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Abstract In these days, every newly added hardware feature must not change the underlying
instruction set architecture (ISA), in order to avoid adaptation or recompilation of existing
code. Nevertheless, this need for compatibility imposes a great number of restrictions to the
designers, because it keeps them tied to a specific ISA and all its legacy hardware issues.
Considering that the market is mainly dominated by three different ISAs (and, very likely,
more to come): ×86, used in the general purpose field; ARM, used in embedded systems,
and PowerPC which covers a wide gamut of solutions, the need for another level (at the ISA)
of adaptability is evident. Binary translation (BT) appears as a solution for that, since it is
capable of transforming binary code so it can be executed on another target architecture.
However, BT adds another layer between code and actual execution, therefore bringing huge
performance penalties. To overcome this drawback, we propose a new mechanism based on
a dynamic two-level binary translation system. The first level can translate from multiple
architectures into an intermediate-level code, which will be optimized by the second level
for execution on a dynamic reconfigurable array. In this way, the designer can take advantage
of a BT system and program for multiple fields of application, without worrying about the
underlying architecture. We present three case studies, along with a discussion as to how the
first BT level is easily expandable to other ISAs.
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1 Introduction

Technological development has already started to stagnate as a result of the decline inMoore’s
law [1]. Therefore, one can observe that the processing capabilities of traditional architec-
tures are not growing in the same pace as before [2]. In the same way, the great amount of
already deployed software makes both designers and customers tied to a specific instruc-
tion set architecture (ISA). Nevertheless, companies develop their products focusing on the
improvement of a given organization that will execute the same ISA as before, so that the
large quantity of tools and applications already deployed can be reused. It is evident that this
need for compatibility imposes a great number of restrictions to the design team and makes
the process of software development segmented. While in the general purpose market the
×86 dominates; embedded systems carrywithin different organizations of theARMarchitec-
ture; while PowerPC covers a wide range of applications from embedded to supercomputers.
In this scenario, new alternatives are necessary to minimize this problem. From a software
development perspective, the burden of passing the source code through the compilation
process, which involves debugging, testing and code adaptation, must be alleviated, so one
of the most important requirements of nowadays—time to market—can be kept as short as
possible. Hardware designers, on the other hand, must have the freedom of implementing
whatever architecture and organization they consider the best alternative, taking into account
the field of application and non-functional requirements, such as performance and energy
consumption.

Binary translation (BT) systemsmay be a solution, since they have the ability to transform
an already compiled code into another to be executed on a different processor. Therefore, BT
systems can give back to designers the freedom previously lost, since designers need not be
tied to a specific ISA anymore. At the same time, neither software engineers nor users have
to suffer with the inherent problems of code portability.

Considering the aforementioned discussion, the ideal scenario would be the execution
of instructions compatible to any ISA on the very same underlying processor architecture.
However, themaintenance of binary compatibility only is not enough to handle market needs.
It is also necessary to translate and execute code in a competitive fashion, when compared
to native execution [3], so the concept of binary translation must also be tightly connected to
code optimization and acceleration [4].

In this way, this work extends the approach proposed by Fajardo [5], including support
for the ARM and PowerPC ISAs as source code for a dynamic two-level binary translation
system that, besides maintaining binary compatibility, amortizes its translation costs. An
overview of the proposed system is presented in Fig. 1. The first BT level is responsible
for translating the source code into an intermediate (common) code, as any conventional
BT system would do, and the second BT level is responsible for transforming the translated
code (intermediate representation) to be executed on the target architecture. The system we
present on this paper supports three different ISAs (×86, ARM and PowerPC) as source
architectures; the MIPS ISA is used as the common language; and a dynamic reconfigurable
architecture is responsible for the acceleration of code after translation.

With the two-level BTmechanism, and having a clear interface between the translation and
the optimization levels, another advantage emerges: during design time, by only changing
the first BT level, it is possible to execute different ISAs transparently to the second BT
level. Therefore, this greatly facilitates the porting of radically different ISAs without the
need for changing the underlying architecture, as long as different first BT level layers are
available. In the same way, it is possible to switch to another target architecture, according
to the application needs or to the available architecture at the moment. None of the related
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Fig. 1 Proposed approach

work, discussed in the next section, can easily switch between source/target architectures
(when implemented in hardware), or use a special architecture (like a reconfigurable array)
to accelerate code execution after translation.

The rest of this paper is organized as follows. In Sect. 2 we show some related binary
translation architectures, with a brief explanation about their operation. In the next section,
an overview on the proposed architecture is given. In Sect. 4 we present experimental results.
Finally, the last section concludes this article.

2 Related work

Binary translation systems have been used mainly because companies need to reduce the
time-to-market and maintain backward software compatibility. One example is Rosetta [6]:
used into Apple systems to maintain compatibility between the PowerPC and ×86. It is
implemented in software and on the application layer with the sole purpose of maintaining
binary compatibility, causing a great overhead. Another case is the FX!32 [7,8] that allows
32-bit programs to be installed and executed like an ×86 architecture running Windows NT
4.0 on Alpha systems. The FX!32 is composed of an emulator and a binary translator system.
As other examples, the HP Dynamo [9] analyzes the application at runtime in order to find
the best parts of the software for the BT process, while the Daisy architecture uses BT at
runtime to better exploit the ILP of a PowerPC application, transforming parts of code to
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be executed on a VLIW micro architecture [10]. The Transmeta Crusoe processor [11] had
the main purpose of translating ×86 code in software to execute onto a VLIW processor,
reducing power consumption and saving energy. In this case, the BT is implemented in
software, but the Crusoe hardware was designed to speed up the BT process with minimum
energy, which decreases the translation overhead. The Godson3 processor [12] is another
similar example: by using a software layer for binary translation (QEMU), it converts ×86
into MIPS instructions. As a strategy to optimize the running program, Godson3 is a scalable
multi-core architecture, which uses a combination of a NoC (network on-chip) and a crossbar
system for its communication infrastructure.

The approach proposed here is totally implemented in hardware, which allows for the
fastest translation speed. Since there is a well-defined interface between the two BT levels,
there is the possibility of source or target architectures migration at design time by only
changing the corresponding level of the BT system. In this way, hardware modifications can
be fine-tuned to several markets with different requirements. We aim to produce the effect of
write once, run everywhere with minimal impact on performance. Therefore, comparing the
proposed technique with other BT implementations, our main contributions are:

• Amortized performance overhead when translating from the source to the target machine
by using dedicated hardware resources, thus freeing the CPU to execute the target code;

• Performance gains when compared to the execution of the original code in the source
machine, since an optimization mechanism is used (in this case, a dynamically reconfig-
urable system);

• Design flexibility through the employment of the two-level BT system,making it easier to
migrate code to another ISA or target architecture (or update them to a new version of the
family). The system has therefore almost the same flexibility as if it were implemented
in software.

3 Proposed architecture

Figure 2 gives a general overview of the proposed architecture. The first BT level interfaces
the memory and the rest of system, which is composed of the second BT level mechanism,
a translation cache, a MIPS processor to execute the common code when necessary and a
dynamically reconfigurable array. The first BT level translates code from three different ISAs,
namely ×86, ARM and PowerPC.

We use a reconfigurable array for the optimization process because they have already
proven to accelerate software execution and reduce energy consumption [13–16]. Moreover,
it is common sense that as the more the technology shrinks, the more an important charac-
teristic of reconfigurable systems is highlighted: regularity. Besides being more predictable,
regular circuits are also low cost, since the more customizable the circuit is, the more expen-
sive it becomes. This way, regular fabric could solve the mask cost and many other issues
such as printability, power integrity and other aspects of the near future technologies. The
reconfigurable architecture that comprises the second level was extended from [17], and is
responsible for optimizing the common code (MIPS) after the first level translation.

As an example of operation, let us consider an application compiled for the ×86 ISA,
and that will be executed for the first time. The first BT level then fetches ×86 instructions
from the memory and translates them into MIPS instructions. At this level there are no
translations savings for future reuse: all the data is processed at run-time in order to avoid
storage overhead. Then, while the MIPS processor executes the MIPS code, the second BT
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Fig. 2 a First BT level. b Four pipeline stages of the second BT level. c Five pipeline stages of the MIPS
processor. d Reconfigurable array

level translates it into a configuration that will be executed in the reconfigurable array, and
saves it in the translation cache (TCache) for future reuse. The secondBT level only optimizes
code sequences once it identifies that they are hotspots (most executed code parts).

Each entry in theTCache is indexed by the programcounter (PC) of the source architecture.
Therefore, next time a chunk of×86 code that has already been transformed toMIPS and been
optimized to the reconfigurable array is found, its optimized form (a configuration) is fetched
from the TCache. When this happens, the first BT level, the MIPS processor and the second
BT level are stalled and bypassed, and the reconfigurable array starts its reconfiguration and
execution. As more and more sequences of instructions are executed and translated, and the
TCache is being filled, the impact of the two levels of BT are amortized and the performance
gains provided by the array start to appear.

3.1 First binary translation level—ARM and powerPC

In this ×86 implementation, 50 different integer instructions can be translated, out of a
total of nearly 190 integer instructions, considering the ×86 ISA. All addressing modes
are supported. The implemented subset is enough to compile and execute all the tested
benchmarks. Segmentation is emulated, but there is no support for paging. Interruptions, and
multimedia instructions, such as theMMX and SSE, are not implemented. For the ARM ISA,
only the user mode with the ARMv4 instruction set is supported. Excepting the coprocessor
instructions, all the others were implemented, including all addressing modes. These were
also enough to execute all the tested benchmarks. Thumb mode and multimedia extensions
are not supported. The ×86 translator was implemented as a separate unit from the ARM
and PowerPC translators, as the CISC/RISC architecture distinction leads to different design
options. We present here both implementations.

The First BT level, for the ARM and PowerPC architectures, is composed of two different
hardware units, namely the decoding and the encoding units. We shall first present each of
the module’s role on the decoding process, then discuss its implementation (Fig. 3).
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Fig. 3 Block diagram for the ARM and PowerPC first-level translators

3.1.1 Decoding unit

This unit is responsible for analyzing one instruction fetched frommemory and extracting its
semantics. The instruction semantics refers to the operation to be performed and where are
its operands (register or memory addresses). Each of the extracted information is forwarded
to the next unit.

Thismodule comprises only combinatorial logic, which splits the fields of each instruction
based on its format. This process is done in a parallel fashion: the instruction is used as input
to multiple blocks, each of which splits the instruction fields assuming one particular format.
Some fields can be merged, as many distinct operations may specify the same information
on the same field (say, the destiny register).

Let us consider for instance the ARM architecture, and the structures required to decode
data processing instructions. This class of instructions represents one possible encoding and
covers basic arithmetic and logical operations on registers. All ARM instructions are fixed-
length, then it is already known exactly which fields need to be analyzed in order to determine
the instruction type. To decode an instruction such as “ADD r2, r1, r0”, the following bits
must be checked.

• Bits 27= ‘0’ and 26= ‘0’. If this condition holds then it is a data processing instruction.
• Bit 25 = ‘0’. If this condition holds then the second operand is a register that may be

shifted by an immediate value or by the value specified in another register.
• Bit 4 = ‘0’. If this holds, then the addressing mode for the operation is register shifted

by an immediate value.

The conditions above are performed by the hardware block that identifies the instruction
format. At the same time, the following contents from the instruction are extracted:

• The operation (ADD) is specified on bits 24 to 21, the destination register (r2) on bits 19
to 16 and the first operand register (r1) on bits 15 to 12.

• The second operand register (r0) is specified on bits 3 to 0, and the shift value is specified
on bits 11 to 7.

This aforementioned procedure covers all data processing instructions that use this addressing
mode in the ARM architecture.
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3.1.2 Encoding unit

This unit receives the information extracted from the decoding unit, and uses it to
generate a sequence of equivalent MIPS instructions. Since the decoding is done in
a 1-to-many fashion (i.e. one instruction from the source architecture may generate
more than one MIPS instruction), it is clear that the PC from the MIPS proces-
sor cannot be used to address the instruction memory. Therefore, this unit also has
an internal mechanism that controls another PC that addresses the instruction mem-
ory. We shall make a distinction between these two PCs by writing PCBT (the one
that addresses the instruction memory) and PCMIPS (the one inside the MIPS proces-
sor).

This unit is a finite state machine, whose inputs are all the outputs from the decoding
unit, and which outputs one MIPS instruction every time the MIPS processor attempts to
fetch a new instruction (by increasing the value of PCMIPS). When the last MIPS instruc-
tion is about to be generated, a signal is sent to increment PCBT in order to fetch the next
instruction.

Since the translation circuit presents a critical path much shorter than that of the MIPS
processor, clock speed is not an issue, and performance is limited by the number of instruc-
tions generated. However, the number of cycles required to fetch a new instruction and
start executing the decoded ones on the MIPS processor must be taken into account, since
this could lead to huge stall times. Another issue that was considered is the treatment of
branch instructions. The translation scheme for this sort of instruction is tightly coupled to
the source architecture being considered, as some architectures may allow for direct arith-
metical operations on the PC, while others may allow register indirect branches. In cases
of instructions that operate on the PC, it is important to note that the R15 (correspondent
to the PC), as any other register, is also mapped to a regular MIPS register. However, it is
not updated at every execution of a new instruction (otherwise the performance overhead
would be huge). Therefore, when an instruction that operates on the R15 is detected, the
current value of PCBT is copied to the correspondent register in the MIPS, and the nec-
essary operation is performed. However, the PC that needs to be updated is not the one
inside the MIPS processor, but the PCBT. Therefore, a mechanism is required to transfer
the PCBT value to the MIPS processor, and to operate on it if needed, and to capture back
to PCBTchanges on the PCMIPS value. The first transfer can be accomplished by encoding
ADDI instructions with the value contained on PCBT, while the second can be accomplished
by encoding JR instructions and then capturing the updated PCMIPS value and writing it to
PCBT.

3.2 First binary translation level—×86

The ×86 translator was implemented following a different approach, primarily due to its
CISC and variable-length instruction scheme. The block diagram is the one shown on Fig. 2a
and is described next.

3.2.1 Program counter unit

This unit is responsible for fetching instructions from the Instruction Memory;for the align-
ment of the incoming instructions and for calculating the address of the next instruction that
must be fetched.
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3.2.2 Translation unit

It is themain component of the system. It is responsible for analyzing the instruction format in
order to classify them according to the type, operators, and addressing modes; and generating
the equivalent MIPS instructions. This unit is constituted mainly of ROM memories that
hold all possible equivalent MIPS instructions translations. For this reason, it concentrates
the major part of the BT system area. Besides that, this unit provides some information to
the other auxiliary units, such as: number of generated MIPS instructions, quantity of bytes
to calculate the next PC and the type of instructions (e.g. logical operation, conditional or
unconditional jumps, etc).

In the case of×86 instructions, it takes one or more cycles to perform such operations, has
four different tables and a special hardware component to handle immediate values. These
are directly related to fields found in an ×86 instruction. The data from each field [prefix,
OPCode, address mode and Scale Index Base (SIB)] are inputs for these four tables, while the
offset and immediate values are merged together and sent to the immediate handler hardware.
Depending on the instruction (e.g. an instruction with a register to register addressing mode),
some of these tables may return null values.

Each one of these tables and the immediate hardware will be merged and sent to the
ConfigurationBits hardware component. Some bits of anARM instruction are directly passed
as Configuration Bits as for example bit P of a pre/post index transfer. At this point, the set
of operations and its operands to perform the certain ×86 or ARM instruction are known.
They are in an intermediate form, composed of the configuration bits generated before.
Then, with this information, they are mounted in the MIPS instruction format by the Code
Generator/Assembler hardware. MIPS instructions will finally be generated.

3.2.3 Mounting unit

It provides an interface between the MIPS processor and the First BT mechanism. It fetches
all the equivalent MIPS instructions in a parallel fashion from the Translation unit and sends
them serially to the MIPS processor, making the BT mechanism behave as if it were a reg-
ular memory. It is composed of a queue of twenty four 32-bit registers in which each MIPS
instruction is allocated. The maximum amount of MIPS instructions generated by an ×86
instruction, considering the list of supported translations, is 12. In the case of ARM instruc-
tions, the average amount of MIPS instructions need to translate a single ARM instruction is
about 2. However, there are some ARM instructions that will raise this number, such as LDM
and STM, which are used for block transfers. The size of the queue must be twice of the
maximum instruction count, because while the first half of the queue is receiving translations
in the form of MIPS instructions from the translation unit, the second half is sending MIPS
instructions to the MIPS processor. As instructions are processed, this unit constantly feeds
the control unit with the number of occupied slots in the queue, in order to guarantee that it
will not empty and the MIPS processor will not stall.

3.2.4 Control unit

It is implemented as a FSM machine. Its function is to keep the timing and consistency of
information between the other units by using the information flags provided by each unit.
Through this information, the control unit decides the behavior for all the system, such as
the fetch of a new instruction from memory at the instant there are free slots in the queue in
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the Mounting Unit; or the need for the calculus of a new source Program Counter when the
instruction (branch or regular) is fetched frommemory, besides its other functions, explained
in the three subsections above.

3.3 Extended MIPS

The great advantage of using the MIPS ISA as common code is the regularity of code with
well-known behavior, making it easy to translate from another ISA to this one. However, the
translation of a complex ISA such as ×86 to MIPS is inefficient, since most of the times
one single×86 instruction is converted to many MIPS instructions. For instance, the support
for flag registers on the ×86 ISA, which can be used for conditional branching, is inexistent
on the MIPS architecture. In this case, more than 20 MIPS instructions could be generated
per ×86 instructions to correctly emulate these flags support on the MIPS processor. Other
constructs, such as segment addressing modes, also suffer from this lack of support.

As for theARMISA, although also aRISC architecture as is theMIPS ISA, the conditional
execution support can overcharge the translations process. Extra test and branch instructions
must be placed with a standard MIPS instruction in order to achieve the correct conditional
execution behavior. We could observe, in the tested benchmark codes, a rate of 22% of con-
ditional instructions on average, which means that a considerable speedup could be achieved
if some kind of support for these instructions were implemented in the MIPS processor.
Another difference between ARM and MIPS is the use of a second complex operand, which
can be shifted in several ways. About 39% of total ARM instructions in the benchmarks
tested make use of this kind of operand, which also characterizes a huge overhead when the
translation occurs.

One can notice some PowerPC instructions make use of the carry flag, and some instruc-
tions must update some fields of the Fixed-Point Exception Register (XER) and/or the Con-
dition Register fields. On average, 10% of these instructions were found in the tested bench-
marks, which would cause a substantial overhead on translated instructions.

In order to lower the overhead caused by the lack of some features on the MIPS ISA,
the MIPS processor was extended to give hardware support to some of these issues (which
involved simple modifications in the ALU and a few extra registers), but still maintaining
compatibility with the standard code.

3.4 Reconfigurable array

An overview of its general organization is shown in Fig. 2d. The reconfigurable unit, based on
the one presented in [17], is a dynamic coarse-grained array tightly coupled to the processor
[18]. It works as an additional functional unit in the execution stage of the pipeline. This
way, no external accesses (with respect to the processor) to the array are necessary. The
reconfigurable array has already proven, in previous works, to be capable of accelerating
applications with low ILP levels. In [19], a high level analysis on the applications (discussing
their parallelism degree and how control/data flow they are) and potential of optimization
that could be performed by reconfigurable architectures is done (pointing the advantages of
using a coarse-grained reconfigurable array). In [17], it is shown that the reconfigurable array
used here as case study is capable of accelerating applications with a high rate of control
instructions (with small basic blocks that limit the amount of ILP available for exploitation)
and low ILP because it takes advantage of “merging” sequential instructions. Moreover, in
[20] it is demonstrated that this reconfigurable system presents a higher ILP than a 4-issue
superscalar processor.
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3.5 Second binary translation level

The second level of the binary translation hardware was extended from [17]. It starts working
on the first instruction found after a branch execution, and stops the translationwhen it detects
anunsupported instructionor another branch (in caseswhen the limit for speculative execution
is reached). If more than three instructions were found, a new entry in the cache (FIFO-based)
is created and the data of a special buffer, used to keep the temporary translation, is saved in
the TCache. The proposedmechanism relies on a set of tables, used to hold the information on
the sequence of processed instructions, i.e. the routing of the operands and the configuration
for the functional units.

4 Results

4.1 Simulation enviroment

To perform all of the tests we have used a MIPS R3000 processor with a unified instruc-
tion/data cache memory with 32 Kb. The reconfigurable array has 48 rows and 16 columns.
Each column has 8 ALUs, 6 LD/ST units and 2 multipliers. The Translation Cache is capable
of holding 512 configurations. In previous works [17], this setup has already shown to be
the best tradeoff considering area overhead and performance boosts. The Mibench bench-
mark set [21] was executed on a Linux based operating system environment. In all cases
the applications were compiled and statically linked using GCC with –O3 optimization. To
gather data on performance,×86 and ARM execution traces were generated with the GEM5
simulator [22]. After that, cycle accurate simulators (described in SystemC at RTL level)
were used for the BT mechanisms, reconfigurable architecture and the MIPS processor. A
hardware prototype of the translator was implemented on a Xilinx Virtex5 FPGA and was
used to gather the area usage. There results were then converted into logic gates count, based
on the TSMC 90nm library, so we could use and extend and compare the results from [5].

4.2 Impact of the MIPS extensions

As explained before, theMIPS processorwasmodified to give additional support to the binary
translation process. Figure 4 shows the mean number of MIPS instructions generated from
an ×86 instruction when there is no support for the translation (original hardware); when

Fig. 4 The impact of using hardware support for ×86/MIPS translation
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Fig. 5 The impact of using hardware support for ARM/MIPS translation

Fig. 6 The impact of using hardware support for PowerPC/MIPS translation

there is support to EFlags computation only (EFlags Support); and when other hardware
modifications are also included (Extended ISA). It highlights the performance overhead that
the second BT level system must overcome.

Considering the ARM ISA, with the exception of the conditional instructions and a few
others (for example, those that use the post increment address mode), usually about two
MIPS instructions are generated per ARM instruction. Figure 5 demonstrates the impact
of implementing hardware support for MIPS translations, considering: ARM translation for
native MIPS (Original Hardware); ARM translation for a MIPS with conditional execution
support; ARM translation conditional executions and second shifted operand support. One
can note a reduction of 28% in the number of translated instructions when conditional
execution is implemented in MIPS and an additional saving of 16% with the support for the
second shifted operand. On average, 44% less instructions were generated with these simple
hardware modifications.

Considering the PowerPC ISA, Fig. 6 shows the impact of MIPS modifications to support
the binary translation.As alreadymentioned,modificationsweremade to support instructions
that make use of Conditional Register and the Fixed-Point Exception Register, about 10%
of total instructions. On average, 8% of reduction was noted with this modification.

4.3 Performance

Considering that the addition of the first level translation to the system does not affect the
critical path of the MIPS processor, our metrics for performance is based on how many
MIPS instructions are generated per source instruction. Figures 7, 8 and 9 demonstrate the
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Fig. 7 ×86 speedup performance

Fig. 8 ARM speedup performance

Fig. 9 PowerPC speedup performance

performance for× 86, ARM and PowerPC respectively. The first two bars are the same setup
for the three architectures. First bar (MIPS Code Execution) represents native MIPS code
execution on the standalone MIPS processor; and the second bar (MIPS Code Execution +
RA) native MIPS code execution with reconfigurable acceleration. In this case, the first BT
level is bypassed: only the second BT level plus the Reconfigurable Architecture (RA) are
used.

The number of cycles taken to execute the native code on the standalone MIPS processor
was normalized to 100% (Native). The Native + RA achieve a speedup of more than two
times on average. For example, SHA presents a speedup of 3.43 times, Bitcount has gains of
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Fig. 10 Logic gates increase on the system

2.42 times, whereas the GSM Encoder presents a speedup of 1.53 times, which is the worst
case considering the benchmark set.

Now, let focus on Fig.7, and consider the×86 code being translated to MIPS code but not
optimized by the reconfigurable system (×86+First level BT).As it should be expected, there
are performance losses because of the translation mechanism. For example, in the GSMD,
a slowdown of more than two times is presented when compared to the native execution of
the same algorithm in MIPS code. However, ×86 code execution on the proposed system
(×86+ Two-level BT) is faster than the native MIPS code execution on the standalone MIPS
processor, hence amortizing the original BT costs. The speedup over the standalone MIPS
execution varies between 1.11 and 1.96 times. On average, the performance gains are of
45%.

It is worthwhile to note that the optimization levels of the reconfigurable array with native
code (source code directly compiled to MIPS) and with the post-translated ×86 to MIPS
code are very similar. This can observed by comparing the first and second bars of each
algorithm against the third and fourth ones, in Fig. 7. It means that the array is capable of
optimizing code regardless if it was generated by a “smart” compiler (in the first case, GCC),
or a simple compiler (which would be the equivalent of being generated by the first BT
level). Similarly, Fig. 8 also demonstrates the performance speedup for the ARM processor.
The speedup over the standalone MIPS execution varies between 0.66% and 1.99 times. On
average, the performance gains are of 13%. In Fig. 9 one can note the performance speedup
for the PowerPC processor over MIPS, which varies between 0.69 to 2.06, with an average
gain of 1.03 times.

4.4 Area

We first present the results for the first BT level translator, comparing its area to that of a
single MIPS processor. We also analyze the entire system, with the second level translator
and the reconfigurable array.

Consider three scenarios, shown in Fig. 10: first the system comprising only the MIPS
processor, then considering the addition of the first level ARM translator and finally with the
addition of the PowerPC translator. Results show an increase of 29% when adding the first
new architecture (ARM), and further 12%when adding the PowerPC architecture. This adds
up to a 41% area increase when supporting two new architectures. The ×86 translator, due
to the inherent complexity of this architecture, was implemented as a separate module, and
represents an area addition of 83% with respect to the MIPS processor.

As for the area distribution inside the first level translator, shown on Fig. 11, we consider
only the ARM and PowerPC ISAs implemented together, according to the implementation
described on session III In this scenario, from a total of 11,510 logic gates required by the
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Fig. 11 Logic gates distribution
inside the translation unit

Table 1 Area distribution of the
whole system

Unit Area (gates) %

First-level BT (×86) 22,406 2.05

First-level BT (ARM & PowerPC) 11,510 1.05

MIPS R3000 26,866 2.46

Second-level BT 15,264 1.40

Rec. array 1,017,620 93.05

implementation, 59% of these are used on the encoding block and 32% on the decoding
block. The decoding block itself comprises two separate blocks, one for decoding ARM
instructions and one for PowerPC instructions. Both architectures use a similar amount of
gates. As will be discussed next, the sub-module that scales the most, as new architectures
are added to the system, is the decoding module.

When considering the whole system, we have the area distribution given in Table 1. The
area of the translator represents less than 6% of the entire system. Even though the Reconfig-
urable array is almost 40 times bigger than the MIPS processor (which is extremely simple),
it can be produced using current manufacturing technologies. In comparison, according to
Yeager [23], the total number of transistors of the old MIPS R10000 core is 2.4 million.
Considering that one gate is equivalent to 4 transistors, which would be the amount neces-
sary to implement a NAND or NOR gates, this processor would take nearly 600k gates to be
implemented. In Sandy Bridge, 2.27 billion transistors are necessary to implement the whole
system (including cache).

4.5 Scalability

We now proceed to an analysis of system scalability when consideringmultiple architectures.
The goal was to find an intermediate representation for all instruction sets, which is obtained
after decoding the instruction, and afterwards map this representation to MIPS instructions
through the encoding unit. In this sense, the decoding unit must be redesigned for every
newly added ISA, while the encoding unit is reused.

On our implementation, this decoding is performed by taking fixed-length instructions (4
bytes wide), extracting its operation and analyzing its fields. For both the ARM and PowerPC
implementations, this module required from 200 to 250 LUTs. The main factors that affects
the size of this unit are the number of different possible encodings and the number of different
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operations supported by the source architecture. Two issues that increase the complexity of
the decoding unit design are: source architecture with variable-length instructions (e.g.×86
ISA) and the need to map a higher number of registers available in the source architecture to
the target architecture (e.g. PowerPC ISA). For the ARM ISA, these issues do not show up.

As for the encoding unit, we designed it as a finite state-machine (FSM), for which each
state corresponds to a MIPS instruction and the transitions allow for different sequences of
instructions to be generated. Once all of the states are implemented, the number of registers
used on this module no longer scales with the addition of new architectures. Each new
ISA added to the system will impact only on the transitions between these states, slightly
influencing on the number of gates required to implement the next state logic.

5 Conclusion

In this paper, we demonstrated a case-study of a totally flexible binary system, completely
implemented in hardware, where both source and target architectures can be easily changed.
In this case study, we have proved the effectiveness of our technique by showing the possi-
bility of executing the large amount of available ARM, PowerPC and ×86 applications in a
non-native architecture in a totally transparent fashion, where no kind of user intervention
is necessary and no performance losses are presented. We also showed that it is possible
to obtain binary compatibility with average gains in all proposed architectures. It is very
likely that the implementation of other ISAs, which are more RISC like, would present even
more performance gains, since they would be simpler to translate than the ×86, ARM or
PowerPC ISAs. We intend to improve our system, by increasing the number of supported
instructions and adding support for different ISAs. Also, we intend to implement different
target architectures and the support for interrupts and traps. Moreover, we will investigate
the effectiveness of using MIPS as intermediate language, and study whether there are better
alternatives or not.
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