
Des Autom Embed Syst (2016) 20:127–153
DOI 10.1007/s10617-016-9172-6

System-level design based on UML/MARTE
for FPGA-based embedded real-time systems

Marcela Leite1 · Marco Aurélio Wehrmeister2

Received: 15 March 2015 / Accepted: 25 February 2016 / Published online: 9 March 2016
© Springer Science+Business Media New York 2016

Abstract This paper discusses an approach to generate VHDL descriptions from high-level
specifications, namely UML/MARTE models that include aspect-oriented semantics. Stan-
dard UML diagrams describe the handling of functional requirements, whereas crosscutting
concerns associated with the non-functional requirements are handled by aspects. UML-
to-VHDL transformation is performed automatically by a script-based code generation tool
namedGenERTiCA. For that, mapping rules scripts define how to generate VHDL constructs
from model elements, including the implementation of aspects adaptations. The generated
VHDL description does not require any manual modification, in order to be fully synthe-
sized onto a FPGA device. Some case studies have been performed to evaluate the proposed
approach, including examples of real systems implemented as a FPGA-based embedded sys-
tem.Obtained results show an improvement in systemdesign in terms of an increase in system
performance as well as a better utilization of FPGA reconfigurable resources. Such positive
results are related to a better modularization of components achieved by using the proposed
high-level approach. These case studies demonstrate the practicability of full translation of
platform-independent specifications into VHDL descriptions.

Keywords Model-driven engineering (MDE) · UML · VHDL · Code-generation ·
Aspect-oriented design · Non-functional requirements

1 Introduction

Nowadays, an increasing number of embedded systems are being delivered to the final
customers with Field-Programmable Gate Array (FPGA) components interconnected with

B Marco Aurélio Wehrmeister
wehrmeister@utfpr.edu.br

Marcela Leite
marcela.leite@ifc-araquari.edu.br

1 Instituto Federal Catarinense (IFC Araquari), Araquari, Brazil

2 Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-016-9172-6&domain=pdf
http://orcid.org/0000-0002-1415-5527

128 M. Leite, M. A. Wehrmeister

traditional IC components (e.g., processors and memory) as the system hardware platform.
Programmability, flexibility and better performance are some of the reasons to justify the use
of a FPGA device to perform some tasks of embedded systems [19,25].

In such modern FPGA-based embedded systems, the hardware/software co-design and
partitioning of system tasks, as well as the increasing number of services demanded from
them, lead to an increase in design complexity. New approaches are required in order to cope
with such a complexity. An old but still valid idea is the increase of the abstraction level
used during design [11,18]. Both academia and industry are looking for new approaches
that use high-level specifications such as, for instance, Unified Modeling Language (UML)
models annotated with stereotypes of the profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE). Model-Driven Engineering (MDE) [12,18,32] makes
intensive use of models, in order to manage complexity and also other design constraints.
Such an approach advocates that engineers need lesser focus on technological details, and
thus, system design (as a whole) may profit from using the information contained in the
high-level models to generate the executable artifacts of embedded and real-time systems.

Since late 1990’s, one can find approaches, e.g., [16], that are able to generate VHDL
descriptions from UML models. In [6,27], an UML model (especially its class diagram) is
used as source of information to generate a VHDL description that comprises only the system
structure, i.e., its components and their connections, not its behavior. System behavior is
commonly generated from state diagrams as in [34]. Themain drawback of such approaches is
that it is common to find VHDL statements within the UMLmodel, decreasing its abstraction
level, as well as its usability for generating code for other languages. Furthermore, state
diagrams are not frequently used by software engineers, and hence, co-design of embedded
system components may be hindered, increasing design time. Furthermore, most of the
proposed approaches, e.g., [3,4,28], do not use the main principles of Object-Oriented (OO)
paradigm, e.g., inheritance and composition/aggregation relationships in class diagram to
define system structure. In addition, such approaches do not use other behavioral diagrams
from UML, for instance, sequence diagrams to define system behavior. The mentioned high-
level features (e.g. inheritance and multiple diagrams to specify system behavior) are some
of the UML strengths [26] and should not be ignored within UML-based approaches.

Aspect-oriented Model-Driven Engineering for Real-Time systems (AMoDE-RT) [32] is
a MDE approach that proposes the intensive use of UML/MARTE models, from which a
system implementation can be automatically generated, including software/hardware imple-
mentation of embedded system components. In [20], AMoDE-RT has been extended to
support the generation of VHDL descriptions, including both system structure and behavior.
System behavior is specified in a platform-independent fashion via sequence diagrams rather
than state diagrams, since the former is easily understood by both hardware and software
engineering teams. However, the approach proposed in [20] has some limitations: (i) it sup-
ports only few classes/objects per system; (ii) only 1-to-1 associations are supported; (iii) the
generated behavior does not differentiate synchronous and asynchronous method1 calls used
within sequence diagrams; (iv) engineers need to include unnecessary details in the UML
model in order to generate the VHDL description as complete as possible; (v) depending on
the amount of such details, generated VHDL descriptions need some minor manual modi-
fications before they can be synthesized by a synthesis tool. This work improves [20] and
proposes a new set of mapping rules for the UML-to-VHDL transformation, including the

1 In this text, a “method” encapsulates a behavior of the object that is executed in response to a message sent
from other object.

123

System-level design based on UML/MARTE... 129

support of some OO constructions which have not been initially supported, as well as the
support for sequence diagrams full semantics.

Another issue that affects the design of embedded and real-time systems is the effec-
tive handling of non-functional requirements, e.g., deadlines, energy consumption, reduced
footprint, communication latency, etc. In the embedded systems domain, non-functional
requirements introduce crosscutting concerns in system design and implementation. Such
concerns are not properly handled by traditional approaches (e.g., object-orientated,
component-based approaches) due to the functional decomposition [7,13] enforced by such
approaches. This decomposition schema leads to modularization problems of crosscutting
concerns, since their handling cannot be encapsulated within single modular units, which, in
turn, results in scattered and tangled handling.

Aspect-Oriented Programming [13] addresses crosscutting concerns modularization
issues in software components by proposing special constructs called aspects. Aspects encap-
sulate the handling of crosscutting concerns by defining adaptations (also known as advices in
AOP terminology). Engineers indicatewhich elements of the systembase code are affected by
aspects adaptations. For that, they define pointcuts describing elements selection expressions
to indicate join points on which adaptations are applied. In this sense, VHDL descriptions
are somehow similar to a software source code files: they describe components structure and
behavior using a language based on functional decomposition. Therefore, the handling of
crosscutting concerns is found in many distinct elements, and hence, VHDL descriptions are
subject to the samemodularization issues related to crosscutting non-functional requirements
[8,17,22].

AMoDE-RT supports aspect-oriented concepts in UML/MARTE model by means of
DERAF aspects [10,33]. Therefore, other contribution of this work is the VHDL imple-
mentation of some DERAF aspects. Aspects adaptations have been specified as mapping
rules scripts that generate VHDL constructs to handle crosscutting concerns. By using the
proposed approach, it is possible to generate a fully functional and synthesizable VHDL
description from a more abstract UML model—there is no need for manual modifications
on the generated descriptions. Engineers can generate both hardware and software source
code from the same UML model [32], facilitating hardware/software co-design. This paper
extends [31] by providing a detailed discussion on the UML-to-VHDLmapping rules for the
high-level object- and aspect-oriented features as proposed in AMoDE-RT.

This work has been validated through some case studies that represent real systems,
namely, the design of a digital watch, a line-following robot, and a valve control system.
These systems have been modeled following AMoDE-RT approach and implemented in a
FPGA development board. Results demonstrate the feasibility of the proposed approach. A
better utilization of FPGA resources has been obtained, which, on the other hand, impacted
on system performance. In comparison with the results presented in [20], a greater amount
of source code lines was generated from the UMLmodel. This may indicate a decrease in the
effort for creating the embedded system implementation, especially when designing larger
systems. Moreover, by using AMoDE-RT approach, it is possible not only to deal with non-
functional requirements earlier in the design cycle, but also to obtain automatically a fully
synthesizable VHDL description2, as demonstrated in the presented case studies.

The rest of this text is organized as follows: Sect. 2 discusses related works;
Sect. 3 describes how AMoDE-RT generates VHDL descriptions from aspect-oriented

2 The generated VHDL description was synthesized, uploaded and executed on a FPGA development kit
without any manual modification.

123

130 M. Leite, M. A. Wehrmeister

UML/MARTE models; Sect. 4 presents the case studies and analyses the obtained results.
Finally, Sect. 5 draws some conclusions and discusses directions for future works.

2 Related works

Generating VHDL descriptions from high-level models has been proposed in various works
[5,6,20,24,28]. For instance, COmponent LAnguage (COLA) tool allows the system high-
level specification as well as the generation of a VHDL description [28]. The generated
VHDL description comprises the hardware structure and behavior, which is extracted from
state machine diagrams. However, COLA has its own formal modeling semantics, which is
not a standard, hindering its adoption in comparison with UML-based approaches.

On the other hand, GASPARD is a tool that generates VHDL descriptions from UML/-
MARTE models [6,24]. GASPARD uses concepts from logical view of MARTE Hardware
Resource Modeling (HRM) package. Such a tool focuses on modularization and components
mapping. It is necessary to define templates for the static elements of UML, in order to
generate the system VHDL description. As a consequence, GASPARD generates entity and
components mapping but it does not support the code generation for system behavior.

In [5], the proposed approach generates VHDL descriptions intended for system behavior
validation. Sequence diagrams are used to specify system interactions, from which a VHDL
description is generated. Design constraints are specified in sequence diagram as MARTE
stereotypes, defining systemnon-functional properties that are subject to validation.However,
that approach generates VHDL files only for system validation; it does not generate VHDL
description for the system functional requirements.

Recently, an increasing number of research works propose the use of Aspect-Oriented
Programming (AOP) in hardware design. The use of AOP in conjunct with VHDL language
is analyzed in [8]. This work identifies some elements in VHDL which may be subject to
aspects adaptations. As result, those authors indicate process and variable/signal assignments
as possible join points in VHDL. These places are suitable for code injection, especially
before, after and around each join point [8].

Aspect Described Hardware-description-language (ADH) is described in [23]. ADH is
an aspect-oriented language for hardware descriptions based on AspectJ language [13]. A
compiler has been developed to translate ADH descriptions into VHDL descriptions. How-
ever, according to [23], the compiler generates “synthesizable” VHDL code but it cannot be
directly used on FPGA devices due to missing library classes, as well as other open issues
and bugs of the compiler.

AspectVHDL language is an extension to VHDL syntax that includes AOP concepts and
constructs [17]. Such a language allows the definition of join points for procedures, functions,
data type definitions, entity architecture, and processes sensitivity list. However, in order to
allow the definition of join points and hence to use AspectVHDL, the system description
must be structured in terms of functions and procedures.

In order to design embedded systems using the synthesizable subset of SystemC, Muck et
al. [22] propose an approach that combined AOP and OO programming. That work focuses
on increasing components reuse by means of decreasing components coupling. For that, their
approach uses meta-programming, OO concepts such as inheritance and interfaces, as well
as design patterns. According to [22], the obtained results indicate that, although using higher
abstraction levels for system design, system performance is not impacted negatively in spite
of a small increase in FPGA area usage.

123

System-level design based on UML/MARTE... 131

In comparison with the mentioned related work, this work presents the following differ-
ences: (i) AMoDE-RT is based on MDE techniques and high-level UML/MARTE models
allowing the engineers specify the system functional and non-functional requirements in a
platform independent way using a standard modeling language; (ii) AMoDE-RT is supported
by a flexible code generation tool such as GenERTiCA, opening room for exploring the use
of distinct target platforms for implementing the embedded real-time system, since engi-
neers can easily change the mapping rules script. Moreover, this work enhances the VHDL
generation approach proposed in [20] by means of providing a proper support for high-level
constructs available in UML. System behavior is completely specified using sequence dia-
grams, including MARTE stereotypes for specifying of non-functional requirements. These
diagrams are used to generate the VHDL components behavior. It is worth mentioning that an
important contribution of this work is to address the handling of crosscutting non-functional
requirements in a high-level and independent of platform way throughout the use of a
platform-independent aspects framework. This work proposes and demonstrates one pos-
sible VHDL implementation of these high-level aspects. Thus, it is possible to generate a
complete VHDL description from UML/MARTE high-level specification. Such a descrip-
tion is synthesizable and fully functional, according to system requirements specified in the
UML/MARTE model.

3 From aspect-oriented UML models to VHDL descriptions

3.1 Overview of AMoDE-RT

Aspect-oriented Model-Driven Engineering for Real-Time systems (AMoDE-RT) [32,33] is
an UML-basedMDE approach that promotes the use of Platform Independent Models (PIM)
as the main artifacts to specify embedded real-time system requirements, including system
structure, behavior, constraints and non-functional properties. One of itsmain contributions is
the separation of concerns for handling functional and non-functional requirements. For that,
AMoDE-RT supports concepts of theAspect-Oriented SoftwareDevelopment (AOSD)within
UML/MARTE models by means of the Distributed Embedded Real-time Aspect Framework
(DERAF) [10,33].

Furthermore, in AMoDE-RT, system implementation is obtained automatically from
UML/MARTE models by means of model transformations [32]. For that, AMoDE-RT
proposes the use of an intermediate platform independent model called Distributed Embed-
ded Real-Time Compact Specification (DERCS) [30,33]. DERCS model of an embedded
real-time system represents functional requirements in terms of concepts of object-
oriented paradigm, whereas non-functional requirements are represented using concepts of
aspect-oriented paradigm.Generation of Embedded Real-Time Code based on Aspects (Gen-
ERTiCA) tool [29] supports the UML-to-DERCS transformation as well as the automatic
generation of source code from the DERCS model. GenERTiCA implements a script-based
code generation approach that uses a set of scripts to map model elements into constructs,
services, and/or APIs provided by a given target platform. Engineers may specify mapping
rules scripts for distinct target platforms, including both software and hardware (i.e., using
HardwareDescription Languages). Therefore, this work proposes a new set of mapping rules
forVHDL implemented as the code generation scripts, enhancing our previous approach [20].
Figure 1 shows the code generation approach implemented in GenERTiCA tool [29].

In addition, it is important to highlight that GenERTiCA does not only generate source
code but also performs aspects weaving. In other words, GenERTiCA weaves aspects adap-

123

132 M. Leite, M. A. Wehrmeister

Fig. 1 GenERTiCA code
generation process

public class MovementControler
extends RealtimeThread {
...
private static RelativeTime _Period
= new RelativeTime(0,0,0);
 private static PeriodicParameters
_PeriodicParams =
 new
PeriodicParameters(null, null, null,
null, null);
...
 public void run() {
 // Variables
 int newMRRotation;
 ...
 // Actions

while (isRunning()) {
 mrRotation =
MRInfo.getRotation();
 mrPace = MRInfo.getPace();
 ...

waitForNextPeriod();
 }
 }
...
}

public class MovementControler
extends RealtimeThread {
...
private static RelativeTime _Period

= new RelativeTime(0,0,0);
 private static PeriodicParameters
_PeriodicParams =
 new
PeriodicParameters(null, null, null,
null, null);
...
 public void run() {
 // Variables
 int newMRRotation;
 ...
 // Actions

while (isRunning()) {
 mrRotation =
MRInfo.getRotation();
 mrPace = MRInfo.getPace();
 ...

waitForNextPeriod();
 }
 }
...
}

public class MovementControler
extends RealtimeThread {
...
private static RelativeTime _Period
= new RelativeTime(0,0,0);
 private static PeriodicParameters
_PeriodicParams =
 new
PeriodicParameters(null, null, null,
null, null);
...
 public void run() {
 // Variables

int newMRRotation;
 ...
 // Actions

while (isRunning()) {
mrRotation =

MRInfo.getRotation();
mrPace = MRInfo.getPace();

 ...
waitForNextPeriod();

 }
 }
...
}

Code Generation
+

Aspects Weaving

Model
Transformation

XML Mapping
Rules for

VHDL

VHDL
Description

ACOD

State Machine
Diagrams

Activity
Diagrams

Sequence
Diagrams

Class
Diagrams

ACOD

State Mach
Diagrams

ActivityA
Diagram

Sequence
agrams

Class
Diagrams mssmsmssmsmsmsmsmmsmsmmmsmsmsm

DERAF

UML+MARTE

Behavior + Actions

Classes Objects

DERCS Model

Behavior + Actions

Classes Objects

DERCS Model

DERAF

tations into the generated code, allowing the use of aspect-oriented concepts, even though
the target implementation language does not support such concepts. For that, GenERTiCA
uses the information provided by DERAF aspects, which have been specified in a platform
independent way within the UML/MARTE model. Aspects adaptations are implemented as
mapping rules scripts, enabling their portability for different platforms or/and applications.
An adaptation may occur in two ways: in model level or in code level. At model level, adapta-
tions may include or change elements in DERCS model [29] generated from UML/MARTE
specification. These modifications are accessible to mapping rules during code generation
step. On the other hand, at code level, modifications affect directly the generated codewithout
changing the input model. Thus, a relevant contribution of this work is the VHDL implemen-
tation of some DERAF aspects, via mapping rules scripts, that was not supported in [20].
Details on AMoDE-RT, DERAF and GenERTiCA can be found in [10,29,32,33].

3.2 Functional requirements

A set of mapping rules to generate VHDL code fromUML/MARTEmodels has already been
proposed in a previous work [20]. However, as mentioned in [15], our previous approach [20]
has some limitations, especially when one considers the potential increase in the specifica-
tion abstraction level by using object-oriented features, e.g., encapsulation and inheritance.
Besides improving the management of design complexity, by using such abstractions, engi-
neers may improve artifacts3 modularity, and hence, facilitate their reuse.

In order to address the already mentioned issues, a new set of mapping rules have been
created, as depicted in Table 1. First column shows the UML meta-model elements; second
column depicts the VHDL elements mapping, as proposed in [20]; and, third column shows
the modifications proposed in this work for UML-to-VHDL mapping. As one can note,
classes are mapped into entities and their related architectures. In addition to the support for
encapsulation and inheritance, an important contribution of these new mapping rules is the
support for synchronous and asynchronous method calls.

Furthermore, it is worthmentioning that this work supports UML structural elements (e.g.,
classes and objects) and behavioral elements (e.g., interactions and actions). Some stereo-
types from Hardware Resource Modeling (HRM) and Software Resource Modeling (SRM)
of MARTE profile are also covered, e.g., Table 1 shows that «TimedEvent» stereotype
indicates that the annotated message is mapped to a VHDL process that is activated period-

3 E.g. model, source code, description of components, etc.

123

System-level design based on UML/MARTE... 133

Table 1 Mapping concepts from UML/MARTE to VHDL

UML P.Work [20] New mapping

Class Structure Entity-arch. Pair Entity-architecture pair

Association Entity ports (1-to-1) Components (1-to-n)

Generalization – Components for concrete
classes; functions, attributes
and/or methods from parent
class

Attributes Public Entity ports –

Private Signals Ports, signals or constants

Read-only – Constants

Data types Enumeration – Enumerations within
packages

Composite – Vectors

Method/ operation Behavior Process Process or inline code

Message occurrence
specification

Entity ports Signals assignment or process
activation

«TimedEvent» – “Active” process

ically according to its timing constraint. It is worth mentioning that it is possible to extend
the mapping rules to add different packages and elements. AMoDE-RT and GenERTiCA are
flexible approaches, and hence, they can support other mapping rules describing different
implementation strategies for the model elements or DERAF aspects.

In order to illustrate the translation process, the remainder of this section discusses some
key UML-to-VHDL mappings representing the system functional requirements. For that the
digital watch case study is presented. Figure 2 shows the class diagram of the digital watch.
In summary, this system is composed of a timer (WatchTimer class), four seven-segment
displays (Display and Number classes), and a controller component (SystemControl class).
This digital watch shows time passing in terms of minutes and seconds. Each seven-segment
display shows one digit of the given number of minutes or seconds and is controlled via
an activation port (turn on/off each digit). In addition, Segment class represents the status
(on/off) of each segment of the seven-segment display. The watch control system assigns
the current number of minutes/seconds (generated by the timer) to the related digit display,
which, in turn, enables the correct segments according to this number. Thereafter, the watch
control system activates this digit turning off the other ones.4 However, as this system has a
high refresh rate for the seven-segment displays, turning on/off each display individually is
imperceptible to human eyes.

As mentioned, this work provides the support for object-oriented features such as general-
ization/inheritance and association between classes. Generalization relationship is translated
to VHDL in two ways. The first one considers concrete super classes. In this case, a compo-
nent representing the super class is instantiated within all child classes, i.e., the super class is
mapped to a separated entity which owns ports, signals and processes like a “regular” class.
On the other hand, the second mapping is related to abstract super classes. In this case, all
child classes incorporate the elements from the super class, i.e., all attributes and methods
of the super class are included into the child class. Therefore, the UML-to-VHDL mapping

4 Such a behavior is a limitation of the used FPGA development board.

123

134 M. Leite, M. A. Wehrmeister

-periodMinute : short = 59{readOnly}
-periodDozen : short = 9{readOnly}
-secondUnit : short
-secondDozen : short
-minuteUnit : short
-minuteDozen : short

<<TimedEvent>>+generateSecond()
-generateMinute()
<<getter>>+getSecondUnit() : short{getter/setter for attribute = secondUnit}
<<getter>>+getSecondDozen() : short{getter/setter for attribute = secondDozen}
<<getter>>+getMinuteUnit() : short{getter/setter for attribute = minuteUnit}
<<getter>>+getMinuteDozen() : short{getter/setter for attribute = minuteDozen}

<<ConcurrencyResource>>
watchTimer

-status : states = SOFF
-led : char

+controlSegment(status : states)
<<setter>>+setStatus(newStatus : states){getter/setter for attribute = status}
<<getter>>+getLed() : char{getter/setter for attribute = led}

segment

-control : states [1..4] = (desligado,desligado,desligado,desligado)

<<TimedEvent>>+refreshDigit()
<<getter>>+getControl() : states{getter/setter for attribute = control}
<<getter>>+getScreenDigit() : number{getter/setter for attribute = screenDigit}

<<ConcurrencyResource>>
systemControl

-pos : short

<<TimedEvent>>+showDigit()
<<getter>>+getSegment() : segment{getter/setter for attribute = segments}

<<ConcurrencyResource>>
<<hwResource(HwLog)>>

number

-digit : short

<<setter>>+setDigit(newDigit : short){getter/setter for attribute = digit}
<<TimedEvent>>+initialize(default : short)

display

<<TimedEvent>>+showChar()

alphabetic

SOFF
SON

<<enumeration>>
states

-screenDigit 1

1

-segments 7

1

-timer 1

1

Fig. 2 Watch class diagram

generates an entity for each child class that incorporate ports, signals and processes from the
super class. In a similar way, when a super class has abstract methods, these methods are
implemented in all child classes and removed from the super class.

Listing 1 shows an excerpt of the mapping rule that checks whether a class has an abstract
super class, i.e. it shows the second way to map inheritance relationships. Mapping rules run
through all DERCS elements and can access and modify the information contained in the
DERCS model. In the line 12, one can see that, after several information and consistency
checks, the rules found an attribute in the abstract super class that, in turn, is added to the
child class—the same happens with other features (e.g., methods) of the abstract super class.
Listing 2 (lines 8, 30–36) shows the VHDL constructs generated from executing this script
using the information ofNumber class. The digit attribute and setDigit and initializemethods
are inherited fromDisplay (see Fig. 2). Since digit attribute has a settermethod (i.e., setDigit),
the proposed UML-to-VHDLmapping determines that the inherited attribute digit is mapped
to an INOUT port (see line 8). Details on attributes and methods mappings are discussed in
[15].

Listing 1 Excerpt from Mapping rules for VHDL component generation from class structure

1 ... // initial part of the script is omitted
2 // checking whether there is a super class
3 if ($Class.SuperClass && $Class.SuperClass.isAbstract)
4 // select each method from super class
5 foreach ($superMethod in $superClass.getMethods ())
6 // ignore methods which are class constructors
7 if ($superMethod.Name != $superClass.Name)
8 // check whether it is a getter/setter method
9 if ($superMethod.isGetSetMethod ())

10 ... // others validations are omitted
11 // thereafter add the new attribute to the child class
12 ${superAttribute.Name} : $Direction CodeGenerator.

getDataTypeStr($superAttribute.getDataType ())
13 ... // remainder of the script is omitted

123

System-level design based on UML/MARTE... 135

Listing 2 Excerpt from Number entity description

1 entity number is
2 Port (
3 clock : in STD_LOGIC;
4 reset : in STD_LOGIC;
5 segmentsled_0 : OUT BIT;
6 segmentsled_1 : OUT BIT;
7 ...
8 digit : INOUT INTEGER RANGE -252 TO +252);
9 end number;

10
11 architecture Behavioral of number is
12 signal segmentsstatus_0 : states := SOFF;
13 signal segmentsstatus_1 : states := SOFF;
14 ...
15 signal pos : INTEGER RANGE -252 TO +252:= 0;
16 ...
17 begin
18 segmentos_0: segmento port map(
19 clock => clock ,
20 reset => reset ,
21 status => segmentosstatus_0 ,
22 led => segmentosled_0
23);
24 ... -- remainder of components instantiation is omitted
25 showDigit: process (clock , reset)
26 begin
27 if (reset = ’1’) then
28 -- variables initialization
29 elsif (clock ’EVENT and clock=’1’) then
30 if (digit = 0) then
31 segmentsstatus_0 <= SON;
32 ... -- some lines are omitted
33 segmentsstatus_6 <= SOFF;
34 elsif (digit = 1) then
35 segmentsstatus_0 <= SOFF;
36 ... -- remainder of behavior is omitted
37 end if;
38 end process showDigit;
39 ... -- remainder of behavior is omitted
40 initialize: process (default)
41 begin
42 digit <= default;
43 end process initialize;
44 end Behavioral;

When the class Display is modified to represent a concrete class, the proposed UML-
to-VHDL mapping generates an entity for this class as shown in the Listing 3. The display
component is instantiated within the number entity in a way similar to a “regular” association
between classes (see example in Listing 2, lines 18–23).

123

136 M. Leite, M. A. Wehrmeister

Listing 3 Excerpt from Number entity description

1 entity display is
2 Port (
3 clock : in STD_LOGIC;
4 reset : in STD_LOGIC;
5 digit : INOUT INTEGER RANGE -252 TO +252);
6 end display;
7 architecture Behavioral of display is
8 begin
9 initialize: process (default)

10 begin
11 digit <= default;
12 end process initialize;
13 end Behavioral;

Other important feature supported by the proposed UML-to-VHDL mapping is the asso-
ciation relationship between classes. Table 1 shows that associations between classes are
mapped to components instances and their related ports mapping. For instance, the composi-
tion relationship betweenNumber and Segment classes (see Fig. 2) generates the instantiation
of seven components, since this is a fixed 1-to-7 relationship. Listing 2 depicts this compo-
sition relationship mapping: lines 18–24 show the instantiation of the first of seven segment
components within the number entity, as well as lines 5–7 show the ports associated to these
components.

Regarding system behavior, this work provides the support for mapping the complete
semantics of sequence diagrams elements into VHDL constructs. For that, the proposed
UML-to-VHDL mapping supports the use of synchronous and asynchronous method calls5,
as well as MARTE «TimedEvent» stereotype to specify active object6 concurrent behav-
iors.

Synchronous execution semantics is common in software components, while asyn-
chronous execution semantics can be found in both software and hardware components.
Synchronous execution semantics is not supported in VHDL synthesizable set, and hence,
to support the use of synchronous method calls in sequence diagrams a heuristic has been
proposed. The proposed UML-to-VHDLmapping defines that the whole behavior of a called
method must be incorporated in the caller method behavior at the point in which the syn-
chronous method call is specified. In other words, the VHDL fragment of the called method
behavior is included into the VHDL fragment of the caller method. On the other hand, asyn-
chronous execution semantics is supported inVHDL synthesizable set bymeans of processes.
Therefore, besides creating a separated process for each method whose behavior is called
asynchronously, the proposed UML-to-VHDL mapping defines a triggering control signal
for this behavior. When an asynchronous method call is identified in the sequence diagram,
a VHDL signal assignment is generated. Interested readers should refer to [15] for more
details.

To illustrate the generation of VHDL code from a sequence diagram, Fig. 3 depicts the
behavior of refreshDigit method of SystemControl class. VHDL description for this method
is shown in Listing 4. As one can observe, the alt combined fragment is translated to an if-
then-else statement (lines 8, 12, 16, etc.) and the messages within each compartment became

5 In a synchronous method call, the execution of caller method stops when the method call occurs and
continues only after the called method finishes its execution; in an asynchronous method call, the caller
method continues executing its behavior after the method call, and the called method executes its behavior in
parallel.
6 An active object executes autonomously its behaviors in parallel with other active objects. A passive object
only execute its behaviors in response to method calls from other objects.

123

System-level design based on UML/MARTE... 137

<<ConcurrencyResource>>
 : systemControl

<<ConcurrencyResource>>
timer : watchTimer

<<ConcurrencyResource>>
<<hwResource(HwLog)>>

screenDigit : number

<<Scheduler>>
Scheduler

[else]

[step = 0]

[step = 1]

[step = 2]

alt

ASSIGN(short step,1)5:

ASSIGN(step,2)9:

ASSIGN(step,3)13:

ASSIGN(step,0)17:

getSecondUnit()3:

getMinuteDozen()15:

setDigit(newDigit="newDigit")18:
<<ResourceUsage>>

getSecondDozen()7:

getMinuteUnit()11:

ASSIGN(control,(SON;SOFF;SOFF;SOFF))2:

ASSIGN(control,(SOFF;SON;SOFF;SOFF))6:

ASSIGN(control,(SOFF;SOFF;SON;SOFF))10:

ASSIGN(control,(SOFF;SOFF;SOFF;SON))14:

newDigit4:

newDigit8:

newDigit12:

newDigit16:

<<TimedEvent>>
refreshDigit()1:

{every = "25000ns" }

Fig. 3 Sequence diagram of systemControl.refreshDigit

123

138 M. Leite, M. A. Wehrmeister

action statements. According to AMoDE-RTmodeling guidelines (see [33]), messages 2 and
5 represent assignment actions and are translated to the signal assignment statements shown
in lines 9 and 11. Message 3, on the other hand, represents a synchronous method call of
the getSecondUnit method, whose returned value is assigned to a variable. As discussed, the
corresponding called method behavior is added at the point of the synchronous method call.
In this case, as this message refers to a getter method, its behavior returns the current value of
seconds counter. VHDL fragment that corresponds to this behavior is a variable assignment
statement, which is included in the refreshDigit method behavior (i.e., the caller method)
as shown in line 10. Similar VHDL fragments have been generated for the other messages
contained within the alt combined fragment, as one can see in lines 12–15.

Listing 4 Excerpt from systemControl entity description

1 refreshDigit: process (refreshDigitClockdiv , reset)
2 variable newDigit : INTEGER RANGE -252 TO +252 := 0;
3 variable step : INTEGER RANGE -252 TO +252 := 0;
4 begin
5 if (reset = ’1’) then
6 -- variables initialization
7 elsif (refreshDigitClockdiv ’EVENT and refreshDigitClockdiv =’1’) then
8 if (step = 0) then
9 control <= (SON;SOFF;SOFF;SOFF);

10 newDigit := timersecondUnit ;
11 step := 1;
12 elsif (step = 1) then
13 control <= (SOFF;SON;SOFF;SOFF);
14 newDigit := timersecondDozen ;
15 step := 2;
16 elsif (step = 2) then
17 ... -- remainder of this behavior was omitted
18 end process refreshDigit;

It is important to highlight that sequence diagram elements provide all information needed
to generate a VHDL process. As demonstrated in the Sect. 4, the proposed approach allows
the generation of the complete and fully synthesizable VHDL description based on the infor-
mation provided in the class diagram and various sequence diagrams. For that, 29 scripts of
mapping rules have been created, totalizing 2365 code lines. By using these mapping rules
scripts, engineers are allowed to use high-level object-oriented concepts supported in UML
such as: encapsulation by means of get/set methods; 1-to-n relationships such as aggrega-
tions and compositions; inheritance/generalization relationships; full semantics of sequence
diagrams, such as combined fragments, synchronous and asynchronous method calls. For
additional details see [15].

3.3 Non-functional requirements

AMoDE-RT uses DERAF aspects to handle crosscutting concerns in a platform independent
way within UML/MARTE models. The high-level semantics of DERAF allow its aspects
to be implemented in distinct target platforms, including those that do not support AOSD
concepts [32]. This section provides only an overview of the VHDL implementation of three
DERAF aspects used in the case study. Details on how aspects adaptations are implemented
in VHDL have been discussed in [14].

123

System-level design based on UML/MARTE... 139

3.3.1 PeriodicTiming

PeriodicTiming aspect [33] deals with the periodic execution of one or more active objects
behaviors. A similar behavior is achieved triggering periodically a process within VHDL
entities. Therefore, the proposed VHDL implementation of PeriodicTiming considers VHDL
entities as active objects, whereas each periodic behavior is mapped to a process. The execu-
tion frequency of periodic processes is controlled via a clock divider component associated
to the entity. Therefore, in summary, PeriodicTiming aspect modifies the generated code by
including a clock divider for each affected entity, as well as creates the interconnection logic
between this component and the affected processes.

The clock divider is included as a FPGA platform component through mapping rules of
platform configuration. Such a component is included in the generated VHDL files when
PeriodicTiming aspect is used in the UML model. In fact, PeriodicTiming mapping rules
scripts do not define a clock divider component; they only use its services. The target platform
library should provide resources for aspect implementation related to the non-functional
requirements handling [32]. Such an approachmakesPeriodicTiming aspect portable to other
platforms, which have their own mechanisms to control the execution frequency of active
objects. According to AMoDE-RT approach, embedded system specifications (i.e., models)
must be platform independent, in order to allow the reuse of model elements in distinct
projects and with different target platforms. Therefore, when GenERTiCA identifies that
aspects have been specified in the UML/MARTE model, it includes the necessary platform
services used in their implementation, i.e.,mapping rules scripts. In this case, the clock divider
component is included as a FPGA platform component by means of platform configuration
mapping rules, but only when PeriodicTiming aspect is used in the model.

3.3.2 DataFreshness

DataFreshness [1] can be understood as the temporal validity of real-time data. Such kind
of non-functional requirement is important for some embedded system applications, such
as control systems. In such systems, data can only be used whether it is temporally valid.
For instance, before using data coming from other components (e.g., sensors), it is necessary
to check whether these data are updated. To address such a non-functional requirement,
DataFreshness aspect [33] associates timestamps with controlled data, checking them before
using such data.

VHDL implementation of DataFreshness creates constants representing the temporal
validity of affected object attributes. An additional process is created within the entity that
represents the affected object. This process controls whether values are updated by using a
one-bit signal, which, in turn, is checked before any reading access of the controlled attribute.

However, it is worth mentioning that this approach is one possible implementation of
Datafreshness aspect. Other engineers may handle data freshness non-functional require-
ments in a different way. This VHDL implementation has been proposed as proof-of-concept
for AMoDE-RT aspect-oriented MDE approach, and hence, more efficient implementations
are indeed feasible.

3.3.3 COPMonitoring

Computer Operating ProperlyMonitoring (COPMonitoring) aspect deals with the identifica-
tion of faults in system components (hardware and software). This aspect adds a mechanism

123

140 M. Leite, M. A. Wehrmeister

Fig. 4 ACOD diagram for number class of Digital Watch project

to monitor system components, checking whether they are executing correctly. For that,
monitored components must periodically communicate with such a mechanism to inform
they are executing without problems. When any component fails to accomplish such a com-
munication, it is considered faulty and the system is warned on such an issue. Thus, the
system may take any measure to overcome the problems caused by such a faulty compo-
nent.

The proposed VHDL implementation of COPMonitoring aspect consists in a watchdog
timer, an interrupt mechanism, and all glue logic that implements the mentioned behavior.
One watchdog timer component instance is created for each affected entity, which, in turn,
must handle the watchdog timeout interruption, i.e., it must handle the faults identified by
the watchdog timer. In this implementation, when a watchdog timeout occurs, the system is
reset. Moreover, the behavior of the affected entity is modified to include the logic that will
reset the watchdog timer.

Watchdog components shall be provided by the component library of the chosen target
FPGA platform. As it happened with the clock divider component in the PeriodicTim-
ing aspect, when GenERTiCA identifies that COPMonitoring aspect is specified in the
UML model, all required services are included into the generated VHDL description.
Moreover, it is important to highlight that COPMonitoring is the first aspect that deals
with faults provided within DERAF framework. This is an additional contribution of this
work.

3.3.4 Example of VHDL implementation: COPMonitoring aspect

To illustrate the use of aspects in model level and its transformation to VHDL code, COP-
Monitoring aspect is taken into consideration in the context of the digital watch case study.
Figure 4 shows the COPMonitoring aspect and its crosscutting relation with Number class.
In this example, the seven-segment display represented by Number class may eventually fail
during system runtime. Therefore, COPMonitoring is used to identify this fail and then warn
the system so that corrective measures may be executed. For that, COPMonitoring adds a
watchdog timer to the system, which, in turn, must be reset by Number component within 1
ms after the previous reset.

The next step is to define the system components that are affected by COPMonitoring
aspect. In this example, a join point definition is created to select all hardware resource
that must be monitored (see Fig. 5a) and other join point selects resources that depend on
these resources (Fig. 5b). The pointcut pcInterruptionHandling (indicated in Fig. 4) uses
JPDD_interruptionHandler join point (Fig. 5b) to specify the elements that are affected by

123

System-level design based on UML/MARTE... 141

<<hwResource(HwLog)>>
*

*

<<JoinPoint>>
<<ResourceUsage>>

*(..):*1:

{Object}

(a)

<<hwResource(HwLog)>>
*

<<JoinPoint>>
*
{Class}

*(..):*1:

(b)

Fig. 5 Join points definitions. a Code instrumentation. b Interruption handler

the InterruptionHandler adaptation. The mapping rule script of this adaptation is shown
in Listing 5. On the other hand, Listing 6 shows a fragment of the generated VHDL
code for Number entity that includes the VHDL statements added by InterruptionHan-
dler adaptation of COPMonitoring (lines 9–22). This adaptation code has been added
automatically during the code generation process by the GenERTiCA aspects weaving
engine.

Listing 5 Excerpt from COPMonitoring mapping rules

1 <Structural Name="interruptionHandler" Order="5" ModelLevel="no"
>

2 #foreach ($ attrWt in $Class.getAttributes ())
3 #if ($ attrWt.getDataType ().getRepresent ())
4 #set ($ attWCls = $attrWt.getDataType ().getRepresent ())
5 #if ($ attWCls.getTpResource () == 1)
6 handlingInterruption ${ attrWt.Name}:process (${ attrWt.Name}

watchdogReset)
7 begin
8 if (${ attrWt.Name}watchdogResetEVENT and ${ attrWt.Name}

watchdogReset=’1’) then
9 -- reset the state of signals controlled by architecture
10 ${ attrWt.Name}reset <= ’1’;
11 end if;
12 end process handlingInterruption ${ attrWt.Name};
13 #end
14 #end
15 #end
16 </Structural >

123

142 M. Leite, M. A. Wehrmeister

Listing 6 Excerpt from Number entity description

1 architecture Behavioral of number is
2 ...
3 showDigitDivider: clockDiv port map(
4 clock => clock ,
5 threshold => showDigitThreshold ,
6 clockdiv => showDigitClockdiv);
7 begin
8 ...
9 handlingInterruptionScreenDigit:process (watchdogResetScreenDigit)

10 begin
11 if (watchdogResetScreenDigit ’EVENT
12 and watchdogResetScreenDigit=’1’) then
13 -- reset the state of signals controlled by architecture
14 resetScreenDigit <= ’1’;
15 end if;
16 end process handlingInterruptionScreenDigit;
17
18 showDigit: process (showDigitClockdiv , reset)
19 begin
20 ... -- remainder VHDL description is omitted

3.4 On the VHDL implementation of the remainder DERAF aspects

DERAF provides a total of 22 aspects classified according the non-functional requirements
classification proposed in [10].Although thiswork has focused on implementingVHDLmap-
ping rules for PeriodicTiming, DataFreshness and COPMonitoring7, other DERAF aspects
can be implemented as well. However, due to space constraints, this section discusses briefly
a possible VHDL implementation for some of these aspects.

Timing package provides aspects that deal with time issues. Besides the PeriodicTiming
aspect, this package provides the following aspects: TimingAttributes, TimeBoundedActivity,
SchedulingSupport. For instance, let us consider the VHDL implementation of Scheduling-
Support aspect. This aspect inserts a scheduler object in the affected computing nodes. The
scheduler object is responsible to control active objects execution, indicating instants atwhich
they must start performing their behavior. In VHDL, all process execute in parallel without
the need for any element to explicitly start their execution. However, when one considers
reconfigurable FPGA devices, SchedulingSupport can be used to control the partial recon-
figurations during runtime, and hence, what tasks/components execute on the FPGA during
a given time interval. For that, SchedulingSupport will add an entity/component8 to control
and handle the FPGA partial reconfiguration. In addition, this aspect must add the logic to:
(i) manage the reconfigurable blocks, and (ii) implement the scheduling policy, e.g., FIFO
or EDF.

Precision package provides aspects that deal with the precision in meeting time require-
ments. In addition to DataFreshness aspect, this package provides the following aspects:
Jitter, ToleratedDelay, ClockDrift. For instance, Jitter aspect measures the variance on tim-
ing characteristics of the activities performed by the system, e.g., the periodic activation of
active objects. A possible VHDL implementation for this aspect would be the following.
Firstly, a variable or signal is included in the affected processes. This variable stores the pre-

7 This new aspect has been proposed in this work.
8 Such a component must be an IP available in the library of the chosen FPGA platform.

123

System-level design based on UML/MARTE... 143

vious occurrence of the controlled event, e.g., the start of the execution of a periodic process.
This variable would be used to calculate the jitter of the controlled event, i.e., the difference
between current and previous occurrences of such an event. If the jitter is greater than the
tolerated threshold, a signal indicated such an issue to the affected entity, and hence, it can
execute some process to mitigate the jitter effects.

Synchronization package provides the following aspects to deal with non-functional
requirements related to the synchronization and the concurrent access control to shared
resources:ConcurrentAccessControl,MessageSynchronization. For instance,ConcurrentAc-
cessControl aspect provides means to control the concurrent access to objects, which share
their attributes informationwith other objects. InVHDL, such a non-functional issuemight be
understood as concurrent access to shared variables or signals by distinct parallel processes
within an entity. A simple implementation of this aspect would be to include a busy sig-
nal to indicate when a shared variable/signal is being used by any process. Other process
will have access to this shared variable/signal only when the busy signal indicates that no
one else is accessing it. In addition, it is important to include a logic that implements an
algorithm or protocol that assures that only one process is able to set the busy signal to
“on”.

Communication package provides the following aspects to deal with objects communica-
tion in terms of messages sending:MessageAck,MessageIntegrity,MessageCompression. In
the case of a VHDL implementation of these aspects, a message sending is mapped to a signal
connecting two entities. Therefore, for instance, MessageAck aspect may be implemented
using a handshaking protocol. For each affected OUT or INOUT port in the sender entity, an
additional IN port (i.e., to indicate an acknowledge from the other communication partner) is
added to the entity port declaration. Likewise, on the receiver entity, for each IN or INOUT
port, an additional OUT port is added. In addition, the logic to set the acknowledge signal is
added into the receiver entity, as well as the logic for waiting the acknowledge is added into
the sender entity.

TaskAllocationpackageprovides the aspects to handle non-functional requirements related
to objects distribution on different computing devices at runtime: NodeStatusRetrieval,
TaskMigration. For instance, NodeStatusRetrieval aspect includes a mechanism to gather
information on the system dynamic characteristics, such as processing load, message sending
and reception rates, and if the computing device is running. A possible VHDL implementa-
tion for this aspect would be to include variables or signals to calculate these metrics while
the system is running. For instance, all signal assignments that indicate a communication
among entities may be subject of this statistics gathering.

Finally, theEmbedded packageprovides aspects tomonitor and control the usage of system
physical resources, e.g., FPGA area, memory, energy. The following aspects are provided:
HwAreaMonitoring,HwAreaControl,MemoryMonitoring,MemoryControl,EnergyMonitor-
ing, EnergyControl. For instance, EnergyMonitoring aspect relies on the chosen target FPGA
platform for providing means to monitor energy consumed by system activities. A VHDL
implementation of this aspect would add the logic to measure the energy level at the begin-
ning and at the end of the execution of processes within an entity. In addition, an additional
logic is included in order to calculate the energy consumed by these processes, and hence, a
measure of the remaining energy can be obtained.

123

144 M. Leite, M. A. Wehrmeister

4 Case studies and results

This work has been evaluated through some case studies, namely, a line-following robot, a
valve control system and a digital watch. These systems have been designed using AMoDE-
RT approach and implemented as an ASIP on a Xilinx Spartan-6 FPGA (model XC6LX16-
CS324, Speed:-3) using Xilinx ISE WebPack.

System requirements have been specified in the UML/MARTEmodel followingAMoDE-
RT modeling guidelines [33]. Thereafter, GenERTiCA, using the created UML/MARTE
model and the proposed set of VHDL mapping rules as input, has been generated a VHDL
description. Once the VHDL description is generated, it was synthesized and uploaded into
the FPGA by using Xilinx ISE WebPack.

By using the UML-to-VHDL transformation proposed in this work, we have been able
to generate complete and synthesizable VHDL descriptions for all three case studies. No
manual modification has been performed on the generated VHDL description, since it was
synthesized without errors at the first attempt, indicating that the mapping rules scripts have
been well specified.

4.1 Line-following robot

The robot case study is composed of two infrared sensors: one detects the left-hand side of
the line, while the other one detects the right-hand side. An Arduino Uno board was used as
an Analog-to-Digital Converter. It converts sensors analog signals into digital signals, which,
in turn, are sent to FPGA board input ports. The robot has two servomotors to spin left/right
wheels. Themovement control system commands the robot to turn left/right based on sensors
input.

This project presents three non-functional requirements: (i) active objects must be peri-
odically activated according to the execution frequency specified in «TimedEvent»
stereotype; (ii) servomotor faults must be handled within the robot control system; (iii) sen-
sor and motor data have temporal validity. These requirements have been handled through
PeriodicTiming, COPMonitoring and DataFreshness aspects, respectively.

In this evaluation, the line-following robot has been designed in two versions. The first
one does not use DERAF aspects in UML/MARTE model. Non-functional requirements
handling has been implementedmanually, i.e., the generatedVHDLdescriptionwasmanually
modified in order to include these requirements handling. This implementation was done by
the same engineer that made the implementation of DERAF aspects. On the other hand, in
the second version, DERAF aspects have been used, and the complete VHDL description has
been automatically generated. There was no manual modification in the generated VHDL
description. The UML model of for both versions consists of one class diagram and five
sequence diagrams. Table 6 provides details on thesemodels. It is worth pointing out that both
versions have implemented the same set of functional and non-functional requirements. In the
first version of the line-following robot, the crosscutting concerns related to non-functional
requirements have been implemented directly on the generated VHDL code. In addition,
besides very high-level indications of non-functional requirements (by means of MARTE
stereotypes), the UML model does not specify any handling of these crosscutting concerns.

Synthesis results are presented in Table 2. First column shows analyzed metrics. Column
“FPGA resources” presents the total amount of resources available in FPGA. Third and fourth
columns depict metrics for, respectively, object-oriented version (V1) and the aspect-oriented
version (V2). GenERTiCA has generated the VHDL description of both versions. However,
as mentioned, V1 was modified manually in order to include non-functional requirements

123

System-level design based on UML/MARTE... 145

Table 2 Synthesized system metrics on line-following robot design

Metrics FPGA resources V1 manual V2 DERAF Variation (%)
Available Used Used

Slices 2.278 123 262 113

Flip-flops (FF) 18.224 248 693 179.43

Look-up table (LUT) 9.112 389 949 143.95

Input/output blocks (IOBs) 232 20 80 300

Lines of code (LOC) 416 482 15.86

Minimum period (ns) 4.64 4.35 −6.22

Maximum frequency (Mhz) 215.50 229.85 6.65

handling; and V2 was fully generated automatically due to the use of DERAF aspects and
the proposed VHDL mapping rules. Finally, last column presents the variation (percentage)
in the analyzed metrics of the two versions.

As one can see, Lines of Code (LOC) increased around 16 % in V2. However, the amount
of utilized FPGAhardware has doubled, since usedFPGAresources increases ca. 184 on aver-
age.9 Such a result indicates that, forVHDLdescriptions, an increase inLOCcannot be related
to a proportional increase in FPGA resources utilization. In software, on the other hand, this
relation canbe established, since the binary code size usually increases proportionally toLOC.

Furthermore, even though the generated system ASIP in V2 has a large increase in FPGA
resources utilization, its performance is better: it presents a shorter critical path (6.22 %
decrease inminimumperiod in comparisonwithV1), leading to a greater operation frequency
(6.65 % increase). This improvement may have been achieved due to a better modularization
of system elements achieved by using DERAF aspects (see Sect. 4.4), since concerns are
better separated among components as indicated in TR metric presented in Table 5. Such
a modularization improvement has also impacted positively on utilization ratio of FFs and
LUTs per slice: 2.02 FF/slice and 3.16LUT/slice inV1; and 2.65 FF/slice and 3.62LUT/slice.
In other words, this could indicate that the place and routing algorithms of the synthesis
tool use more efficiently the available slices in V2, since the increase in FF/LUT is not
proportional to the increase of slices. However, it is necessary to perform a more detailed
analysis to confirm such hypotheses. In larger systems, this difference in utilization ratio
may impact strongly on system performance, i.e., the higher the FF/LUT utilization ratio,
the lesser the amount of used slices and better the system overall performance. Moreover,
these results are different from those presented in [22], where aspects had a lesser impact
on area usage (3 %) but did not affect system performance. Finally, it is worth pointing out
that the trade-off between performance and FPGA area depends on system requirements
and constraints. Hence, engineers shall choose a design approach that meets the projects
requirements and constraints.

4.2 Valve control system

The valve control system case study was originally presented in [20] and extended in [21].
The aim of this case study is twofold: (i) demonstrate the practicability of the proposed
UML-to-VHDL transformation; and (ii) compare the valve control system created in [21]

9 300 % increase in IOB metric in V2 was included in this average amount.

123

146 M. Leite, M. A. Wehrmeister

Table 3 Synthesized system metrics on valve control system

Metrics FPGA resources V1 manual [20,21] V2 DERAF Variation (%)
Available Used Used

Slices 2.278 52 12 −76.92

Flip-flops (FF) 18.224 104 18 −82.69

Look-up table (LUT) 9.112 183 42 −49.39

Input/output blocks (IOBs) 232 46 17 −63.04

Lines of code (LOC) 67 206 207.46

Minimum period (ns) 3.250 3.301 1.56

Maximum frequency (Mhz) 307.659 302.897 1.54

with the one created in this work. For such an evaluation, some metrics have been calculated
on both case studies. In summary, this system is composed by an automatic valve to regulate
the water flow and sensors that provide information about the valve states. The UML model
consists of one class diagram and four sequence diagrams, whose details are presented in
Table 6.

This case study consists of generating the VHDL description from the mention UML
model using both the previous approach [20,21] and the new approach proposed in this work.
Thereafter, both implementations have been compared. Table 3 shows the obtained metrics.
First column indicates each analyzed metrics, while the second one presents the available
resources in Spartan-6 FPGA. Third column shows results presented in [21] whereas fourth
column presents results obtained by applying the proposed approach. Finally, fifth column
shows differences between this work results and [21].

The results showa considerable improvement in utilizedFPGAarea for theVHDLdescrip-
tion generated by following the proposed approach. Such an improvement has been obtained
due to a better modularization of components, which was achieved by applying mapping
rules that follow the key principles of object-oriented design. In other words, system func-
tions are better divided between components. A well-structured VHDL description leads to
less resource usage, opening room for inclusion of additional functions into system design,
and hence, improving system scalability.

On the other hand, when Lines of Code (LOC) is considered, the proposed approach
resulted in a considerable increase in the number of generated VHDL lines. Such an increase
is related to a greater number of components generated when using the proposed approach.
As discussed, due to a better modularization, FPGA area was better utilized in spite of this
increase in LOC, i.e. the code generated using the UML-to-VHDL mapping proposed in
this work demands about 23 % lesser slices than our previous approach. In addition, there
is the small decrease in system performance, i.e., operation frequency decreased from 307
to 302 Mhz (1.54 %). Such a result might had happened due to the increased number of
interconnected components, which led to a longer circuit critical path. It is worth noting that
system performance can be improved by making optimizations on the proposed mapping
rules, aiming enhancements on the generated VHDL description.

4.3 Digital watch

The digital watch case study has already been introduced in Sect. 3. For this system, the fol-
lowing non-functional requirements have been identified: periodic refresh of display; periodic

123

System-level design based on UML/MARTE... 147

Table 4 Synthesized system metrics on digital watch

Metrics FPGA resources V1 manual V2 DERAF Variation (%)
Available Used Used

Slices 2.278 73 70 −4.28

Flip-flops (FF) 18.224 140 184 23.91

Look-up table (LUT) 9.112 231 244 5.32

Input/output blocks (IOBs) 232 48 50 4

Lines of code (LOC) 385 438 12.10

Minimum period (ns) 4.947 4.910 −0.75

Maximum frequency (MHz) 202.137 203.676 0.75

time counting; and identification of display faults. These requirements have been handled by
PeriodicTiming andCOPMonitoring aspects. As in the line-following robot, the digital watch
system has been designed in two versions. The first one does not use DERAF, and hence,
the non-functional requirements handling has been implemented manually on the generated
VHDL description. The second one uses DERAF and the generated VHDL description has
been synthesized without modifications.

For this case study, the created UMLmodel consists of one class diagram and six sequence
diagrams. Table 6 shows the details of this model It is worth mentioning that, although the
higher number of messages within the sequence diagrams, the digital watch is a small system.
Such an amount ofmessages is the result of describing the seven-segment displaymain behav-
ior using a sequence diagram rather than a state machine diagram, which would present this
behavior in a less verbose and more elegant way. These diagram covered system functional
and non-functional requirements and provided the details needed to code generation.

Table 4 shows the synthesis results. One can notice version V2 of the digital watch uses
less slices, whereas there is an increase in the number of FF, LUT and IOBs. It can also
be observed a small increase in system performance (0.75 %) and an increase of LOC, as
it happened in the line-following robot case study. This corroborates with the claim that
there is no relationship between the amount of LOC and the FPGA area usage. Moreover, the
better modularization achieved in version V2 (see Sect. 4.4) might had helped the place/route
algorithms of the used synthesis tool, leading to a better used of FPGA resources. However,
it is important to highlight that such an indication is based on empirical knowledge rather
than on solid analysis, and hence, in order to develop a definitive conclusion on this issue
further analyses are needed.

4.4 Assessing the impact of DERAF on generated VHDL descriptions

This section discusses the influence of DERAF aspects on the generated VHDL descriptions
for handling the crosscutting concerns related to non-functional requirements. Table 5 shows
this analysis through somemetrics that have been calculated on the generated VHDL descrip-
tions of all case studies. The first three columns indicate the number of code lines for: (i)
the architecture description of VHDL entities without any aspect (LOC*), (ii) the architec-
ture description of VHDL entities with aspects (LOWC), and (iii) the implementation of all
used aspect adaptations (LOAC). The remaining columns indicate AOSD-specific metrics.
CDLOC [9] indicates the number of context switches between functional and non-functional
requirements handling code. One can see that LOAC varies among the case studies. Although

123

148 M. Leite, M. A. Wehrmeister

Table 5 Impact of DERAF on projects design

Aspect Project LOC* LOWC LOAC CDLOC TR % AB

PeriodicTiming Robot 206 277 34 44 15.88 02.08

Valve 181 198 31 12 06.00 00.54

Watch 346 385 31 36 09.00 01.25

AVG 244.33 286.67 32.00 30.67 10.29 01.29

SD 72.61 76.65 01.41 13.60 04.14 00.63

DataFreshness Robot 206 319 84 28 08.77 01.34

Valve 181 233 69 28 12.00 01.85

AVG 193.50 276.00 76.50 28.00 10.39 01.60

SD 12.50 43.00 07.50 00.00 01.62 00.26

COPMonitoring Robot 206 299 98 50 16.72 00.94

Watch 346 396 64 20 05.00 02.00

AVG 276.00 347.50 81.00 35.00 10.86 01.47

SD 70.00 48.50 17.00 15.00 05.86 00.53

General average 238.86 301.00 58.71 31.14 10.48 01.43

General Std dev 68.55 67.84 25.25 12.28 04.24 00.53

LOC*: Lines of Code; LOWC: Lines of Woven Code; LOAC: Lines of Adaptation Code; CDLOC: Concern
Diffusion over LOC; TR: Tangling Ratio; AB: Aspectual Bloat

the DERAF aspects adaptation have been implemented once10 and reused throughout all case
studies, not all aspect adaptations have been used in all case studies. This happened due to
the requirements of each systems that did not demand the use of all adaptations, e.g., all
adaptations of PeriodicTiming are used in the line-following robot, whereas one of them was
not necessary in the other case studies.

CDLOC and LOC* are used to calculate the Tangling Ratio (TR). According to [2], TR
indicates how much functional and non-functional concerns are intermixed. The obtained
average value of 10.48 % is similar to results obtained in [2]. This indicates that the impact
of DERAF aspects on the generated VHDL code is around 10 % for these case studies. It
is important to highlight that higher TR indicates a more intermixed concern code within
functional code, whereas lower TR indicates a more localized concern code. For instance,
PeriodicTiming and COPMonitoring present higher impact on the line-following robot than
on the other case studies. On the other hand DataFreshness has a higher impact on the valve
control system. This impact is related to the amount of elements affected by these aspects,
which, in turn, is associated to the non-functional requirements of each system.

Aspect Bloat (AB) [9] metric indicates the efficiency on using an aspect. AB is calculated
considering the amount of VHDL code lines generated by DERAF aspects, as well as the
amount of lines that have beenwritten asDERAF adaptation scripts. In addition, AB indicates
the impact of aspects on reusability throughout the case studies. According to [2], AB values
lower than1 indicate a lowefficiencyof the aspect because the number lines used to implement
the aspect is higher than the lines woven in the actual system implementation. Therefore,
when aspects adaptations are applied on many join points, aspect efficiency increases. AB
average value is 1.43, indicating that, in average, for each aspect adaptation mapping rule
script 1.43 lines of VHDL have been generated. One may observe that the most effective

10 i.e. mapping rules scripts for these adaptations have been completely written once.

123

System-level design based on UML/MARTE... 149

Table 6 Overview of projects
features

LOC refers to the total number of
lines in the whole VHDL
description excluding comments
and blank lines

Features Robot Valve Watch

Class diagram

Classes 3 5 6

Attributes 20 8 11

Methods 18 18 17

Sequence diagram

Messages 48 16 118

Combined fragments 14 1 10

DERAF

Aspects 3 2 2

Join points 7 2 5

Source code

VHDL files 6 7 7

LOC 482 206 438

Metrics

LOC/classes 160.67 41.20 73.00

LOC/(classes+aspects) 80.33 29.43 54.75

aspect is DataFreshness since its average AB is 1.60. On the other hand, it may be seen
that AB value of PeriodicTiming is lesser than 1 in the valve control system, as well as AB
value of COPMonitoring in the line-following robot case study. In the other case studies,
AB metric of these aspects is higher than 1, indicating a higher efficiency. Additionally, it is
important to highlight that, when the same implementation is reused without modifications
in several case studies, AB may be calculated considering this historical data, and hence, the
aspects efficiency might improve due to their reuse.

Considering the engineering cost, a comprehensive discussion on applying AMoDE-RT
in the design of three other embedded systems11 is presented in [32]. Although the present
work does not evaluate the same set of high-level design metrics, this work demonstrates
and evaluates the impact of AMoDE-RT on the VHDL implementation of three real-world
embedded systems. For that, a set of lower-level metrics has been analyzed. These metrics
consider the system implementation rather than the UML model, and hence, the results
presented in this section are complementary to the ones discussed in [32]. The effort for
obtained the VHDL implementation is decreased due to the reuse of DERAF and the VHDL
mapping rules scripts. The main reasons of such a decrease are: (i) DERAF aspects have
been used within the UML model of the three case studies without any modification on
their adaptations—engineers need only to describe the affected elements by specifying the
pointcuts, which may vary for different application; (ii) UML-to-VHDL mapping rules have
been created for the line-following robot and reused without modifications in the other case
studies; (iii) AB metric is greater than 1 (in average), indicating that aspect added more lines
of VHDL code than the number of script lines actually written by the engineers. (iv) UML-
to-VHDL mapping rules have been created in the line-following robot and reused without

11 The case studies presented in [32] are: (i) the movement control of an unmanned helicopter; (ii) the control
systems of an industrial packing system; and (iii) the control system of an electric wheelchair. Those systems
are larger and more complex than the ones presented here.

123

150 M. Leite, M. A. Wehrmeister

modification in the other case studies. In addition, considering the statistics on the UML
models and LOC of each case study (see Table 6), it is possible to see that GenERTiCA
was able to generate 91.63 lines of VHDL code per class. These results corroborate with the
results discussed in [32], indicating that, by using AMoDE-RT and its tools, it is possible to
decrease the design effort in both system specification and implementation.

4.5 Pitfalls and limitations

Although the achieved results indicate that the expected benefits have been obtained by apply-
ing AMoDE-RT and the proposed UML-to-VHDLmapping, some factors may influence the
conducted evaluation and the obtained results, as it is usual in any empirical study.

Despite the proposed work has been successfully applied to design of a FPGA-based
embedded system, the proposed VHDL implementation of DERAF aspects presents some
issues. Some aspects adaptation implementation have interfered in the project specification,
e.g., DataFreshness reads signal value associated to an OUT port, but such a situation is
forbidden in VHDL. To overcome this problem, this port type had to be changed to INOUT,
so that this signal could be read internally within the entity. Other issue is related to the
interference among aspect adaptations. For instance, a signal created in COPMonitoring
had interfered the implementation created for DataFreshness, and hence, COPMonitoring
implementation, i.e., its mapping rule scripts, had to be modified.

Other issue is regarding the proposed UML-to-VHDLmapping rules. Such mapping rules
have been created with the focus on keeping the high-level semantics of the UML model in
the generated VHDL description, in order to facilitate the hardware/software co-design and
design space exploration. This may be achieved by means of using distinct hardware and
softwaremapping rules on the same source UMLmodel. At themoment, this research has not
evaluated the effect of different kinds of strategies for the generated VHDL implementation,
e.g., optimizations for area or speed, keeping/flattening hierarchy, or using behavioral or
structural description style. Therefore, the obtained FPGA slices utilization rate, as well as
system performance, might be directly affected due to a distinct description strategy.

Finally, it is important to mention that engineers skills may affect the results discussed in
this paper. Engineers knowledge of UML or the application domainmay impact the quality of
the produced model, leading to inaccuracies in the discussed results. In addition, experience
with AMoDE-RT, GenERTiCA as well as the chosen target platform may affect the way
engineers describe the mapping rules. Thus, trained engineers might create better mapping
rules for a new target language, e.g., SystemC, Verilog, etc.

5 Final remarks

This paper discusses an approach that allows the automatic generation of fully synthesizable
VHDL descriptions from high-level UML/MARTE models. By applying MDE and AOSD,
the proposed approach deals with functional and non-functional requirements in a platform
independent way, opening room for hardware and software co-design of embedded systems.

One of the main contributions of this work is a new definition of UML-to-VHDL map-
ping rules, which have been implemented as code generation scripts for the GenERTiCA
tool. These mapping rules include the support for key object-oriented features supported in
UML, namely, encapsulation, inheritance, and 1-to-n associations, as well as the support for
synchronous and asynchronous method calls from sequence diagrams. In addition, a VHDL
implementation of some DERAF aspects have been created, in order to handle with crosscut-

123

System-level design based on UML/MARTE... 151

ting concerns related to system non-functional requirements. Such a handling code is woven
into functional requirements code. Hence, it is important to highlight that, in comparison
with a previous work [20,21], a greater amount of VHDL statements is generated, resulting
in complete and fully synthesizable VHDL descriptions. Engineers do not need to modify
manually the generated VHDL files, since our experiments have demonstrated that the gener-
ated VHDL descriptions have been synthesized and uploaded without any error into a FPGA
device.

In order to assess the proposed work, this paper has presented the design of the control
systems of a line-following robot, a valve control system and a simple digital watch. These
systems have been implemented as an ASIP on a FPGA development kit. AMoDE-RT has
been successfully applied, impacting positively in system implementation, for instance, in
components modularization (TR metric is around 10 % in average) and system performance
(circuit frequency increased 6.65 % in the line-following robot system). It is worth mention-
ing that occupied FPGA resources increased in the aspect-oriented version of this system.
However, slices are used more efficiently. In larger systems, this may lead to a better use
of FPGA resources without penalizing system performance. On the other hand, as DERAF
aspects have led to a better modularization of crosscutting concerns, their usage opens room
for a good reutilization rate.AB and TRmetrics are indication that corroborate with this infer-
ence. As AMoDE-RT advocates for using platform independent specifications, e.g., UML
models and DERAF aspects, design complexity management may be improved due to an
enhanced opportunity for hardware/software co-design, as well as reuse of artifacts [32].

As future work, more case studies are already being performed. A similar analysis is
going to be executed, in order to demonstrate the suitability and feasibility of using platform
independent aspects to design FPGA-based embedded real-time systems. New rules for UML
elements that are not yet covered will be defined as well, e.g., state machine diagrams and
their relationship with sequence diagrams. In addition, other DERAF aspects need to be
implemented in VHDL. However, for that, it is important to obtain or create a set of reusable
soft IP components, in order to implement aspects adaptations using their services.

Acknowledgments This work is supported by National Council for Scientific and Technological Develop-
ment (CNPq-Brazil) through the Grant 480321/2011-6.

References

1. Burns W (1994) HRT-HOOD: a structured design method for hard real-time systems. Real-Time Syst
6(1):73–114. doi:10.1007/BF01245300

2. Cardoso JAM et al (2012) LARA: an aspect-oriented programming language for embedded systems. In:
Proceedings of the 11th annual international conference on aspect-oriented Software Development, ACM,
New York, AOSD ’12, pp 179–190. doi:10.1145/2162049.2162071

3. Ciccozzi F, Sjodin M (2012) Enhancing the generation of correct-by-construction code from design
models for complex embedded systems. In: IEEEconference on emerging technologies factory automation
(ETFA), pp 1–4. doi:10.1109/ETFA.2012.6489716

4. Ciccozzi F, Cicchetti A, Krekola M, Sjodin M (2011) Generation of correct-by-construction code from
design models for embedded systems. In: Industrial embedded systems (SIES), 2011 6th IEEE interna-
tional symposium on, pp 63–66. doi:10.1109/SIES.2011.5953681

5. Ebeid E, Fummi F, Quaglia D (2015) Hdl code generation from uml/marte sequence diagrams for verifica-
tion and synthesis. Design automation for embedded systems pp 1–23. doi:10.1007/s10617-014-9158-1

6. Elhaji M et al (2012) System level modeling methodology of noc design from uml-marte to vhdl. Des
Autom Embed Syst 16(4):161–187. doi:10.1007/s10617-012-9101-2

7. Elrad T (2001) Discussing aspects of AOP. Commun ACM 44(10):33–38. doi:10.1145/383845.383854

123

http://dx.doi.org/10.1007/BF01245300
http://dx.doi.org/10.1145/2162049.2162071
http://dx.doi.org/10.1109/ETFA.2012.6489716
http://dx.doi.org/10.1109/SIES.2011.5953681
http://dx.doi.org/10.1007/s10617-014-9158-1
http://dx.doi.org/10.1007/s10617-012-9101-2
http://dx.doi.org/10.1145/383845.383854

152 M. Leite, M. A. Wehrmeister

8. Engel M, Spinczyk O (2008) Aspects in hardware: what do they look like? In: Proceedings of the 2008
AOSD workshop on aspects, components, and patterns for infrastructure software, ACM, New York,
ACP4IS ’08, pp 5:1–5:6

9. Figueiredo E et al (2008) On the maintainability of aspect-oriented software: a concern-oriented measure-
ment framework. In: 12th European conference on software maintenance and reengineering, pp 183–192.
doi:10.1109/CSMR.2008.4493313

10. Freitas EP, Wehrmeister MA, Silva Jr ET, Carvalho FC, Pereira CE, Wagner FR (2007) DERAF: a high-
level aspects framework for distributed embedded real-time systems design. In:Moreira A, Grundy J (eds)
Early aspects: current challenges and future directions, LNCS, vol 4765, Springer Berlin Heidelberg, pp
55–74. doi:10.1007/978-3-540-76811-1_4

11. Habermann AN, Flon L, Cooprider L (1976) Modularization and hierarchy in a family of operating
systems. Commun ACM 19(5):266–272. doi:10.1145/360051.360076

12. Hästbacka D et al (2011) Model-driven development of industrial process control applications. J Syst
Softw 84(7):1100–1113. doi:10.1016/j.jss.2011.01.063

13. Kiczales G et al (1997) Aspect-oriented programming. In: Proceedings of European conference on object-
oriented programming. Springer, Berlin, pp 220–242

14. Leite M, Wehrmeister MA (2014) Aspect-oriented model-driven engineering for FPGA/VHDL based
embedded real-time systems. In: International symposiumobject-oriented real-time distributed computing
(ISORC), IEEE Computer Society, pp 261–268. doi:10.1109/ISORC.2014.45

15. Leite M, Damiani CV, Wehrmeister MA (2014) Enhancing automatic generation of VHDL descrip-
tions from UML/MARTE models. In: Proceedings of international conference on industrial informatics
(INDIN’14), IEEE Eletronics Society, Piscataway, NY, pp 1–5

16. McUmber W, Cheng BHC (1999) Uml-based analysis of embedded systems using a mapping to vhdl. In:
IEEE international symposium on high-assurance systems engineering, pp 56–63. doi:10.1109/HASE.
1999.809475

17. Meier M, Hanenberg S, Spinczyk O (2012) AspectVHDL stage 1: the prototype of an aspect-oriented
hardware description language. In: Proceedings of the 2012 workshop on modularity in systems software,
ACM, New York, MISS ’12, pp 3–8. doi:10.1145/2162024.2162028

18. Mohagheghi P et al (2013) An empirical study of the state of the practice and acceptance of model-driven
engineering in four industrial cases. Empir Softw Eng 18(1):89–116. doi:10.1007/s10664-012-9196-x

19. Monmasson E, Cirstea M (2007) FPGA design methodology for industrial control systems—a review.
Ind Electron, IEEE Trans 54(4):1824–1842. doi:10.1109/TIE.2007.898281

20. Moreira T et al (2010) Automatic code generation for embedded systems: from UML specifications to
VHDL code. In: Proceedings of 8th IEEE international conference on industrial informatics (INDIN), pp
1085–1090. doi:10.1109/INDIN.2010.5549590

21. Moreira TG (2012) Geração Automática de Código VHDL a partir de Modelos UML para Sistemas
Embarcados de Tempo-Real. Master thesis (in portuguese), UFRGS, Porto Alegre. http://hdl.handle.net/
10183/55444

22. Muck T, Gernoth M, Schroder-Preikschat W, Frohlich A (2011) A case study of AOP and OOP
applied to digital hardware design. In: Brazilian symposium on computing system engineering (SBESC),
pp 66–71. doi:10.1109/SBESC.2011.23

23. Park SH (2006)ADH, aspect described hardware-description-language.Master of engineering,University
of Canterbury, College of Engineering, Christchurch. http://hdl.handle.net/10092/1113

24. Quadri I et al (2008) MARTE based modeling approach for partial dynamic reconfigurable FPGAs.
In: Proceedings of embedded systems for real-time multimedia, pp 47–52. doi:10.1109/ESTMED.2008.
4696994

25. Salewski F, Taylor A (2008) Systematic considerations for the application of FPGAs in industrial appli-
cations. In: IEEE international symposium on industrial electronics, pp 2009–2015. doi:10.1109/ISIE.
2008.4677068

26. Vanderperren Y, Mueller W, Dehaene W (2008) Uml for electronic systems design: a comprehensive
overview. Des Autom Embed Syst 12(4):261–292. doi:10.1007/s10617-008-9028-9

27. Vidal J et al (2009) A co-design approach for embedded system modeling and code generation with uml
and marte. In: Design, automation test in Europe conference exhibition (DATE), pp 226–231. doi:10.
1109/DATE.2009.5090662

28. WangZet al (2008)Amodel driven development approach for implementing reactive systems in hardware.
In: Proceedings of specification, verification and design languages (FDL), pp 197 –202. doi:10.1109/FDL.
2008.4641445

29. Wehrmeister M, Freitas E, Pereira C, Rammig F (2008) GenERTiCA: a tool for code generation and
aspects weaving. In: International symposium object-oriented real-time distributed computing (ISORC),
IEEE Computer Society, pp 234–238. doi:10.1109/ISORC.2008.67

123

http://dx.doi.org/10.1109/CSMR.2008.4493313
http://dx.doi.org/10.1007/978-3-540-76811-1_4
http://dx.doi.org/10.1145/360051.360076
http://dx.doi.org/10.1016/j.jss.2011.01.063
http://dx.doi.org/10.1109/ISORC.2014.45
http://dx.doi.org/10.1109/HASE.1999.809475
http://dx.doi.org/10.1109/HASE.1999.809475
http://dx.doi.org/10.1145/2162024.2162028
http://dx.doi.org/10.1007/s10664-012-9196-x
http://dx.doi.org/10.1109/TIE.2007.898281
http://dx.doi.org/10.1109/INDIN.2010.5549590
http://hdl.handle.net/10183/55444
http://hdl.handle.net/10183/55444
http://dx.doi.org/10.1109/SBESC.2011.23
http://hdl.handle.net/10092/1113
http://dx.doi.org/10.1109/ESTMED.2008.4696994
http://dx.doi.org/10.1109/ESTMED.2008.4696994
http://dx.doi.org/10.1109/ISIE.2008.4677068
http://dx.doi.org/10.1109/ISIE.2008.4677068
http://dx.doi.org/10.1007/s10617-008-9028-9
http://dx.doi.org/10.1109/DATE.2009.5090662
http://dx.doi.org/10.1109/DATE.2009.5090662
http://dx.doi.org/10.1109/FDL.2008.4641445
http://dx.doi.org/10.1109/FDL.2008.4641445
http://dx.doi.org/10.1109/ISORC.2008.67

System-level design based on UML/MARTE... 153

30. Wehrmeister M, Freitas E, Pereira C (2009) An infrastructure for uml-based code generation tools. In:
Rettberg A, Zanella M, Amann M, Keckeisen M, Rammig F (eds) Analysis, architectures and modelling
of embedded systems, IFIP advances in information and communication technology, vol 310. Springer,
Berlin Heidelberg, pp 32–43. doi:10.1007/978-3-642-04284-3_4

31. WehrmeisterMA, LeiteM (2014) On generatingVHDL descriptions from aspect-oriented UML/MARTE
models. In: Proceedings of the Brazilian symposium on computing system engineering (SBESC), IEEE
Computer Society, pp 1–6

32. Wehrmeister MA, Pereira CE, Rammig F (2013) Aspect-oriented model-driven engineering for embed-
ded systems applied to automation systems. IEEE Trans Ind Inf 9(4):2373–2386. doi:10.1109/TII.2013.
2240308

33. Wehrmeister MA, de Freitas EP, Binotto APD, Pereira CE (2014) Combining aspects and object-
orientation in model-driven engineering for distributed industrial mechatronics systems. Mechatronics
24(7):844–865. doi:10.1016/j.mechatronics.2013.12.008

34. WoodSet al (2008)Amodel-drivendevelopment approach tomappinguml state diagrams to synthesizable
vhdl. IEEE Trans Comput 57(10):1357–1371. doi:10.1109/TC.2008.123

123

http://dx.doi.org/10.1007/978-3-642-04284-3_4
http://dx.doi.org/10.1109/TII.2013.2240308
http://dx.doi.org/10.1109/TII.2013.2240308
http://dx.doi.org/10.1016/j.mechatronics.2013.12.008
http://dx.doi.org/10.1109/TC.2008.123

	System-level design based on UML/MARTE for FPGA-based embedded real-time systems
	Abstract
	1 Introduction
	2 Related works
	3 From aspect-oriented UML models to VHDL descriptions
	3.1 Overview of AMoDE-RT
	3.2 Functional requirements
	3.3 Non-functional requirements
	3.3.1 PeriodicTiming
	3.3.2 DataFreshness
	3.3.3 COPMonitoring
	3.3.4 Example of VHDL implementation: COPMonitoring aspect

	3.4 On the VHDL implementation of the remainder DERAF aspects

	4 Case studies and results
	4.1 Line-following robot
	4.2 Valve control system
	4.3 Digital watch
	4.4 Assessing the impact of DERAF on generated VHDL descriptions
	4.5 Pitfalls and limitations

	5 Final remarks
	Acknowledgments
	References

