes are spatially distributed such that 100 % coverage of the area of
interest is achieved. This configures a network with limited density or overlapping, once
any occurring event can be detected by more than one sensor, but at most by four sen-
sors (with a lower probability). Unless you have specific information to the contrary, the
adopted event spatial distribution is the Uniform one. For the first two experiments, our
StochasticPeriodicJumperEvent is adopted and in the last one, RandomMobileEvent and
FullyStochasticMobileEvent are used.

Each sensed event generates a processingworkload equivalent to 14 tasks and the sentmes-
sages have 3 Bytes. We adopted this configuration to simulate a network of nodes equipped
with acoustic sensors to capture sounds generated by the entities under surveillance (usually
animals) on a particular area [3]. The adopted energy costs and also the battery capacity
are defined in Table 1, according to IRIS Motes datasheet [12]. We assume that the battery
discharge is linear and when the battery is in the half of its charge, the node stops to work.

For all experiments, the same configuration was executed 30 times and average results are
used in the comparisons (t tests were run with 0.95 of confidence). The simulator ran in a i7,
8GB of RAM, ordinary PC.
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Table 1 Energy costs Energy-related parameter Value

Battery capacity 5,400,000 mAs

Idle discharge rate 0.3 mAs

Task computation discharge rate 3.57 mAs

Discharge rate per message (3 bytes) at 30
kbps

0.0018 mAs

5.3 Experimental results

5.3.1 Spatial

In this section, the variation of spatial events distribution is evaluated, considering Uniform,
3D Bell curve and Inverted 3D Bell. Regarding temporal distribution, a Poisson function
with an interval between 1 and 100 s was adopted. Firstly, we discuss the impact on a WSN
without load balancing strategy. Figure 4a depicts the results for alive nodes over time in this
scenario.

As can be observed in Fig. 3, the nodes at the borders of the area of interest have lower
probability to detect events and preserve the battery for more time, since part of its sensing
areas are outside of the area where events occur. This effect is even more visible in the four
corner nodes. Thus, when a Uniform distribution is used, three steps can be observed in the
curve, once the border nodes will detect fewer events and will be alive for longer time. The
last step shows the mentioned behavior of the four corner nodes. Using a 3D Inverted Bell
curve, the border nodes have higher probability of detect events, reducing this differentiation
and consequently, all nodes died in closed times. Finally, when a 3D Bell curve is used, the
events have high probability of occur in the central area, decreasing to the borders. As a
result, there is a significant variation in the frequency of events stimulating different nodes,
and reinforcing the border effect. There is a wider spread on the nodes’ energy depletion
time, and an overall increase in network lifetime.

Results shows also that when the event spatial distribution respects a 3D Bell curve,
the network lifetime is higher than for the other both distributions on average around 26
and 32 % compared to 3D Inverted Bell curve and Uniform, respectively, in the conducted
experiments. Moreover, as expected, we observe larger average standard errors when using
Uniform distribution (0.40), compared to 3D Bell (0.06) and Inverted 3D Bell (0.07). These
errors are not depicted in Fig. 3 because of the y-axis scale. However, with Uniform and 3D
Inverted Bell curves is possible to say that the network fails around the day 80. While using
the 3D Bell curve, nodes start to die in half of this time, compromising the network efficacy
after this and demanding a different design strategy. Thus, we have shown that the network
behavior regarding service availability significantly differs depending on the event spatial
distribution.

In addition, we have analyze the effects of these distributions on the Ant-based and PS
load balancing algorithms. Figure 4b, c illustrates the results for alive nodes in the scenarios
with the three different distributions achieved by PS and Ant-based algorithms, respectively.
Firstly, we observe that for both algorithms, the curve of alive nodes using Uniform and
Inverted 3D Bell are overlapped. The behavior of the network without any load balancing
was already similar in these two distributions and it was intensified in the load balanced
networks.
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Fig. 4 Results for different spatial distributions
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Table 2 Sensed events according
different spacial distributions

PS Ant-based No load balancing

Uniform 214850.0 270383.2 255283.2

3D bell 201225.6 230958.6 201353.0

Inv. 3D bell 214874.8 270381.2 255274.8

Comparing yet the number of alive nodes by days achieved by the non-balanced network,
both load balancing algorithms improve these numbers, and keep nodes alive for longer
times (around 10 days more for Uniform and Inverted 3D Bell distributions). Using the 3D
Bell distribution, we observe that PS and Ant-based algorithm improve also the network
efficiency, since these algorithms can retard the death of the first node in around 30 days
compared to a non-balanced network.

Similar to the behavior already observed into non-balanced network, both algorithms
achieved a smooth curve when using 3D Bell, compared to the others distributions. The
smoothness of the decreasing curve is higher with non-balancing, medium for Ant-based and
is lower in PS. As discussed before, 3D Bell intensifies the difference between the frequency
of events stimulating different nodes. This results in a more significant difference between
the times each node’s battery is completely depleted, in all three scenarios.

However, to better analyze the efficiency of load balancing algorithms, it is important
to observe also the total number of sensed events and not only the number of alive nodes.
This information considers that an event is given as sensed if it is processed by a node and
has its result received by the sink, which means that a multi-hop way to the sink should
be provided by the network. Table 2 resumes the total number of sensed events achieved by
the three approaches varying the probability distributions. These numbers again reinforce the
similarities observed between results achieved for each approach using Uniform and Inverted
3D Bell distributions and the differentiation when a 3D Bell is used. In a comparison of
Ant-based algorithm against to a non-balanced network, Ant-based achieves around 6 % of
improvement using Uniform and Inverted 3D Bell distributions, and 15 % of improvement
using a 3D Bell distribution. Moreover, these results highlight that a comparison among
strategies for event-triggered WSN cannot be done based only in a single scenario (using a
single probability distribution), except when a specialist guarantee that this distribution is
appropriate for the application.

5.3.2 Temporal

To demonstrate the impact of the event temporal distribution, we conduct experiments using
Uniform, Poisson, and Normal (2D Bell curve) distributions. Usually, the Uniform distribu-
tions are adopted by simulators when using simple random functions. We choose a Normal
distribution, when events occur in the middle of the interval with higher probability, and
Poisson which is applied into simulation of various phenomena with discrete properties.

In a first experiment without considering load balancing approaches, we vary the function
interval between events from [1,10] to [1,10000] s to observe the impacts on WSN lifetime
using lower and higher events frequency. For instance, using Normal distribution, in the first
interval, events occur on average at each 5 s and in the last one, at each 1 h and 23 min.
The values of the random variables produced by Poisson distribution is 1/4 of the time
interval, instead of 1/2 in the others distributions. Consequently, as expected, the statistical
analysis pointed out that there is no significant difference between the network average
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Fig. 5 Proportional difference in lifetime between Poisson and the other distributions for different function
intervals

lifetime with Normal and Uniform distributions. However, when Poisson distribution is used,
significant differences are found in all cases, with different magnitudes depending on the
events frequency. For the higher frequency, the amount of generated events is higher and in
consequence the lifetime is reduced on average 23.8 days (49 %) using Poisson distribution.
For smaller frequencies, the Poisson distribution reduces on average the network lifetime
in only 1.8 days (0.018 %) with the function interval of [1,1000] or yet 4.4 h (0.0018 %)
when the interval is [1,10000]. As depicted in Fig. 5, despite the size of the interval increases
linearly, the proportional difference in lifetime between Poisson and the other distributions
decrease exponentially.

Figure 6a depicts in details the number of alive nodes by day for the three probability distri-
butions varying the intervals between [1,100] and [1,1000] without load balancing strategies.
When the interval [1,1000] is used the lifetime achieves almost its maximum (104 days) due
to the low number of generated events. However, in the interval [1,100], the network break
out around the day 88 because the increased number of events. One can observe that this
break out is yet earlier, in the day 72, when the Poisson distribution is adopted. The results
for the intervals [1,10000] and [1,10] are omitted in this plot. The first one because there
is no significant difference among the results obtained with the different distributions. The
second was omitted for the sake of comparison to the WSN with load balancing approaches,
in which the simulation time becomes too long.

Figure 6b, c illustrates the number of alive nodes in the WSN using the PS and Ant-based
algorithms for load balancing, respectively. These results show that both algorithms improve
significantly theWSN lifetime using the interval [1,100] for all distributions. However, when
the interval [1,1000] is adopted, the load balancing approaches reduce the network lifetime
around 5 %. This result indicates that the overhead of the dynamic management execution
is larger than the improvements that they could achieve in this scenario. For example, if the
WSN is monitoring an environment, the load balancing algorithms should be applied only
when the frequency of events emergence is necessarily larger than 1 at each 16 min.

5.3.3 Movement pattern

Finally, to observe the impact of the events movement pattern into the network lifetime and
in the efficiency of load balancing algorithms, we conduct experiments to compare random
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Fig. 6 Results for different temporal distributions
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Fig. 7 Results for different movement patterns
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and stochastic movement patterns using 100 mobile objects produced uniformly during the
simulation time, which generate several events in the network. As mentioned before, our
movement patterns use direction, time between direction changes and speed as parameters.
In the stochastic model, such parameters are determined by a Normal function using intervals
of 0 to 360, 0 to 10, and 0 to 20, respectively. In the random model, the implemented
behavior mimics direction and speed changes in the same intervals but following a Uniform
distribution.

Figure 7a illustrates achieved results for a non-balanced WSN. It points out that mobile
objects moving according to stochastic models induce lower energy consumption by the
network, enabling the network to be alive for more days compared to random movement
models. This difference represents around 5 days of lifetime, and the first nodes begin to die
10 days before using the random model.

The impact of the adopted movement model into a dynamically balanced WSN can be
seen in Fig. 7b, c. Results point out that load balancing approaches cannot improve the
network lifetime when stochastic movement is adopted. As using the stochastic model the
objects tends to keep the movement direction, objects leave the network area faster than
when the random movement is used. It causes a reduction on the number of events that will
be processed by the network, and thus, reducing also the opportunities for load balancing.
However, when the random model is used, both algorithms improve the network lifetime by
5 %, delaying the energy depletion of the first node in 7 days. In this experiment, the number
of sensed events does not aggregate value to the discussion conducted here because all nodes
had their batteries depleted almost at the same time.

In [1], 1000 mobile objects were used in a non-balanced WSN and we show that, the
adoption of a stochastic model enables the network to be alive for more days compared
to random movement model. This difference represents around 30 days of lifetime, which
means 35 %. Comparing these previous results to the one discussed here, one can observe
that the stochastic model presents a similar behavior even increasing the number of objects
and does not offer opportunities for load balancing.

As each mobile object produces an event in short intervals of time, the increasing in the
number ofmobile objects drives our event-discrete simulator to almost real-time synchroniza-
tion. Furthermore, dynamic load balancing techniques produce an overhead of computation.
The Ant-based algorithm, for instance, runs each time an event is produced in the environ-
ment. Thus, we have chosen do not run the load balancing algorithms with 1000 mobile
objects due the required simulation time.

It pointed out that when the WSN objective is to monitoring wildlife, the usage of a
random-based object mobility achieves pessimistic results, while a stochastic based model
can achieve more realistic results, once the field observations usually are represented as
stochastic models [16]. It is possible to conclude that load balancing implies no advantages
in this kind of realistic situation.

6 Conclusions

We have proposed an approach to model event-triggered WSN applications aiming to evalu-
ate the performance of WSN configurations. Events are the basis of the proposed approach,
enabling the simulation of different natural phenomena through probabilistic models. Fol-
lowing this approach, end-users may capture a variety of application specific scenarios. Thus,
our load modeling approach enables end-users (possibly without any programming skills)
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to conduct experiments and evaluate WSN configurations as well as dynamic management
strategies for load balancing, when running real-life scenarios of their event-triggered appli-
cations. We have demonstrated with experiments that the nature of the load has a significant
impact on theWSN efficiency, mainly when load balancing strategies are considered and thus
cannot be neglected by WSN simulators. As future work, we plan to extend our primitive
hierarchy to support events triggered or created by other events.
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