
Des Autom Embed Syst (2013) 17:277–342
DOI 10.1007/s10617-012-9090-1

The OMLP family of optimal multiprocessor real-time
locking protocols

Björn B. Brandenburg · James H. Anderson

Received: 8 March 2012 / Accepted: 21 June 2012 / Published online: 6 July 2012
© Springer Science+Business Media, LLC 2012

Abstract This paper presents the first suspension-based multiprocessor real-time locking
protocols with asymptotically optimal blocking bounds (under certain analysis assump-
tions). These protocols can be applied under any global, clustered, or partitioned job-
level fixed-priority scheduler and support mutual exclusion, reader-writer exclusion, and
k-exclusion constraints. Notably, the reader-writer and k-exclusion protocols are the first
analytically-sound suspension-based multiprocessor real-time locking protocols of their
kind. To formalize a notion of “optimal blocking,” precise definitions of what constitutes
“blocking” in a multiprocessor real-time system are given and a simple complexity metric
for real-time locking protocols, called maximum priority-inversion blocking (pi-blocking),
is introduced. It is shown that, in a system with m processors, Ω(m) maximum pi-blocking
is unavoidable. This bound is shown to be asymptotically tight with the introduction of the
O(m) multiprocessor locking protocol (OMLP) family presented herein, which includes pro-
tocols that ensure an upper bound on maximum pi-blocking that is approximately within a
factor of two of the lower bound. In addition to the coarse-grained asymptotic bounds, de-
tailed blocking bounds suitable for schedulability analysis are derived using holistic block-
ing analysis. Based on the detailed bounds, the proposed locking protocols are compared
with each other and with previously-proposed protocols in an empirical schedulability study
involving more than one billion task sets. In this study, the OMLP was found to perform bet-
ter than two variants of the classic (but non-optimal) multiprocessor priority-ceiling protocol
(MPCP).

Keywords Real-time synchronization · Priority inversion · Optimal locking protocol ·
Mutual exclusion · Reader-writer exclusion · k-exclusion · Schedulability study

B.B. Brandenburg (�)
Max Planck Institute for Software Systems (MPI-SWS), Campus E 1 5, 66123 Saarbrücken, Germany
e-mail: bbb@mpi-sws.org

J.H. Anderson
Department of Computer Science CB# 3175, The University of North Carolina at Chapel Hill
(UNC-CH), Chapel Hill, NC 27599-3175, USA
e-mail: anderson@cs.unc.edu

mailto:bbb@mpi-sws.org
mailto:anderson@cs.unc.edu

278 B.B. Brandenburg, J.H. Anderson

1 Introduction

When semaphores are used to coordinate access to shared resources such as I/O devices
or shared data structures, some blocking among tasks is unavoidable. In real-time systems,
such blocking gives rise to priority inversions, which, intuitively, occur when a high-priority
task must wait for a low-priority one. As this can endanger temporal correctness, a real-
time locking protocol is required to bound the maximum duration of priority inversion. In
this paper, we present the first such protocols for multiprocessors that are provably optimal
(within a factor of the lower bound that approaches two or four, depending on the protocol).

There are two approaches to realizing locks in multiprocessor systems: in spin-based (or
spinlock) protocols, jobs wait for resources by executing a delay loop, and in suspension-
based (or semaphore) protocols, waiting jobs relinquish their processor. In principle,
suspension-based protocols are preferable because waiting jobs waste processor cycles un-
der spin-based protocols. In practice, spin-based protocols benefit from low overheads (com-
pared to the cost of suspending and resuming tasks), so that spinning can in fact be prefer-
able if all critical sections are short, that is, if tasks use resources for at most a few microsec-
onds [14, 15, 20]. Nonetheless, suspension-based protocols are still needed to support shared
resources that inherently cause critical sections to be long (e.g., stable storage), as spinning
would result in substantial wastage in such cases. In this paper, we focus on suspension-
based protocols.

Clearly, an “optimal” real-time locking protocol should minimize blocking to the extent
possible. However, while optimal uniprocessor real-time locking protocols have long been
known [43, 47], no provably optimal suspension-based multiprocessor real-time locking
protocols have been proposed to date. In fact, prior work (reviewed below) did not provide
a general, precise definition of what constitutes “blocking” in a multiprocessor real-time
system. Rather, the design goal of “minimal blocking” was only informally understood and
existing protocols have been analyzed by providing upper bounds on lock-acquisition delays
that would be sufficient under any reasonable definition of blocking. We close this gap by
showing that there are actually two different notions of priority inversion, called suspension-
oblivious and suspension-aware, that arise due to differences in how task suspensions (which
are notoriously hard to analyze [45]) are handled in existing schedulability tests (Sect. 3.1).
Intuitively, suspension-aware analysis allows task suspensions to be accounted for explicitly,
whereas suspension-oblivious analysis requires such suspensions to be modeled as compu-
tation instead. Based on these definitions, we propose maximum priority inversion blocking
(maximum pi-blocking) as a natural complexity metric for locking protocols (Sect. 3.2).
Notably, suspension-oblivious and suspension-aware schedulability analysis yield different
lower bounds on maximum pi-blocking.

In this paper, we focus on locking protocols for suspension-oblivious analysis. We show
that, in a multiprocessor system with m processors under suspension-oblivious analysis,
Ω(m) maximum pi-blocking is unavoidable in the general case (Sect. 3.3). This bound is
asymptotically tight, which we show by introducing a family of O(m) locking protocols
(OMLP) in Sect. 4. The OMLP family includes two mutual exclusion (or mutex) protocols for
serially-reusable resources, a protocol for reader-writer (RW) exclusion, where only updates
must be exclusive and reads may overlap with each other, and a protocol for k-exclusion con-
straints, where there are k replicas of a resource and tasks require exclusive access to any
one replica. Notably, the latter two are the first suspension-based multiprocessor real-time
locking protocols for RW and k-exclusion. We prove the OMLP to be asymptotically opti-
mal under suspension-oblivious analysis: the mutex protocols and the k-exclusion protocol
ensure a bound on maximum pi-blocking that is approximately within a factor of two of the

The OMLP family of optimal multiprocessor real-time locking protocols 279

lower bound, and the RW protocol’s bound is within a factor of four of the lower bound
(Sect. 4.6). In addition to being asymptotically optimal, the OMLP is also of considerable
practical interest because it compares favorably with previously-proposed protocols for both
suspension-aware and suspension-oblivious analysis (Sect. 5), and because it can be applied
under a wide range of multiprocessor real-time schedulers.

With regard to the latter, a real-time locking protocol must be tightly integrated with
the scheduler since real-time tasks typically require (some) processor service while using
shared resources (e.g., this is the case when accessing shared data structures or when exe-
cuting driver routines to access an I/O device). Most prior work on multiprocessor real-time
locking protocols has focused on either partitioned scheduling (where tasks are statically
assigned to processors and each processor is scheduled individually) or global scheduling
(where all processors serve a single ready queue and tasks may migrate freely). Because par-
titioning requires a bin-packing-like task assignment problem to be solved, global schedul-
ing offers some theoretical advantages over partitioning, but does so at the expense of higher
runtime costs. Clustered scheduling [5, 21] is an attractive compromise between (or gener-
alization of) the two extremes, where tasks are partitioned onto disjoint clusters of cores
and a global scheduling policy is used within each cluster. Clustered scheduling simplifies
the task assignment problem (there are fewer and larger bins) and incurs less overhead than
global scheduling (by aligning clusters with the underlying hardware topology). Recent ex-
perimental work has confirmed the effectiveness of clustered scheduling on large multicore,
multi-chip platforms [9, 10, 14] and we expect clustered scheduling to grow in importance
as multicore platforms become larger and less uniform.

However, clustered scheduling poses significant challenges from a locking point of view,
and there is only scant support for clustered scheduling among prior locking protocols. Since
clustered scheduling combines aspects from both global and partitioned scheduling, the es-
tablished mechanisms for bounding priority inversions—priority inheritance under global
scheduling and priority boosting under partitioned scheduling—do not transfer to clustered
scheduling (Sect. 4.1). To overcome this limitation, we introduce “priority donation,” a new
mechanism to bound priority inversions. Using priority donation as a basis, all but one of
protocols in the OMLP family support any global, partitioned, or clustered job-level fixed-
priority (JLFP) scheduler [23], a large class of schedulers that includes the commonly-used
fixed-priority (FP) and earliest-deadline first (EDF) policies. As discussed next, these are
the first suspension-based multiprocessor real-time locking protocols designed specifically
for clustered scheduling.

Related work Most prior work has been directed at EDF and FP scheduling and their par-
titioned and global multiprocessor extensions (denoted as P-FP, P-EDF, G-FP, and G-EDF,
respectively). On uniprocessors, real-time locking is well-understood. The classic unipro-
cessor stack resource policy (SRP) [3] and the priority ceiling protocol (PCP) [25, 43, 47]
both support multi-unit resources, which is a generalized resource model that can be used
to realize mutex, RW, and k-exclusion constraints. In the case of mutual exclusion, both
protocols limit the maximum duration of priority inversion to the length of one (outermost)
critical section, which is arguably optimal.

Work on multiprocessor protocols has mostly focused on mutex constraints to date.
The first such protocols were proposed by Rajkumar et al. [42–44], who designed two
suspension-based PCP extensions for P-FP-scheduled systems, the distributed and the mul-
tiprocessor priority ceiling protocol (DPCP and MPCP, respectively). In later work, im-
proved analysis of the MPCP incorporating uniprocessor response-time analysis [2, 35] was
independently developed by both Schliecker et al. [46] and Lakshmanan et al. [36]; Laksh-
manan et al. further proposed a variant of the MPCP for suspension-oblivious analysis and a

280 B.B. Brandenburg, J.H. Anderson

partitioning heuristic [36]. Recently, Hsiu et al. [34] studied the problem of finding optimal
and near-optimal task and resource assignments in distributed systems employing a protocol
similar to the DPCP.

In early work on P-EDF-scheduled systems, suspension- and spin-based protocols were
presented by Chen and Tripathi [24] and Gai et al. [32]. Devi et al. [28] presented an analysis
of spinlocks under G-EDF scheduling. Block et al. [13] presented the flexible multiprocessor
locking protocol (FMLP), which can be used under G-EDF, P-EDF, and P-FP [16] schedul-
ing, supports both spinlocks and semaphores, and generalizes Gai et al.’s and Devi et al.’s
protocols.

More recently, Easwaran and Andersson [29] considered suspension-based protocols
for G-FP-scheduled systems. They presented an analysis of the priority inheritance pro-
tocol (PIP) and proposed the parallel priority-ceiling protocol (PPCP). Andersson and
Easwaran [1] also designed a multiprocessor locking protocol with a bounded resource aug-
mentation factor.1 Extending Easwaran and Andersson’s work [29], Macariu and Cretu [39]
proposed an extension of the PIP under G-FP scheduling that limits the extent of priority
inversions caused by resource-holding lower-priority jobs with raised effective priorities.

In work aimed at maintaining temporal isolation among tasks in mixed real-time/non-
real-time environments, Faggioli et al. [31] presented the multiprocessor bandwidth-
inheritance protocol (MBWI), a scheduler-agnostic locking protocol under which tasks wait
both by spinning and by suspending. Because it is scheduler agnostic, the MBWI can be
applied to clustered scheduling, but, in contrast to the OMLP, actual spinning takes place
under the MBWI. Finally, Nemati et al. [40] proposed a suspension-based locking proto-
col for partitioned scheduling that facilitates the integration of independently-developed,
opaque application components consisting of multiple tasks each by abstracting their joint
resource requirements into interface specifications.

To the best of our knowledge, none of the cited suspension-based real-time locking pro-
tocols has been analyzed under clustered scheduling. Further, even under the schedulers for
which they were designed, none of the cited suspension-based real-time locking protocols
ensures asymptotically optimal maximum pi-blocking, irrespective of whether the underly-
ing schedulability analysis is suspension-aware or suspension-oblivious.

In prior work on spin-based locking protocols [18], we presented the first spin-based
real-time multiprocessor RW protocol. We showed that existing non-real-time RW locks are
undesirable for real-time systems and proposed phase-fair RW locks, under which readers
incur only constant delays, as an alternative. In recent work, the analysis of mutex and RW
spinlocks under JLFP schedulers has been extended to clustered scheduling [14]. To the best
of our knowledge, suspension-based RW and k-exclusion protocols have not been consid-
ered in prior work on real-time multiprocessors. While PCP variants could conceivably be
used under partitioned scheduling, we are not aware of relevant analysis.

The material presented in this paper extends two prior conference papers [17, 19]. In
particular, we

– have added a detailed derivation and discussion of the constant factors in the OMLP’s
blocking bounds (Sect. 4.6),

– report on new large-scale schedulability experiments involving more than one billion task
sets (Sect. 5),

– have developed a new objective methodology for reporting schedulability results based
on bootstrap confidence intervals (Sect. 5.1.3),

1A protocol has a resource augmentation factor x if any feasible task set that is not schedulable under it is
guaranteed to be schedulable on an x-times faster processor.

The OMLP family of optimal multiprocessor real-time locking protocols 281

– discuss in detail when each protocol is most appropriate (Sects. 5.2–5.5), and
– present detailed (i.e., non-asymptotic) blocking analysis suitable for schedulability anal-

ysis for each of the proposed locking protocols using a holistic blocking analysis frame-
work (the Appendix).

We begin by providing needed background and definitions.

2 System model

We consider the problem of scheduling a set of n sporadic tasks τ = {T1, . . . , Tn} on m ≥ 2
identical processors. We let Ti(ei,pi) denote a task with a worst-case per-job execution
time ei and a minimum job separation pi , where Ti ’s utilization ui is given by the ratio
ui = ei/pi . Ji,j denotes the j th job (j ≥ 1) of Ti . Ji,j is pending from its arrival (or release)
time ai,j ≥ 0 until it finishes execution, where successive releases are separated by at least
pi time units (ai,j+1 ≥ ai,j + pi).

Task Ti ’s maximum response time ri denotes the maximum time that any Ji,j remains
pending. Task Ti is schedulable if it can be shown that ri ≤ pi , that is, if each Ji,j completes
within pi time units of its release. Note that we assume implicit deadlines only for the sake
of simplicity; the presented results do not depend on the choice of deadline constraint. We
omit the job index j if it is irrelevant and let Ji denote an arbitrary job.

A pending job is in one of two states: a ready job is available for execution, whereas a
suspended job cannot be scheduled. A job resumes when its state changes from suspended
to ready. Pending jobs are presumed ready unless suspended by a locking protocol. We
consider the effect of allowing locking-unrelated suspensions in Sect. 4.6.

2.1 Scheduling

Under clustered scheduling [5, 21], processors are grouped into m
c

non-overlapping sets (or
clusters) of c processors each, which we denote as C1, . . . ,Cm

c
.2 Global and partitioned

scheduling are special cases of clustered scheduling, where c = m and c = 1, respectively.
Each task is statically assigned to a cluster. Jobs may migrate freely within clusters, but not
across cluster boundaries.

When bounding locking-related delays, it is often required to consider the subset of jobs
assigned to a particular cluster. We let τk denote the set of tasks assigned to the kth cluster,
and let Pi denote the cluster (or partition) to which Ti is assigned. A task Tl is local to task
Ti if Pl = Pi , and remote otherwise.

We assume that, within each cluster, jobs are scheduled from a single ready queue using a
work-conserving job-level fixed-priority (JLFP) policy [23]. A JLFP policy assigns each job
a fixed base priority, but a job’s effective priority may temporarily exceed its base priority
when raised by a locking protocol (see below). Within each cluster, at any point in time,
the c ready jobs (if that many exist) with the highest effective priorities are scheduled. We
assume that ties in priority are broken in favor of lower-indexed tasks (i.e., priorities are
unique).

We consider global, partitioned, and clustered EDF (G-EDF, P-EDF, and C-EDF, respec-
tively) as representative algorithms of the class of JLFP policies.

2Without loss of generality, we assume uniform cluster sizes and m
c ∈ N. Non-uniform cluster sizes could be

trivially integrated into the presented analysis at the expense of additional notation.

282 B.B. Brandenburg, J.H. Anderson

2.2 Resource model

We consider three types of shared resources that differ with respect to their sharing con-
straint. Mutual exclusion of accesses is required for serially-reusable resources, which may
be used by at most one job at any time. Reader-writer exclusion (RW exclusion) [26] is
sufficient if a resource’s state can be observed without affecting it: only writes (i.e., state
changes) are exclusive and multiple reads may be satisfied simultaneously. Resources of
which there are k identical replicas are subject to a k-exclusion constraint: each replica is
only serially reusable and thus requires mutual exclusion, but up to k requests may be satis-
fied at the same time by delegating them to different replicas.

Mutex constraints are most common in practice. However, the need for RW syn-
chronization arises naturally in many situations, too. Two common examples are few-
producers/many-consumers relationships (e.g., obtaining and distributing sensor data) and
rarely changing shared state (e.g., configuration information). Of the three constraints, we
expect k-exclusion constraints to be the least common. However, k-exclusion is required
whenever there are multiple identical co-processors. For example, a system might contain
multiple graphics processing units (GPUs) or digital signal processors (DSPs). Theoreti-
cally, one could further consider replicated resources with RW constraints, but we are not
aware of any practical applications where such constraints arise and do not consider this
combination of constraints.

We formalize resource sharing among sporadic tasks as follows. The system contains nr

shared resources �1, . . . , �nr (such as shared data structures and I/O devices) besides the m

processors. When a job Ji requires a resource �q it issues a resource request for �q . We let
Ri,q,v denote the vth resource request by task Ti for resource �q , where v ≥ 1. In the case of
RW constraints, we analogously let RR

i,q,v and RW
i,q,v denote the vth read and write request

for �q , respectively.
A request Ri,q,v is satisfied as soon as Ji holds �q , and completes when Ji releases

�q . The request length is the time that Ji must execute before it releases �q .3 We let
Li,q,v denote the request length of Ri,q,v , let Ni,q denote the maximum number of times
that any Ji requests �q , and let Li,q denote the maximum length of such a request (i.e.,
Li,q,v ≤ Li,q for each Ri,q,v), where Li,q = 0 if Ni,q = 0. A task is independent if it does
not require any shared resources. In the case of RW constraints, we analogously define NR

i,q ,
NW

i,q , LR
i,q , and LW

i,q with respect to read and write requests, where Ni,q = NR
i,q + NW

i,q and
Li,q = max(LW

i,q ,L
R
i,q).

We assume that jobs request or hold at most one resource at any time and that tasks do
not hold resources across job boundaries. Nesting could be supported with group locks as in
the FMLP [13, 14], albeit at the expense of reduced parallelism.

2.3 Locking protocols

To enforce sharing constraints, the operating system employs a locking protocol to order
conflicting requests. If a request Ri,q,v of a job Ji cannot be satisfied immediately, then Ji

incurs acquisition delay and cannot proceed with its computation while it waits for Ri,q,v

to be satisfied. In this paper, we focus on protocols in which waiting jobs relinquish their

3For the sake of simplicity, we assume that jobs require a processor for the entirety of each critical section.
This is accurate for shared data structures, but may be somewhat pessimistic when accessing devices. The
assumption could be relaxed at the expense of additional notation by splitting each request length parameter
into a processor component and a suspension component.

The OMLP family of optimal multiprocessor real-time locking protocols 283

processor and suspend. The request span of Ri,q,v starts when Ri,q,v is issued and lasts until
it completes, that is, it includes the request length and any acquisition delay.

Locking protocols may temporarily raise a job’s effective priority. Under priority inher-
itance [43, 47], the effective priority of a job Ji holding a resource �q is the maximum of
Ji ’s priority and the priorities of all jobs waiting for �q . Alternatively, under priority boost-
ing [16, 17, 36, 42–44], a resource-holding job’s priority is unconditionally elevated above
the highest-possible base (i.e., non-boosted) priority to expedite the completion of requests.

2.4 Priority inversion and blocking

The main goal in the design of real-time locking protocols is to minimize the worst-case
duration of priority inversions. A priority inversion occurs when a job that should be sched-
uled (according to its base priority) is not scheduled (i.e., either when a lower-priority job
is scheduled instead or when a processor in its assigned cluster is idle). Priority inversions
are problematic because they delay a job’s completion and hence must be bounded and ac-
counted for during schedulability analysis. It is important to note that acquisition delay and
priority inversion are two different, although closely related, concepts: if a suspended job
would not have been scheduled anyway due to the presence of higher-priority jobs, then
there is no priority inversion. This matches the intuition that high-priority jobs should be
granted access to contended resources sooner than lower-priority jobs.

In the real-time literature, acquisition delay that coincides with a priority inversion is tra-
ditionally called “blocking,” whereas acquisition delay that does not coincide with a priority
inversion lacks an established name (since it is irrelevant for analysis purposes). We avoid
the term “blocking” because it is overloaded. In a real-time context, many other sources of
schedulability-relevant delays are also commonly labeled “blocking,” even if they do not
coincide with a priority inversion. For example, release jitter and deferred execution are
causes of “blocking” without priority inversion [38]. In the (non-real-time) synchronization
literature, “blocking” is simply a synonym for acquisition delay. To further confuse matters,
in an OS context, “blocking” is often used as a synonym for “suspending,” which is not the
same as the intended interpretation: in suspension-based locking protocols, the length of a
suspension corresponds to the incurred acquisition delay, but not necessarily to the duration
of priority inversion.

In this paper, we consider the definition specific to real-time resource sharing, which
we denote as priority inversion blocking (pi-blocking) to avoid ambiguity. To reiterate, pi-
blocking occurs whenever a job Ji ’s completion is delayed and this delay cannot be at-
tributed to higher-priority demand—that is, if and only if Ji suffers a priority inversion. We
let bi denote a bound on the total pi-blocking incurred by any Ji .

3 Blocking optimality

In the uniprocessor case, locking protocols that ensure a provably optimal upper bound on
pi-blocking have long been known. Indeed, under both the PCP [43, 47] and the SRP [3],
jobs incur pi-blocking for the duration of at most one (outermost) critical section, which is
obviously asymptotically optimal.

In the multiprocessor case, however, the question of “blocking optimality” had not re-
ceived much, if any, attention. In fact, general, precise definitions of what actually con-
stitutes “blocking” had not been formalized prior to our work. Rather, existing protocols
have been analyzed using informally defined notions of blocking; to the effect that different

284 B.B. Brandenburg, J.H. Anderson

locking protocols were analyzed using different assumptions. Without a precise definition
of blocking, we clearly have no understanding of what constitutes optimal pi-blocking on
multiprocessors.

Motivated by these considerations, we next formalize two notions of pi-blocking and
define a notion of “blocking complexity,” which we then use to establish the optimality of
the protocols presented in this paper.

3.1 Priority inversions in multiprocessor systems

The need for two notions of pi-blocking arises because multiprocessor schedulability anal-
ysis has not yet matured to the point that suspensions can be efficiently analyzed under
all schedulers. In particular, most of the major G-EDF hard real-time schedulability tests
do not inherently account for self-suspensions. Such analysis is suspension-oblivious (s-
oblivious): jobs may suspend, but each ei must be inflated by bi prior to applying the test to
account for all additional delays. This approach is safe—converting execution time to idle
time does not increase response times—but pessimistic, as even suspended higher-priority
jobs are (implicitly) considered to prevent lower-priority jobs from being scheduled. In con-
trast, suspension-aware (s-aware) schedulability analysis that explicitly accounts for bi is
available for FP, P-FP, and, to some extent, for G-FP scheduling [2, 29, 36, 43]. Notably,
suspended jobs are not considered to occupy a processor under s-aware analysis.

Consequently, priority inversion is defined differently under s-aware and s-oblivious
analysis: since suspended higher-priority jobs are counted as demand under s-oblivious
analysis—the maximum time of priority inversion of each such job is included in its execu-
tion requirement ei—the mere existence of c pending higher-priority jobs (in Ji ’s cluster)
rules out a priority inversion. In contrast, under s-aware schedulability analysis only ready
higher-priority jobs can nullify a priority inversion (since suspension times are not included
in ei).

The difference in what constitutes a priority inversion leads to two notions of pi-blocking.
Since schedulability tests are applied on a cluster-by-cluster basis, pi-blocking is defined in
both cases with respect to the tasks in each cluster. Recall from Sect. 2 that Pi denotes
the cluster that Ti has been assigned to, and that τPi

denotes the set of tasks assigned to
cluster Pi .

Definition 1 Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious pi-
blocking at time t if Ji is pending but not scheduled and fewer than c higher-priority jobs of
tasks in τPi

are pending.

Definition 2 Under s-aware schedulability analysis, a job Ji incurs s-aware pi-blocking at
time t if Ji is pending but not scheduled and fewer than c higher-priority ready jobs of tasks
in τPi

are scheduled.

In both cases, “higher-priority” is interpreted with respect to base priorities. Notice that
Definition 1 is weaker than Definition 2. Thus, lower bounds on s-oblivious pi-blocking
apply to s-aware pi-blocking as well, and the converse is true for upper bounds.

Example 1 The difference between s-oblivious and s-aware pi-blocking is illustrated in
Fig. 1, which shows a G-EDF schedule of three jobs sharing one resource. Job J1 suffers
acquisition delay during [1,3), and since no higher-priority jobs exist it is pi-blocked under

The OMLP family of optimal multiprocessor real-time locking protocols 285

Fig. 1 S-oblivious and s-aware pi-blocking in a G-EDF schedule of three jobs sharing one resource on
m = c = 2 processors

either definition. Job J3 is suspended during [2,4). It suffers pi-blocking under either defi-
nition during [3,4) since it is among the c = m = 2 highest-priority pending jobs. However,
J3 suffers only s-aware pi-blocking during [2,3) since J1 is pending but not ready then.

The focus of this paper is locking protocols for s-oblivious schedulability analysis. The
rationale for this choice is twofold. First, we are most interested in C-EDF [10, 21], for
which G-EDF schedulability tests are required to establish the schedulability of each cluster.
As noted above, most G-EDF schedulability tests are s-oblivious. And second, even though
s-aware analysis seems intuitively to be much less pessimistic than s-oblivious analysis,
locking protocols for s-oblivious analysis can in fact be superior to those for s-aware analy-
sis, as we report in detail in Sect. 5.

3.2 A blocking complexity measure

As mentioned in Sect. 2.4, the principal goal in designing a real-time locking protocol is
to minimize pi-blocking. Some amount of pi-blocking is inherently unavoidable if (some)
resource accesses require mutual exclusion. A locking protocol must hence strike a balance
between favoring resource requests of some jobs over those of others. For example, in the
extreme, a protocol could guarantee a task to never incur pi-blocking if resources are never
granted to other tasks. Clearly, such a protocol is not useful, but it highlights that just consid-
ering the pi-blocking bound of only high-priority (or privileged) tasks is not representative
of the overall pi-blocking caused by a particular locking protocol.

To compare locking protocols, we thus consider maximum pi-blocking, formally
max1≤i≤n{bi}, to characterize a protocol’s overall blocking behavior. Maximum pi-blocking
reflects the per-task bound required for schedulability analysis of the task that incurs the
most pi-blocking. It is worth emphasizing that it does not necessarily reflect the maximum
acquisition delay, which is irrelevant from a schedulability analysis point of view (recall
Sect. 2.4).

Concrete bounds on pi-blocking must necessarily depend on each Li,q—long requests
will cause long priority inversions under any protocol. Similarly, bounds for any reason-
able protocol grow linearly with the maximum number of requests per job.4 Thus, when
deriving asymptotic bounds, we consider, for each Ti ,

∑
1≤q≤nr

Ni,q and each Li,q to be con-
stants and assume n ≥ m. All other parameters are considered variable (or dependent on m

4Interestingly, in the uniprocessor case, the PCP [43, 47] and the SRP [3] both ensure O(1) maximum pi-
blocking regardless of the number of requests, which is possible due to the lack of concurrency (after a job
has acquired a resource once, lower-priority jobs cannot lock it again while higher-priority jobs are ready). In
the multiprocessor case, resources may be repeatedly locked by concurrently-scheduled remote jobs, which
implies that a job may incur pi-blocking each time that it issues a request.

286 B.B. Brandenburg, J.H. Anderson

Fig. 2 Illustration of Lemma 1. The depicted example shows a G-EDF schedule of τ seq(n) for n = 6 and
m = 3, and thus g ∈ {0,1}. The first group of jobs (J1,1, J2,1, J3,1) is released at time 0; the second group

(J4,1, J5,1, J6,1) is released at time 3. Each group incurs 0 + 1 + 2 = ∑m−1
i=0 i total s-oblivious pi-blocking.

(Jobs J1,2, J2,2, and J3,2 have been omitted for clarity.)

and n). In particular, we do not impose constraints on the ratio max{pi}/min{pi}, the num-
ber of resources nr , or the number of tasks sharing each �q . To simplify our notation, we
let Lmax � max{Li,q | 1 ≤ i ≤ n ∧ 1 ≤ q ≤ nr} denote the maximum critical section length
when deriving asymptotic bounds. To reiterate, we assume Lmax = O(1).

In accordance with the goal of minimal pi-blocking, we seek to design protocols under
which the amount of time lost to pi-blocking (by any task set) is bounded within a constant
factor of the loss shown to be unavoidable in the worst case (for some task sets). To this end,
we next establish a lower bound on maximum pi-blocking under s-oblivious schedulability
analysis.

3.3 Lower bound on maximum s-oblivious pi-blocking

The importance of differentiating between s-oblivious and s-aware pi-blocking stems from
the fact that each definition gives rise to a different lower bound on maximum pi-blocking. In
the case of s-oblivious schedulability analysis, Ω(m) maximum pi-blocking is unavoidable
in some cases. Consider the following pathological high-contention task set.

Definition 3 Let τ seq(n) denote a task set of n identical tasks that share one resource �1

such that ei = 1, pi = 2n, Ni,1 = 1, and Li,1 = 1 for each Ti , where n ≥ m ≥ 2.

Lemma 1 There exists an arrival sequence for τ seq(n) such that max1≤i≤n{bi} = Ω(m)

under any locking protocol and JLFP scheduler under s-oblivious analysis.

Proof Without loss of generality, assume that n is an integer multiple of m. Consider the
schedule resulting from the following periodic arrival sequence: each Ji,j is released at time
ai,j = (�i/m� − 1) · m + (j − 1) · pi , and issues one request Ri,1,j , where Li,1,j = 1. That
is, releases occur in groups of m jobs and each job requires �1 for its entire computation.
A resulting G-EDF schedule is illustrated in Fig. 2.

There are n/m groups of m tasks each that release jobs simultaneously. For each group
g, where g ∈ {0, . . . , n/m − 1}, jobs of Tg·m+1, . . . , Tg·m+m issue m concurrent requests for
�1. Since �1 cannot be shared, any locking protocol must impart some order, and thus there
exists a job in each group that incurs d time units of pi-blocking for each d ∈ {0, . . . ,m−1}.

The OMLP family of optimal multiprocessor real-time locking protocols 287

Hence, for each g,
∑g·m+m

i=g·m+1 bi ≥ ∑m−1
i=0 i = Ω(m2), and thus, across all groups,

n∑

i=1

bi =
(n/m−1)∑

g=0

g·m+m∑

i=g·m+1

bi = n

m
· Ω(

m2
) = Ω(nm),

which implies max1≤i≤n{bi} = Ω(m).
By construction, the schedule does not depend on G-EDF scheduling since no more than

m jobs are pending at any time, and thus applies to other global JLFP schedulers as well.
The lower bound applies equally to clustered JLFP schedulers with c < m since τ seq(n) can
be trivially partitioned such that each processor serves at least �n/c	 and no more than �n/c�
tasks. �

Perhaps surprisingly, the improvement in analysis accuracy in suspension-aware analy-
sis comes at the cost of an increased lower bound for mutex protocols: in prior work, we
established a lower bound of Ω(n) on maximum s-aware pi-blocking [17]. Intuitively, this
difference arises because, under s-oblivious analysis, at most m jobs can incur pi-blocking at
the same time (a job incurs s-oblivious pi-blocking only if it is among the c highest-priority
jobs in its cluster—see Definition 1), whereas no such limit exists for s-aware pi-blocking.
That is, under s-oblivious schedulability analysis, high-priority jobs that incur pi-blocking
implicitly “shield” lower-priority jobs from incurring pi-blocking at the same time, which
allows some of the s-oblivious approach’s inherent pessimism to be “reused” to obtain less
pessimistic analysis of locking protocols.

The remainder of this paper is exclusively concerned with the design of locking protocols
tailored to take full advantage of the properties of s-oblivious schedulability analysis; an in-
depth discussion of locking protocols for s-aware pi-blocking and a formal derivation of the
Ω(n) lower bound on maximum s-aware pi-blocking can be found elsewhere [14].

4 The O(m) locking protocol family

In light of the lower bound of Ω(m) maximum s-oblivious pi-blocking, which is asymptoti-
cally tight, an optimal s-oblivious locking protocol must ensure O(m) maximum s-oblivious
pi-blocking. In fact, an O(m) bound on acquisition delay has long been known to be tight
for spin-based protocols: when jobs busy-wait non-preemptively in FIFO order, they must
wait for at most m − 1 earlier requests (e.g., see [14, 18, 28, 32]). However, prior work has
not yielded an O(m) suspension-based locking protocol.

The family of O(m) locking protocols (the OMLP family), in part inspired by spin-based
protocols and first described in [17, 19], includes a mutex protocol, an RW protocol, and a
k-exclusion protocol for clustered scheduling with arbitrary cluster sizes (1 ≤ c ≤ m) and a
mutex protocol for the special case of global scheduling.5 The OMLP family’s main features
are the following.

– Both mutex protocols ensure maximum pi-blocking that is optimal within a factor that ap-
proaches two under s-oblivious analysis. All previously proposed suspension-based lock-
ing protocols are asymptotically suboptimal with respect to maximum pi-blocking under
s-oblivious analysis.

5The initial description of the OMLP [17] contained a variant for partitioned scheduling. This special case is
not considered herein because, from an analytical point of view, it has since been superseded by the OMLP’s
mutex protocol for clustered scheduling.

288 B.B. Brandenburg, J.H. Anderson

– The OMLP’s RW and k-exclusion variants are the first suspension-based multiprocessor
locking protocols of their kind (prior work on suspension-based multiprocessor locking
protocols was focused on mutex constraints).

– The RW protocols ensure maximum pi-blocking for writers that is optimal within a fac-
tor that approaches four for large m under s-oblivious analysis (the lower bounds on
maximum pi-blocking do not apply to readers since they assume mutual exclusion—see
Sect. 4.6 below).

– The k-exclusion protocol ensures O(m
min{kq }) maximum pi-blocking. The ensured bound

on maximum pi-blocking is optimal within a factor that approaches two for large m under
s-oblivious analysis.

– The OMLP is the first published suspension-based locking protocol that has been designed
and analyzed specifically for the case of 1 < c < m (prior work focused on global or
partitioned scheduling).

The last point, support for truly clustered scheduling, poses significant challenges from a
locking perspective because clusters with 1 < c < m exhibit aspects of both partitioned and
global scheduling, which seem to necessitate fundamentally different means for bounding
priority inversions. We begin by describing a novel method for controlling priority inversions
that is key to the OMLP’s optimality for the case of 1 < c < m.

4.1 Resource-holder progress

To prevent maximum pi-blocking from becoming unbounded or unsuitably large (i.e.,
bounds should not include job execution costs in addition to request lengths), a locking pro-
tocol must ensure that resource-holding jobs progress in their execution when high-priority
jobs are waiting. That is, low-priority jobs must be scheduled in spite of their low base pri-
ority when they cause other higher-priority jobs to incur pi-blocking. A real-time locking
protocol thus requires a mechanism to raise the effective priority of resource holders, either
on demand (when a waiting job incurs pi-blocking) or unconditionally. All prior protocols
employ priority inheritance or priority boosting to this end—unfortunately, neither general-
izes to clustered scheduling with 1 < c < m.

4.1.1 Limits of priority boosting

Priority inheritance is ineffective at bounding maximum priority inversions if c < m be-
cause comparing priorities across cluster boundaries is meaningless from an analytical point
of view (the highest priority in one cluster may be numerically low in another—an example
can be found in [14]). For this reason, all prior protocols for partitioned scheduling instead
rely on priority boosting to ensure resource-holder progress. Priority boosting prevents pre-
empted jobs from transitively delaying waiting higher-priority jobs by unconditionally rais-
ing the effective priority of resource-holding jobs above that of non-resource-holding jobs.
While conceptually simple, the unconditional nature of priority boosting may itself cause
pi-blocking. Under partitioning (c = 1), this effect can be controlled such that jobs incur at
most O(m) s-oblivious pi-blocking [17], but this approach does not extend to c > 1. This is
best illustrated with an example.

Example 2 For the sake of simplicity, suppose that requests are satisfied in FIFO order, and
that a resource holder’s priority is boosted. A possible result is shown in Fig. 3: jobs of tasks
in τ2 repeatedly request �1 and �2 in a pattern that causes low-priority jobs of tasks T2, . . . , T5

The OMLP family of optimal multiprocessor real-time locking protocols 289

Fig. 3 Seven tasks sharing two resources (�1, �2) across two two-processor clusters under C-EDF scheduling
(the digit within each critical section indicates which resource was requested)

in τ1 to be priority-boosted simultaneously. Whenever c = 2 jobs are priority-boosted at the
same time, J1 is necessarily preempted, which causes it to be pi-blocked repeatedly. In
general, as c jobs must be priority-boosted to force a preemption, priority boosting may
cause Ω(n

c
) pi-blocking, which makes it unsuitable for constructing a protocol with O(m)

maximum pi-blocking.

The example shows that priority boosting may cause a job to incur pi-blocking repeat-
edly, and independently of its own requests, if c > 1. If instead c = 1, then lower-priority
jobs cannot issue requests while higher-priority jobs execute and repeated pi-blocking due
to priority boosting is not an issue. That is, while priority inheritance fundamentally works
only if m = c, priority boosting is only appropriate for c = 1 and leads to sub-optimal pi-
blocking if c > 1.

4.1.2 Priority donation

To overcome the gap in the range of 1 < c < m, the OMLP uses a novel progress mechanism
named priority donation that ensures the following two properties.

P1 A resource-holding job is always scheduled.
P2 The duration of s-oblivious pi-blocking caused by the progress mechanism (i.e., the

rules that maintain P1) is bounded by the maximum request span (with regard to any
job).

Priority boosting unconditionally forces resource holders to be scheduled (Property P1),
but it does not specify which job will be preempted as a result. As the example in Fig. 3
demonstrates, if c > 1, this is problematic since an “unlucky” job can repeatedly be a pre-
emption “victim” (like J1 in Fig. 3), thereby invalidating P2.

Priority donation is a form of priority boosting in which the “victim” is predetermined
such that each job is preempted at most once. This is achieved by establishing a donor
relationship when a potentially harmful job release occurs (i.e., one that could invalidate
P1). In contrast to priority boosting, priority donation only takes effect when needed. In
the examples and the discussion below, we assume mutex locks for the sake of simplicity;
however, the proposed protocol applies equally to RW and k-exclusion locks.

290 B.B. Brandenburg, J.H. Anderson

Fig. 4 Request phases under
priority donation

Request rule In the following, let Ji denote a job that requires a resource �q at time t1,
as illustrated in Fig. 4. Priority donation achieves P1 and P2 for 1 ≤ c ≤ m in two steps: it
first requires that Ji has a sufficiently high base priority, and then ensures that Ji ’s effective
priority remains high until Ji releases �q .

D1 Ji may issue a request only if it is among the c highest-priority pending jobs in its cluster
(with regard to base priorities). If necessary, Ji suspends until it may issue a request.

Rule D1 ensures that a job has sufficient priority to be scheduled without delay at the time
of request. That is, Property P1 holds at time t2 in Fig. 4. However, some—but not all—later
job releases during [t2, t4] could preempt Ji . Consider a list of all pending jobs in Ji ’s cluster
sorted by decreasing base priority, and let x denote Ji ’s position in this list at time t2. In other
words, Ji is the xth highest-priority pending job at time t2. By Rule D1, x ≤ c. If there are at
most c−x higher-priority jobs released during [t2, t4], then Ji remains among the c highest-
priority pending jobs and no protocol intervention is required. However, when Ji is the cth
highest-priority pending job in its cluster, a higher-priority job release may cause Ji to be
preempted or to have insufficient priority to be scheduled when it resumes, thereby violating
P1. Priority donation intercepts such releases.

Donor rules A priority donor is a job that suspends to allow a lower-priority job to com-
plete its request. Each job has at most one priority donor at any time. We first define how jobs
become donors and when they suspend, and illustrate the rules with an example thereafter.
Let Jd denote Ji ’s priority donor (if any), and let ta denote Jd ’s release time.

D2 Jd becomes Ji ’s priority donor at time ta if (a) Ji was the cth highest-priority pending
job prior to Jd ’s release (with regard to its cluster), (b) Jd has one of the c highest base
priorities, and (c) Ji has issued a request that is incomplete at time ta (i.e., ta ∈ [t2, t4)
with regard to Ji ’s request as illustrated in Fig. 4).

D3 Ji inherits the priority of Jd (if any) during [t2, t4).
The purpose of Rule D3 is to ensure that Ji will be scheduled if ready. However, Jd ’s relative
priority could decline due to subsequent releases. In this case, the donor role is passed on.

D4 If Jd is displaced from the set of the c highest-priority jobs by the release of Jh, then Jh

becomes Ji ’s priority donor and Jd ceases to be a priority donor. (By Rule D3, Ji thus
inherits Jh’s priority.)

Rule D4 ensures that Ji remains among the c highest-effective-priority pending jobs (with
regard to its cluster). The following two rules ensure that Ji and Jd are never ready at the
same time, thereby freeing a processor for Ji to be scheduled on.

D5 If Ji is ready when Jd becomes Ji ’s priority donor (by either Rule D2 or D4), then Jd

suspends immediately (i.e., Jd ’s release is effectively delayed).
D6 If Jd is Ji ’s priority donor when Ji resumes at time t3, then Jd suspends (if ready).

Further, a priority donor may not execute a request itself and may not prematurely exit.

D7 A priority donor may not issue requests. Jd suspends if it requires a resource while
being a priority donor.

The OMLP family of optimal multiprocessor real-time locking protocols 291

Fig. 5 Six tasks sharing two serially-reusable resources across two two-processor clusters under C-EDF
scheduling (the digit within each critical section indicates which resource was requested)

D8 If Jd finishes execution while being a priority donor, then its completion is postponed,
that is, Jd suspends and remains pending until it is no longer a priority donor.

Jd may continue once its donation is no longer required, or when a higher-priority job takes
over.

D9 Jd ceases to be a priority donor as soon as either (a) Ji completes its request (i.e., at
time t4 in Fig. 4), (b) Ji ’s base priority becomes one of the c highest (with regard to
pending jobs in Ji ’s cluster), or (c) Jd is relieved by Rule D4. If Jd suspended due to
Rules D5–D7, then it resumes.

Under a JLFP scheduler, Rule D9b can only be triggered when higher-priority jobs complete.

Example 3 Figure 5 shows a resulting schedule assuming jobs wait in FIFO order. Priority
donation occurs first at time 3, when the release of J1 displaces J3 from the set of the c = 2
highest-priority pending jobs of tasks in τ1. Since J3 holds �1, J1 becomes J3’s priority
donor (Rule D2) and suspends immediately since J3 is ready (Rule D5). J1 resumes when
its duties cease at time 6 (Rule 9a). If J1 would not have donated its priority to J3, then it
would have preempted J3, thereby violating P1. At time 3, J6 also requests �1 and suspends
as �1 is unavailable. It becomes a priority recipient when J4 is released at time 4 (Rule D2).
Since J6 is already suspended, Rule D5 does not apply and J4 remains ready. However, at
time 5, J4 requires �2, but since it is still a priority donor, it may not issue a request and
must suspend instead (Rule D7). J4 may resume and issue its request at time 7 since J5

finishes, which causes J6 to become one of the two highest-priority pending jobs of tasks
in τ2 (Rule 9b). If priority donors were allowed to issue requests, then J4 would have been
suspended while holding �2 when J6 resumed at time 6, thereby violating P1.

Taken together, Rules D1–D9 ensure resource-holder progress under clustered schedul-
ing with arbitrary cluster sizes (1 ≤ c ≤ m).

Lemma 2 Priority donation ensures Property P1.

292 B.B. Brandenburg, J.H. Anderson

Proof Rule D7 prevents Rules D5 and D6 from suspending a resource-holding job. Rule D1
establishes Property P1 at time t2. If Ji ’s base priority becomes insufficient to guarantee
P1, its effective priority is raised by Rules D2 and D3. Rules D4 and D8 ensure that the
donated priority is always among the c highest (with regard to pending jobs in Ji ’s cluster),
which, together with Rules D5 and D6, effectively reserves a processor for Ji to run on when
ready. �

By establishing the donor relationship at release time, priority donation ensures that a job
is a “preemption victim” at most once, even if c > 1.

Lemma 3 Priority donation ensures Property P2.

Proof A job incurs s-oblivious pi-blocking if it is among the c highest-priority pending jobs
in its cluster and either (i) suspended or (ii) ready and not scheduled (i.e., preempted). We
show that (i) is bounded and that (ii) is impossible.

Case (i). Only Rules D1 and D5–D8 cause a job to suspend. Rule D1 does not cause
s-oblivious pi-blocking: the interval [t1, t2) ends as soon as Ji becomes one of the c highest-
priority pending jobs. Rules D5–D8 apply to priority donors. Jd becomes a priority donor
only immediately upon release or not at all (Rules D2 and D4), that is, each Jd donates its
priority to some Ji only once. By Rule D2, the donor relationship starts no earlier than t2,
and, by Rule D9, ends at the latest at time t4. By Rules D8 and D9, Jd either resumes or
completes when it ceases to be a priority donor. Jd suspends thus for at most the duration of
one entire request span.

Case (ii). Let Jx denote a job that is ready and among the c highest-priority pending jobs
(with regard to base priorities) of tasks in cluster τj , but not scheduled. Let A denote the set
of ready jobs of tasks in τj with higher base priorities than Jx , and let B denote the set of
ready jobs of tasks of τj with higher effective priorities than Jx that are not in A. Only jobs
in A and B can preempt Jx . Let D denote the set of priority donors of jobs in B .

By Rule D3, every job in B has a priority donor that is, by construction, unique: |B| =
|D|. By assumption, |A| + |B| ≥ c (otherwise Jx would be scheduled), and thus also |A| +
|D| ≥ c.

Rules D5 and D6 imply that no job in D is ready (since every job in B is ready): A∩D =
∅, and hence |A ∪ D| = |A| + |D|.

By the definition of B , every job in D has a base priority that exceeds Jx ’s base priority.
Similarly, by the definition of A, every job in A has a higher base priority than Jx as well.
Thus, since every job in A ∪ D has a higher base priority than Jx , there exist |A ∪ D| =
|A|+ |D| ≥ c pending jobs of tasks in τj with higher base priority than Jx . Contradiction. �

Priority donation further limits maximum concurrency, which is key to the analysis of
the protocols presented next in Sects. 4.2–4.4.

Lemma 4 Let Rj(t) denote the number of requests issued by jobs of tasks in cluster τj that
are incomplete at time t . Under priority donation, Rj(t) ≤ c at all times.

Proof Similar to Case (ii) above. Suppose Rj(t) > c at time t . Let H denote the set of the
c highest-priority pending jobs of tasks in τj (at time t and with regard to base priorities),
and let I denote the set of jobs of tasks in τj that have issued a request that is incomplete at
time t .

The OMLP family of optimal multiprocessor real-time locking protocols 293

Let A denote the set of high-priority jobs with incomplete requests (i.e., A = H ∩ I) and
let B denote the set of low-priority jobs with incomplete requests (i.e., B = I \ A).

Let D denote the set of priority donors of jobs in B . Together, Rules D2, D4, D8, and D9
ensure that every job in B has a unique priority donor. Therefore |B| = |D|.

By definition, |A|+|B| = |I | = Rj(t). By our initial assumption, this implies |A|+|B| >
c and thus |A|+ |D| > c. By Rules D2 and D4, D ⊆ H (only high-priority jobs are donors).

By Rule D7, A ∩ D = ∅ (donors may not issue requests). Since, by definition, A ⊆ H ,
this implies |H | ≥ |A| + |D| > c. Contradiction. �

In the following, we show that Lemmas 2–4 provide a strong foundation that enables the
design of simple, yet asymptotically optimal, locking protocols.

4.2 The clustered OMLP for mutual exclusion

We begin with ensuring mutex constraints for 1 ≤ c ≤ m, which is the most straightforward
case. An asymptotically optimal mutex protocol can be layered on top of priority donation by
using simple FIFO queues just as they are used in non-preemptive spinlocks. The following
protocol’s simplicity demonstrates that priority donation is a powerful aid for worst-case
analysis.

Structure For each serially-reusable resource �q , there is a FIFO queue FQq that is used to
serialize conflicting accesses. The job at the head of FQq holds �q .

Rules Access to each resource is granted according to the following rules. Let Ji denote a
job that issues a request Ri,q,v for �q .

X1 Ji is enqueued in FQq when it issues Ri,q,v . If FQq was non-empty, then Ji suspends
until Ri,q,v is satisfied.

X2 Ri,q,v is satisfied when Ji becomes the head of FQq .
X3 Ji is dequeued from FQq when Ri,q,v is complete. The new head of FQq (if any) is

resumed.

Rules X1–X3 correspond to times t2–t4 in Fig. 4.

Example 4 Figure 5 depicts an example of the clustered OMLP for serially-reusable re-
sources. (Fig. 5 was previously discussed in the context of priority donation.) At time 2,
J3 requests �1 and is enqueued in FQ1 (Rule X1). Since FQ1 was empty, J3’s request is
satisfied immediately (Rule X2). When J6 requests the same resource at time 3, it is ap-
pended to FQ1 and suspends. When J3 releases �1 at time 6, J6 becomes the new head of
FQ1 and resumes (Rule X3). At time 7, J4 acquires �2 and enqueues in FQ2, which causes
J2 and J1 to suspend when they, too, request �2 at times 8 and 9. Importantly, priorities are
ignored in each FQq : when J4 releases �2 at time 10, J2 becomes the resource holder and
is resumed, even though J1 has a higher base priority. While using FIFO queues instead of
priority queues in real-time systems may seem counterintuitive, priority queues are in fact
problematic in a multiprocessor context since they allow starvation, which renders them un-
suitable for constructing protocols with O(m) maximum pi-blocking (as discussed in more
detail in Sect. 4.5 below).

Priority donation is in two ways crucial to the OMLP: requests complete without delay
and maximum contention is limited.

294 B.B. Brandenburg, J.H. Anderson

Lemma 5 At most m jobs are enqueued in any FQq .

Proof By Lemma 4, at most c requests are incomplete at any point in time in each cluster.
Since there are m

c
clusters, no more than m

c
· c = m jobs are enqueued in any FQq . �

Lemma 6 A job Ji that requests a resource �q incurs acquisition delay for the duration of
at most m − 1 requests.

Proof By Lemma 5, at most m − 1 other jobs precede Ji in FQq . By Lemma 2, the job at
the head of FQq is scheduled. Therefore, Ji becomes the head of FQq after the combined
length of at most m − 1 requests. �

This property suffices to prove asymptotic optimality.

Theorem 1 The clustered OMLP for serially-reusable resources causes a job Ji to incur at
most bi = m · Lmax + ∑nr

q=1 Ni,q · (m − 1) · Lmax = O(m) s-oblivious pi-blocking.

Proof By Lemma 3, the duration of s-oblivious pi-blocking caused by priority donation is
bounded by the maximum request span. Recall from Sect. 2.3 that the request span includes
both the request length and any acquisition delay. By Lemma 6, maximum acquisition delay
per request is bounded by (m − 1) · Lmax. The maximum request span is thus bounded by
m · Lmax. Recall from Sect. 3.2 that

∑nr

q=1 Ni,q and Lmax are presumed constant. The bound
follows. �

The protocol for serially-reusable resources is thus asymptotically optimal with regard
to maximum s-oblivious pi-blocking. A practical, non-asymptotic bound on maximum pi-
blocking that takes individual request lengths and frequencies into account is derived in the
Appendix.

4.3 The clustered OMLP for RW exclusion

In throughput-oriented computing, RW locks are attractive because they increase average
concurrency (compared to mutex locks) if read requests are more frequent than write re-
quests. In a real-time context, RW locks should also lower pi-blocking for readers, that is,
the higher degree of concurrency must be reflected in a priori worst-case analysis and not
just in observed average-case delays.

Unfortunately, many RW lock types commonly in use in throughput-oriented systems
provide only little analytical benefits because they either allow starvation or serialize read-
ers [18]. As an example for the former, consider reader preference RW locks, under which
write requests are only satisfied if there are no unsatisfied read requests. Such locks have
the advantage that a read request incurs only O(1) acquisition delay, but they also expose
write requests to potentially unbounded acquisition delays. In contrast, task-fair RW locks,
in which requests (either read or write) are satisfied strictly in FIFO order, are an example
for the latter case: in the worst case, read requests and write requests are interleaved such
that read requests incur Ω(m) acquisition delay (assuming priority donation), just as they
would under a mutex lock.

In recent work on spin-based RW locking protocols [18], we introduced phase-fair RW
locks as an alternative better suited to reducing worst-case delays. Phase-fairness is defined
by the following key properties.

The OMLP family of optimal multiprocessor real-time locking protocols 295

– Reader phases and writer phases alternate (unless there are only requests of one kind).
– At the beginning of a reader phase, all incomplete read requests are satisfied.
– One write request is satisfied at the beginning of a writer phase.
– Read requests are allowed to join a reader phase that is already in progress only if there

are no incomplete write requests.

This results in O(1) acquisition delay for read requests without starving write requests [14,
18]. Note that this does not contradict the lower bound on s-oblivious pi-blocking (Lemma 1)
because the lower bound depends on mutual exclusion. It thus only applies to write requests
(which must be exclusive), but not to read requests (which may be satisfied concurrently
with other read requests).

The following rules realize a suspension-based phase-fair RW lock.

Structure For each RW resource �q , there are three queues: a FIFO queue for writers,
denoted WQq , and two reader queues RQ1

q and RQ2
q . Initially, RQ1

q is the collecting and
RQ2

q is the draining reader queue. The roles, denoted as CQq and DQq , switch as reader and
writer phases alternate; that is, the designations “collecting” and “draining” are not static.

Reader rules Let Ji denote a job that issues a read request RR
i,q,v for �q . The distinction

between CQq and DQq serves to separate reader phases. Readers always enqueue in the (at
the time of request) collecting queue. If queue roles change, then a writer phase starts when
the last reader releases �q .

R1 Ji is enqueued in CQq when it issues RR
i,q,v . If WQq is non-empty (i.e., if there are one

or more writers present), then Ji suspends.
R2 RR

i,q,v is satisfied either immediately if WQq is empty when RR
i,q,v is issued, or when Ji

is subsequently resumed (by an exiting writer, see Rule W3 below).
R3 Let RQy

q denote the reader queue in which Ji was enqueued due to Rule R1. Ji is
dequeued from RQy

q when RR
i,q,v is complete. If RQy

q is DQq and Ji is the last job to
be dequeued from RQy

q , then the current reader phase ends and the head of WQq is
resumed (WQq is non-empty in this case because queue roles changed).

Writer rules Let Jw denote a job that issues a write request RW
w,q,v for �q . Conflicting

writers wait in FIFO order. The writer at the head of WQq is further responsible for starting
and ending reader phases by switching the reader queues.

W1 Jw is enqueued in WQq when it issues RW
w,q,v . Jw suspends until RW

w,q,v is satisfied,
unless RW

w,q,v is satisfied immediately. If WQq is empty and CQq is not, then the roles
of CQq and DQq are switched to end the current reader phase.

W2 RW
w,q,v is satisfied either immediately if WQq and CQq are both empty when RW

w,q,v is
issued,6 or when Jw is subsequently resumed.

W3 Jw is dequeued from WQq when RW
w,q,v is complete. If CQq is empty, then the new

head of WQq (if any) is resumed. Otherwise, each job in CQq is resumed and, if WQq

remains non-empty (i.e., if there are waiting writers), the roles of CQq and DQq are
switched.

6If WQq and CQq are both empty, then DQq is necessarily empty, too, as any readers in the draining queue
would have had to enqueue when it was still the collecting queue (Rule R1) and the roles of CQq and DQq

are only switched when a writer is waiting (Rules W1 and W3).

296 B.B. Brandenburg, J.H. Anderson

Fig. 6 Six tasks sharing one RW resource across two two-processor clusters under C-EDF scheduling (pri-
ority donation does not occur in this example schedule)

Rules R1–R3 and W1–W3 correspond to times t2–t4 in Fig. 4 (respectively), and are illus-
trated in Fig. 6.

Example 5 Figure 6 depicts six tasks in two clusters sharing one resource. The resource
�1 is first read by J5, which is enqueued in RQ1

q , the initial collecting queue, at time 1
(Rule R1). When J2 issues a read request at time 1, it is also enqueued and its request is
satisfied immediately since WQ1 is still empty (Rule R2). J1 issues a write request at time 4.
Since CQ1 is non-empty, the roles of CQ1 and DQ1 are switched, that is, RQ1

q becomes the
draining reader queue, and J1 suspends (Rule W1). J4 issues a read request soon thereafter
and is enqueued in RQ2

q (Rule R1), which is the collecting queue after the role switch. J4

suspends since WQ1 is not empty (Rule R2), even though J2 is still executing a read request.
This is required to ensure that write requests are not starved. The reader phase ends when
J2 releases �1 at time 6, and the next writer, J1, is resumed (Rules R3 and W2). J1 releases
�1 and resumes all readers that have accumulated in RQ2

q (J3 and J4). Since WQ1 is non-
empty (J6 was enqueued at time 6), RQ2

q becomes the draining reader queue (Rule W3).
Under task-fair RW locks, J3 would have remained suspended since it requested �1 after J6.
In contrast, J6 must wait until the next writer phase at time 13 and all waiting readers are
resumed at the beginning of the next reader phase at time 10 (Rule W3).

Together with priority donation, the reader and writer rules above realize a phase-fair RW
lock. Due to the intertwined nature of reader and writer phases, we first consider the head of
WQq (a writer phase), then CQq (a reader phase), and finally the rest of WQq .

Lemma 7 Let Jw denote the head of WQq . Jw incurs acquisition delay for the duration of
at most one read request length before its request is satisfied.

Proof Jw became head of WQq in one of two ways: by Rule W1 (if WQq was empty prior
to Jw’s request) or by Rule W3 (if Jw had a predecessor in WQq). In either case, there was
a reader queue role switch when Jw became head of WQq (unless there were no unsatisfied
read requests, in which case the claim is trivially true). By Rule R3, if a reader phase delayed
Jw , then Jw is resumed as soon as the last reader in DQq releases �q . By Rule R1, no new

The OMLP family of optimal multiprocessor real-time locking protocols 297

readers enter DQq . Due to priority donation, there are at most m−1 jobs in DQq (Lemma 4),
and each job holding �q is scheduled (Lemma 2). The claim follows. �

Lemma 8 Let Ji denote a job that issues a read request for �q . Ji incurs acquisition delay
for the combined duration of at most one read and one write request.

Proof If WQq is empty, then Ji ’s request is satisfied immediately (Rule R2). Otherwise,
it suspends and is enqueued in CQq (Rule R1). This prevents consecutive writer phases
(Rule W3). Ji ’s request is thus satisfied as soon as the current head of WQq releases �q

(Rule W3). By Lemma 7, the head of WQq incurs acquisition delay for no more than the
length of one read request (which transitively impacts Ji). Due to priority donation, the
head of WQq is scheduled when its request is satisfied (Lemma 2). Therefore, Ji waits for
the duration of at most one read and one write request. �

Lemma 8 shows that readers incur O(1) acquisition delay. Next, we show that writers
incur O(m) acquisition delay.

Lemma 9 Let Jw denote a job that issues a write request for �q . Jw incurs acquisition delay
for the duration of at most m − 1 write and m read requests before its request is satisfied.

Proof It follows from Lemma 4 that at most m − 1 other jobs precede Jw in WQq (analo-
gously to Lemma 5). By Lemma 2, Jw’s predecessors together hold �q for the duration of at
most m − 1 write requests. By Lemma 7, each predecessor incurs acquisition delay for the
duration of at most one read request once it has become the head of WQq . Thus, Jw incurs
transitive acquisition delay for the duration of at most m−1 read requests before it becomes
head of WQq , for a total of at most m − 1 + 1 = m read requests. �

These properties suffice to prove asymptotic optimality with regard to maximum s-
oblivious pi-blocking.

Theorem 2 The clustered OMLP for RW resources causes a job Ji to incur at most

bi = 2 · m · Lmax +
(

nr∑

q=1

NR
i,q · 2 · Lmax

)

+
(

nr∑

q=1

NW
i,q · (2 · m − 1) · Lmax

)

= O(m)

s-oblivious pi-blocking.

Proof By Lemma 3, the duration of s-oblivious pi-blocking caused by priority donation is
bounded by the maximum request span. By Lemma 9, maximum acquisition delay per write
request is bounded by (2m − 1) · Lmax; by Lemma 8, maximum acquisition delay per read
request is bounded by 2 · Lmax. The maximum request span is thus bounded by 2 · m · Lmax.
Recall from Sect. 3.2 that Lmax and

∑nr

q=1 Ni,q , and hence also
∑nr

q=1 NW
i,q and

∑nr

q=1 NR
i,q ,

are constants. The bound follows. �

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request
lengths and frequencies into account is given in the Appendix. While the presented analysis
assumes phase-fairness, other RW request orders such as task-fairness or preference locks
could similarly be implemented on top of priority donation; see [14, 18] for appropriate
analysis of task-fair and preference RW locks.

298 B.B. Brandenburg, J.H. Anderson

4.4 The clustered OMLP for k-exclusion

For some resource types, one option to reduce contention is to replicate them. For example,
if potential overload of a DSP co-processor is found to pose a risk in the design phase, the
system designer could introduce additional instances to improve response times.

As with multiprocessors, there are two fundamental ways to allocate replicated resources:
either each task may only request a specific replica, or every task may request any replica.
The former approach, which corresponds to partitioned scheduling, has the advantage that a
mutex protocol suffices, but it also implies that some resource replicas may idle while jobs
wait to acquire their designated replica. The latter approach, equivalent to global scheduling,
avoids such bottlenecks, but needs a k-exclusion protocol to do so. Priority donation yields
such a protocol for clustered scheduling.

Recall that kq denotes the number of replicas of resource �q . In the following, we assume
1 ≤ kq ≤ m. The case of kq > m is discussed in Sect. 4.6 below.

Structure Jobs waiting for a replicated resource �q are kept in a FIFO queue denoted as
KQq . The replica set RSq contains all idle instances of �q . If RSq �= ∅, then KQq is empty.

Rules Let Ji denote a job that issues a request Ri,q,v for �q .

K1 If RSq �= ∅, then Ji acquires an idle replica from RSq . Otherwise, Ji is enqueued in
KQq and suspends.

K2 Ri,q,v is satisfied either immediately (if RSq �= ∅ at the time of request) or when Ji is
removed from KQq .

K3 If KQq is non-empty when Ri,q,v completes, the head of KQq is dequeued, resumed,
and acquires Ji ’s replica. Otherwise, Ji ’s replica is released into RSq .

As it was the case with the definition of the previous protocols, Rules K1–K3 correspond to
times t2–t4 in Fig. 4.

Example 6 Figure 7 depicts an example schedule for one resource (�1) with k1 = 2. J5

obtains a replica from RS1 at time 2 (Rule K1). The second replica of �1 is acquired by J2

at time 4. As RS1 is now empty, J1 is enqueued in KQ1 and suspends when it requests �1 at
time 5. However, it is soon resumed when J5 releases its replica at time 6 (Rule K3). This
illustrates one advantage of using k-exclusion locks: if instead one replica would have been
statically assigned to each cluster (which reduces the resource-sharing problem to a mutex
constraint), then J1 would have continued to wait while τ2’s replica would have idled. This
happens again at time 12: since no job of tasks in τ1 requires �1 at the time, both instances
are used by jobs of tasks in τ2.

As with the previous protocols, priority donation is essential to ensure progress and to
limit contention.

Lemma 10 At most m − kq jobs are enqueued in KQq .

Proof Lemma 4 implies that there are at most m incomplete requests. Since only jobs wait-
ing for �q are enqueued in KQq , at most m − kq jobs are enqueued in KQq . �

Lemma 11 Let Ji denote a job that issues a request Ri,q,v for �q . Ji incurs acquisition
delay for the duration of at most �(m − kq)/kq� maximum request lengths.

The OMLP family of optimal multiprocessor real-time locking protocols 299

Fig. 7 Six tasks sharing two instances of one resource across two two-processor clusters under C-EDF
scheduling (priority donation does not occur in this particular example)

Proof By Lemma 10, at most m− kq requests must complete before Ji ’s request is satisfied
(m−kq −1 for Ji to become the head of KQq , and one more for Ji to be dequeued). Rules K1
and K3 ensure that all replicas are in use whenever jobs wait in KQq . Since resource holders
are always scheduled due to priority donation (Lemma 2), requests are satisfied at a rate of
at least kq requests per maximum request length until Ri,q,v is satisfied. The stated bound
follows. �

Lemma 11 shows that Ji incurs at most O(m
kq

) pi-blocking per request (and none if

kq = m). This suffices to show asymptotic optimality.

Definition 4 Let kmin � min1≤q≤r{kq} denote the minimum degree of replication.

Theorem 3 The clustered OMLP for replicated resources causes a job Ji to incur at most

bi =
(

1 +
⌈

m − kmin

kmin

⌉)

· Lmax +
nr∑

q=1

(

Ni,q ·
⌈

m − kq

kq

⌉)

· Lmax

≤
(

1 +
⌈

m − kmin

kmin

⌉)

· Lmax +
nr∑

q=1

(

Ni,q ·
⌈

m − kmin

kmin

⌉)

· Lmax

= O
(
m/kmin

)

s-oblivious pi-blocking.

Proof By Lemma 11, maximum acquisition delay per request for �q is bounded by �(m −
kq)/kq� · Lmax. The maximum request span is thus bounded by (�(m − kmin)/kmin� + 1) ·
Lmax. Lemma 3 limits the duration of s-oblivious pi-blocking due to priority donation to
the maximum request span. The bound follows since

∑nr

q=1 Ni,q and Lmax are constants
(Sect. 3.2). �

300 B.B. Brandenburg, J.H. Anderson

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request
lengths and frequencies into account is provided in the Appendix. Theorem 3 implies asymp-
totic optimality for any kmin ≤ m. While Lemma 1 applies only to mutual exclusion (i.e.,
kmin = 1), it is trivial to extend the argument to 1 ≤ kmin ≤ m.

Lemma 12 There exists an arrival sequence for τ seq(n) such that, under s-oblivious analy-
sis, max1≤i≤n{bi} = Ω(m/kmin) under any k-exclusion locking protocol and JLFP scheduler,
where 1 ≤ kmin < m.

Proof Analogously to Lemma 1. Recall from Definition 3 that τ seq(n) consists of n tasks,
and that each job of each task requires a shared resource �1 for the entirety of its computation
(i.e., ei = Li,1 = Lmax = 1). If there are k1 = kmin replicas of �1, then at most kmin jobs are
scheduled at any time. As in the proof of Lemma 1, consider the arrival sequence shown in
Fig. 2: if m jobs request �1 simultaneously, then any k-exclusion protocol must impart an
order among the requests such that only kmin requests are satisfied concurrently. To complete
each of the m concurrent requests, the kmin replicas must be used for m · Lmax time units in
total. This implies that the last request to be satisfied completes no earlier than m ·Lmax/kmin

time units after it was issued. Therefore, it incurred at least

m · Lmax

kmin
− Lmax =

(
m

kmin
− 1

)

· Lmax

acquisition delay. Further, as each request is sequential and since all requests are of uniform
length Lmax = 1, requests are only satisfied at times that are integer multiples of Lmax (i.e.,
requests are satisfied only x ·Lmax time units after they are issued, where 0 ≤ x ≤ �m/kmin�−
1). Therefore, the last of the m concurrent requests to complete was not satisfied until

⌈
m

kmin
− 1

⌉

· Lmax = Ω

(
m

kmin

)

time units after the requests were issued. Since at most m jobs are pending at any time
in the periodic arrival sequence shown in Fig. 2, this implies that Ω(m/kmin) s-oblivious
pi-blocking is unavoidable in the general case. �

The clustered OMLP for replicated resources is hence asymptotically optimal with regard
to maximum s-oblivious pi-blocking.

4.5 An independence-preserving mutex protocol

As demonstrated in the preceding sections, the primary advantage of priority donation is
that it enables simple, asymptotically optimal locking protocols. An undesirable property of
priority donation is that every task is subject to potential pi-blocking—even those that are
independent—because any job may be required to serve as a priority donor upon release.
While undesirable, this is fundamental to lock-based real-time synchronization if c < m,
that is, if priority inversions must be bounded, there is more than one cluster, and tasks may
not migrate across cluster boundaries. This is illustrated in Fig. 8.

Example 7 Even though job J1 is independent, it incurs pi-blocking when it serves as J2’s
priority donor during [3,4). This example demonstrates that, if jobs may not migrate across

The OMLP family of optimal multiprocessor real-time locking protocols 301

Fig. 8 Pi-blocking of independent jobs under the clustered OMLP and P-EDF scheduling on m = 2 proces-
sors with c = 1

cluster boundaries, it is in general unavoidable for independent jobs to be subject to pi-
blocking: if J1 were allowed to preempt J2 (to avoid being pi-blocked), then J3 would incur
pi-blocking for the entire duration of J1’s execution (i.e., J3 would incur a potentially un-
bounded priority inversion).

Luckily, in the special case of global scheduling (i.e., if c = m), it is possible to de-
sign locking protocols based on priority inheritance under which independent jobs never
incur s-oblivious pi-blocking. That is, in the following, we seek to design an “independence-
preserving” locking protocol under which jobs incur pi-blocking only due to resources on
which they depend.

Definition 5 Let bi,q denote an upper bound on maximum pi-blocking incurred by Ji due
to requests by any job of any task for resource �q . A locking protocol is independence-
preserving if and only if Ni,q = 0 ⇒ bi,q = 0.

Importantly, a task that does not require any shared resources does not incur any pi-
blocking under an independence-preserving locking protocol. In this section, we present
such a protocol, namely the global OMLP for mutex constraints.

4.5.1 Wait queue choices

The OMLP variant for clustered scheduling relies on simple FIFO queues to serialize con-
flicting resource requests. Unfortunately, when FIFO queues are combined with priority
inheritance (which, unlike priority donation, does not limit the maximum number of incom-
plete requests), jobs can incur Ω(n) s-oblivious pi-blocking. As demonstrated in Fig. 9(a),
the job with the highest priority (J1) may incur Ω(n) pi-blocking if its request is issued just
after all other requests.

As priority inheritance is used together with priority queues in the uniprocessor case,
(e.g., in the PIP and PCP), it is perhaps not surprising that FIFO ordering by itself is ill-
suited to ensuring O(m) maximum pi-blocking. However, ordering requests by job priority,
as for instance done in the PPCP [29], does not improve the bound: since a low-priority
job can be starved by later-issued higher-priority requests, it is easy to construct an arrival
sequence in which a job incurs Ω(n) s-oblivious pi-blocking. This is illustrated in Fig. 9(b),
which shows that a job’s request may be deferred repeatedly even though it is among the m

highest-priority jobs. Thus, ordering all requests by job priority is, at least asymptotically
speaking, not preferable to the simpler FIFO queuing, and can in fact give rise to Ω(mn)

pi-blocking if tasks with short periods create intense contention [14, 17].

302 B.B. Brandenburg, J.H. Anderson

Fig. 9 G-EDF schedules of n = 4 tasks sharing one resource �1 on m = 2 processors

4.5.2 The global OMLP for mutual exclusion

Fortunately, it is possible to use priority inheritance to realize O(m) maximum s-oblivious
pi-blocking by combining FIFO and priority ordering. In the global OMLP, each resource
is protected by two locks: a priority-based m-exclusion lock that limits access to a regular
FIFO mutex lock, which in turn serializes access to the resource. This idea is formalized by
the following rules.

Structure For each resource �q , there are two job queues: FQq , a FIFO queue of length at
most m, and PQq , a priority queue (ordered by job priority) that is only used if more than m

jobs are contending for �q . The job at the head of FQq (if any) holds �q .

Rules Let queuedq(t) denote the number of jobs queued in both FQq and PQq at time t .
Requests are ordered according to the following rules.

G1 A job Ji that issues a request Ri,q,v for �q at time t is appended to FQq if queuedq(t) <

m; otherwise, if queuedq(t) ≥ m, it is added to PQq . Ri,q,v is satisfied when Ji becomes
the head of FQq .

G2 All queued jobs are suspended, with the exception of the job at the head of FQq , which
is ready and inherits the priority of the highest-priority job in FQq and PQq .

G3 When Ji releases �q , it is dequeued from FQq and the new head of FQq (if any) is
resumed. Also, if PQq is non-empty, then the highest-priority job in PQq is moved to
FQq .

The key insight is the use of an m-exclusion lock to safely defer requests of lower-priority
jobs without allowing a pi-blocked job to starve. This can be observed in the example shown
in Fig. 10.

Example 8 Figure 10 depicts a G-EDF schedule of six jobs sharing one resource �1 on
m = 2 processors under the OMLP’s global mutex protocol. At time 1, J6 requests �1 and
enters FQ1 immediately (Rule G1). At time 2, �1 is requested by J5, which is also enqueued
in FQ1 and suspended since it was non-empty. At time 4, m = 2 jobs hold the m-exclusion
lock (i.e., have entered FQ1) and thus J4 must enter PQ1 instead (Rule G1). Hence it is safely

The OMLP family of optimal multiprocessor real-time locking protocols 303

Fig. 10 OMLP mutex protocol for global scheduling under G-EDF for six tasks sharing one resource on
m = 2 processors

deferred when �1 is later requested by higher-priority jobs (J3, J2, J1). At the same time,
J5, which incurs pi-blocking until J3’s arrival at time 5, precedes the later-issued requests
since it already held the m-exclusion lock—this avoids starvation in scenarios such as the
one depicted in Fig. 9(b). Note that J5 incurs pi-blocking until time 5 (and not only until
time 4) because the release of J4 at time 4 does not displace J5 from the set of the c = m = 2
highest-priority pending jobs (J6 is also pending at time 4, but has a later deadline than J5).

Next, we bound maximum s-oblivious pi-blocking under the OMLP’s global mutex pro-
tocol. In the following analysis, let t0 denote the time at which Ji issues Ri,q,v , t1 denote
the time at which Ji enters FQq , and t2 denote the time at which Ri,q,v is satisfied (this is
illustrated in Fig. 10 for J4).

Further, let entered(t), t0 ≤ t < t1, denote the number of jobs that have been moved from
PQq to FQq during [t0, t] due to Rule G3. That is, entered(t) counts the jobs that preceded
Ji in entering FQq . For example, for J4 in Fig. 10, entered(5) = 0, entered(10) = 1, and
entered(11) = 2.

Lemma 13 For each point in time t ∈ [t0, t1), if Ji incurs s-oblivious pi-blocking, then
entered(t) < m.

Proof By Rule G3, because Ji has not yet entered FQq at time t , there must be m pending
jobs queued in FQq . Due to FIFO ordering, if entered(t) ≥ m, then each job queued in FQq

at time t must have been enqueued in FQq during [t0, t]. By Rule G3, this implies that each
job in FQq must have a priority that exceeds Ji ’s priority. By the definition of s-oblivious
pi-blocking (Definition 1), the presence of m higher-priority pending jobs implies that Ji is
not pi-blocked. �

Lemma 14 During [t0, t2), Ji incurs s-oblivious pi-blocking for the combined duration of
at most 2 · m − 1 requests.

304 B.B. Brandenburg, J.H. Anderson

Table 1 S-oblivious pi-blocking bounds of the OMLP given in terms of the maximum number of blocking
requests

Scheduling Constraint Progress mechanism Bound Analysis

global mutex priority inheritance Ni · (2m − 1) Sect. 4.5

clustered mutex priority donation m + Ni · (m − 1) Sect. 4.2

clustered k-exclusion priority donation m + Ni ·
⌈

m−min{kq }
min{kq }

⌉
Sect. 4.4

clustered RW—writers priority donation 2m + Ni · (2m − 1) Sect. 4.3

clustered RW—readers priority donation 2m + Ni · 2 Sect. 4.3

Proof Due to the bounded length of FQq , at most m − 1 requests complete in [t1, t2) before
Ji ’s request is satisfied. By Lemma 13 and Rule G3, at most m requests complete before J1

is no longer pi-blocked in [t0, t1). �

Combining Lemma 14 with the maximum request length for each �q yields the following
bound.

Lemma 15 Ji is pi-blocked for at most

bi �
nr∑

k=1

Ni,q · (2 · m − 1) · Lmax = O(m).

Proof By Lemma 14, Ji is pi-blocked for the duration of at most 2 · m − 1 requests each
time it requests a resource �q . Due to priority inheritance, the resource-holding job has an
effective priority among the m highest priorities whenever Ji is pi-blocked; requests are
thus guaranteed to progress towards completion when Ji is pi-blocked. As Ji requests �q

at most Ni,q times, it suffices to consider the longest request Ni,k · (2 · m − 1) times. The
sum of the per-resource bounds yields bi . By assumption (Sect. 3.2), Lmax = O(1) and∑

q Ni,1 = O(1), and hence bi = O(m). �

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual re-
quest lengths and frequencies into account is presented in the Appendix. Note that bi = 0 if
Ni,q = 0 for each �q , that is, the global OMLP is indeed independence-preserving.

4.6 Optimality, combinations, and limitations

In this section, we conclude our discussion of the OMLP family by examining various opti-
mality properties and limitations in more detail and discuss how each of the protocol variants
can be integrated with each other and OMLP-unrelated self-suspensions (such as suspensions
due to I/O with dedicated devices).

4.6.1 Non-asymptotic optimality

Besides being asymptotically optimal, the four protocols of the OMLP family also have con-
stant factors, summarized in Table 1, that are small enough for the protocols to be practical.
Let Ni = ∑

q Ni,q denote the maximum number of requests issued by any Ji . In the fol-
lowing, we assume Ni > 0, that is, the following discussion does not apply to independent

The OMLP family of optimal multiprocessor real-time locking protocols 305

tasks. From the example shown in Fig. 2, it is apparent that a lower bound per request is
m − 1 blocking requests. Therefore, a lower bound on the maximum number of blocking
requests (under s-oblivious analysis) is Ni · (m − 1). This allows us to characterize how far
the OMLP’s bounds are from being optimal. Since Lmax is presumed constant, we focus on
the number of blocking requests in the following discussion.

We begin with the global OMLP (for mutex constraints), which ensures that a job is pi-
blocked by at most Ni ·(2m−1) requests (see Table 1 for a summary of the OMLP’s blocking
bounds). As discussed in the preceding section, the principal advantage of the global OMLP
over the clustered OMLP is that independent jobs do not incur pi-blocking (i.e., if Ni = 0,
then bi = 0). The guaranteed upper bound is hence optimal within at most7 a factor of

Ni · (2m − 1)

Ni · (m − 1)
= Ni · (2(m − 1) + 1)

Ni · (m − 1)
= 2 + 1

m − 1
.

That is, for large m, the global OMLP’s bound on maximum s-oblivious pi-blocking is (al-
most) within a factor of two of the lower bound.

As summarized in Table 1, the clustered OMLP for mutex constraints ensures that a job
Ji is pi-blocked by at most m + Ni · (m − 1) conflicting requests. The mutex protocol is
hence optimal within at most a factor of

m + Ni · (m − 1)

Ni · (m − 1)
= 1 + m

Ni · (m − 1)
≤ 1 + m

(m − 1)
= 2 + 1

m − 1
.

The ratio is maximized for Ni = 1, in which case it approaches two for large m, just as the
global OMLP. If Ni > 1, then the clustered OMLP ensures a smaller bound than the global
OMLP, albeit at the cost of potentially delaying otherwise independent jobs.

In the case of the OMLP’s k-exclusion protocol, if kmin < m, then Theorem 3 and
Lemma 12 imply that the upper bound on s-oblivious pi-blocking is within at most a factor
of

(
1 + ⌈

m−kmin

kmin

⌉) + (
Ni · ⌈m−kmin

kmin

⌉)

Ni · ⌈ m

kmin − 1
⌉ =

(
1 + ⌈

m

kmin − 1
⌉) + (

Ni · ⌈ m

kmin − 1
⌉)

Ni · ⌈ m

kmin − 1
⌉

= 1

Ni · ⌈ m

kmin − 1
⌉ + 1

Ni

+ 1

≤ 2 + 1
⌈

m

kmin − 1
⌉

of the lower bound that is unavoidable in the general case (for tasks that share resources). In
the worst case, kmin = 1, the ratio reduces to 2 + 1

m−1 . The k-exclusion protocol is thus no
worse (in terms of the maximum number of blocking requests) than the clustered OMLP’s
mutex protocol.

In the degenerate case of kmin = m, maximum blocking under the clustered OMLP re-
duces to 1 (akin to a non-preemptive section), but the above ratio is undefined since the
lower bound reduces to 0 in this case. This is because Lemma 12 does not take preemptions
from higher-priority, later-arriving jobs into account. However, it is trivial to construct an
example in which m lower-priority jobs request all kmin replicas such that a later-arriving,

7It is unknown whether Ni · (m − 1) is a tight lower bound in absolute terms (i.e., non-asymptotically).

306 B.B. Brandenburg, J.H. Anderson

higher-priority job incurs s-oblivious pi-blocking for the duration of one critical section. The
clustered OMLP is hence optimal in this case.

In the case of the OMLP’s phase-fair RW lock, writers are delayed by additional requests
because a reader phase may separate any two writer phases. This has the effect of essentially
doubling the factor. That is, if job Ji issues Ni write requests (and no read requests), then
the ensured bound is within at most

2m + Ni · (2m − 1)

Ni · (m − 1)
= 2m + Ni · (2(m − 1) + 1)

Ni · (m − 1)

= 2 ·
(

1 + m

Ni · (m − 1)

)

+ 1

m − 1

≤ 2 ·
(

2 + 1

(m − 1)

)

+ 1

m − 1

= 4 + 3

m − 1

of the optimal bound for mutex constraints. That is, for large m, the bound on maximum
pi-blocking for (pure) writers approaches four and is hence approximately twice as large as
the bounds of the mutex protocols. This suggests that RW locks should only be employed if
the write ratio is small.

4.6.2 Optimality of relaxed-exclusion protocols

Under phase-fair RW locks, read requests incur at most O(1) acquisition delay. Similarly,
requests for �q incur only O(m

kq
) acquisition delay under the k-exclusion protocol. Yet, we

only prove O(m) and O(m

kmin) maximum s-oblivious pi-blocking bounds, respectively—as
discussed in Sect. 4.5, any job may become a priority donor and thus suspend (at most once)
for the duration of the maximum request span. Since both relaxed-exclusion constraints
generalize mutual exclusion, a priority donor might incur Ω(m) pi-blocking since some jobs
might incur Ω(m) pi-blocking if kmin = 1 or if some resource is shared among m writers.

This seems undesirable for tasks that do not partake in mutual exclusion. For example,
why should “pure readers” (i.e., tasks that never issue write requests) not have an O(1)

bound on pi-blocking? It is currently unknown if this is even possible in general, as lower
bounds for specific task types (e.g., “pure readers,” “DSP tasks”) are an to-date unexplored
topic that warrants further attention.

Since priority inheritance is sufficient for the global OMLP mutex protocol, one might
wonder if it is possible to apply the same design using priority inheritance instead of pri-
ority donation to obtain an RW protocol under global scheduling with O(m) maximum
pi-blocking for writers and O(1) maximum pi-blocking for readers. Unfortunately, this is
not the case.

The reason is that the analytical benefits of priority inheritance under s-oblivious analysis
do not extend to RW exclusion. When using priority inheritance with mutual exclusion, there
is always a one-to-one relationship: a priority is inherited by at most one ready job at any
time. In contrast, a single high-priority writer may have to “push” multiple low-priority
readers. In this case, the high priority is “duplicated” and used by multiple jobs on different
processors at the same time. This significantly complicates the analysis. In fact, simply
instantiating Rules R1–R3 and W1–W3 from Sect. 4.3 with priority inheritance may cause
Ω(n

c
) s-oblivious pi-blocking since it is possible to construct schedules that are conceptually

The OMLP family of optimal multiprocessor real-time locking protocols 307

similar to the one shown in Fig. 3. A naive application of priority inheritance to the k-
exclusion problem would lead to the same result.

This demonstrates the power of priority donation, and also highlights the value of the
clustered OMLP even for the special cases c = m and c = 1: the clustered OMLP RW and
k-exclusion protocols are the first multiprocessor real-time locking protocols of their kind
for the special cases of global and partitioned scheduling as well. In fact, to the best of our
knowledge, no suspension-based RW protocol with O(1) maximum pi-blocking for pure
readers has been proposed to date.

In recent work [30], Elliot and Anderson presented a k-exclusion protocol for global
JLFP schedulers that guarantees asymptotically optimal maximum s-oblivious pi-blocking
while ensuring that independent jobs do not incur pi-blocking. Similar to the global OMLP,
Elliot and Anderson’s protocol uses priority inheritance in combination with a hybrid
FIFO/priority queue. Due to the challenges of k-exclusion, their hybrid queue is of a more
complicated structure than the one used in the global OMLP. Interestingly, Elliot and An-
derson’s protocol uses a technique akin to priority donation to ensure progress within each
hybrid queue.

4.6.3 Highly replicated resources

Our k-exclusion protocol assumes 1 ≤ kq ≤ m since additional replicas would remain un-
used as priority donation allows at most m incomplete requests. (The same assumption is
made in Elliot and Anderson’s k-exclusion protocol for global scheduling.) This has little
impact on resources that require jobs to be scheduled (e.g., shared data structures), but it
may be a severe limitation for resources that do not require a processor (e.g., there could be
more than m DSP co-processors).

However, would a priority donation replacement that allows more than c jobs in a cluster
to hold a replica be a solution? Surprisingly, the answer is no. This is because s-oblivious
schedulability analysis (implicitly) assumes the number of processors as the maximum de-
gree of parallelism (since all pending jobs are assumed to cause processor demand under
s-oblivious analysis). In other words, s-aware schedulability analysis is required to derive
analytical benefits from highly replicated resources. However, s-aware schedulability anal-
ysis poses additional challenges and, to the best of our knowledge, no k-exclusion protocol
for s-aware analysis, optimal or otherwise, has been proposed to date.

4.6.4 Unrelated self-suspensions

An issue that arises in practice with real-time locking protocols is how blocking bounds
are affected by suspensions that are unrelated to resource sharing. For example, a job may
self-suspend when it performs I/O using a private device (i.e., one that is not under control
of a locking protocol). In uniprocessor locking protocols such as the SRP or the PCP, a job
resuming from a self-suspension may incur additional pi-blocking just as if it were newly
released. That is, a job Ji that self-suspends ηi times can incur pi-blocking for the duration
of up to 1 + ηi outermost critical sections under the SRP or PCP.

This effect also applies to multiprocessor real-time locking protocols. For instance, under
the MPCP and DPCP, a self-suspending job allows lower-priority jobs to issue requests for
global resources and thus may incur additional pi-blocking after it resumes when lower-
priority jobs are subsequently priority boosted.

Remarkably, the OMLP’s blocking bounds are not affected by self-suspensions. In the
case of the global OMLP, a job incurs pi-blocking only when it issues a request itself, which

308 B.B. Brandenburg, J.H. Anderson

is not affected by locking-unrelated self-suspensions. Further, while it may appear on first
sight that priority donation is affected by self-suspensions, this is not the case: a resuming
job is never required to serve as a priority donor. This is because priority donation is defined
in terms of pending jobs, and not in terms of ready jobs. A job that self-suspends or resumes
does not alter the set of pending jobs. Further, any job serving as a priority donor upon
release may self-suspend (since a priority donor’s purpose is to suspend anyway). A priority
donor that resumes from a self-suspension while the priority recipient executes is effectively
not resumed until its donor services are no longer required.

The OMLP is hence not affected by self-suspensions and the presented analysis can be
used in environments where jobs self-suspend. However, if jobs may self-suspend while
holding a resource, then the maximum self-suspension time must be reflected in each Li,q .

4.6.5 Protocol combinations

The clustered mutex protocol (Sect. 4.2) generalizes the partitioned OMLP proposed in [17]
in terms of blocking behavior; from an analytical point of view, there is thus little reason to
use both in the same system or to prefer the partitioned OMLP over the more general clus-
tered OMLP. However, in practice, it is somewhat easier to implement the partitioned OMLP
since it relies on priority boosting instead of priority donation as a progress mechanism.

The clustered protocol variants can be freely combined since they all rely on priority
donation and because their protocol rules do not conflict. However, care must be taken to
correctly identify the maximum request span, which determines the maximum pi-blocking
caused by priority donation.

The global OMLP cannot be used with any of the clustered OMLP variants since priority
inheritance is incompatible with priority donation (from an analytical point of view). As
discussed above, both the clustered and global mutex protocols have an O(m) s-oblivious
pi-blocking bound, but differ in constant factors and with regard to which jobs incur pi-
blocking. Specifically, since the global OMLP is independence-preserving, only jobs that
request resources risk s-oblivious pi-blocking under the global OMLP, while even otherwise
independent jobs may incur s-oblivious pi-blocking if they serve as a priority donor. The
global OMLP may hence be preferable for c = m if only few tasks share resources. We
explore this tradeoff empirically in the following section.

5 Empirical evaluation

The OMLP’s defining feature is its asymptotic optimality under s-oblivious schedulablity
analysis. However, asymptotic optimality does not necessarily translate into better schedu-
lability in practice since it does not reflect constant factors. Further, one might reasonably
suspect the s-oblivious analysis approach to be inherently too pessimistic to be of practical
use. In other words, is the OMLP not just of theoretic interest, but also a good candidate for
implementation in real-time operating systems?

To explore the OMLP’s practical viability, we conducted large-scale schedulability ex-
periments to empirically compare the OMLP with real-time locking protocols from prior
work, and to contrast each of the OMLP’s variants with each other. Specifically, we sought
to answer the following questions.

– Is the OMLP competitive with previously-proposed s-oblivious locking protocols?
– Is the OMLP competitive with prior s-aware locking protocols?
– How do the two mutex protocols of the OMLP compare? Are both required?

The OMLP family of optimal multiprocessor real-time locking protocols 309

– When does using the clustered OMLP’s RW protocol offer an advantage (if any) over the
clustered OMLP’s mutex protocol, that is, is there an analytical advantage in allowing
parallel reads compared to simply serializing both read and write requests?

– Does replicating shared resources significantly improve schedulability? That is, can re-
source replication be used to achieve a reduction in contention, and is this reduction re-
flected in the worst-case blocking analysis?

– Does k-exclusion offer an advantage over resource partitioning? In other words, when is
the clustered OMLP’s k-exclusion protocol preferable to statically assigning each task to
one of the replicas?

In the following, we first describe the design of the experiments and then report upon our
results and provide answers to the above questions in Sects. 5.2–5.5.

5.1 Experimental setup and evaluation

A schedulablity experiment quantifies the performance of a real-time algorithm (such as a
locking protocol) by determining the ratio of task sets that can be shown to be schedulable
under it. The collection of task sets to be tested is typically generated randomly according to
various parameter distributions. We followed this standard approach and generated task sets
according to the following procedure, which is based on those previously used in [4, 11, 14,
18, 22].

5.1.1 Task set generation

Each task Ti was generated by drawing its period pi uniformly from {10 ms,11 ms, . . . ,
100 ms}, by drawing its utilization ui from a given utilization distribution, and by setting
ei = ui · pi (rounded to the next-largest microsecond). We considered three uniform, three
exponential, and three bimodal utilization distributions.

– The ranges for the uniform distributions were [0.001, 0.1] (light), [0.1, 0.4] (medium),
and [0.5, 0.9] (heavy).

– The mean of exponential distributions were 0.1 (light), 0.25 (medium), and 0.5 (heavy).
The exponential distributions were further limited to the range (0, 1] by redrawing sam-
ples that did not fall within the range of feasible utilizations.

– In the three bimodal distributions, utilizations were distributed uniformly over either
[0.001, 0.5) or [0.5, 0.9] with respective probabilities of 8/9 and 1/9 (light), 6/9 and
3/9 (medium), and 4/9 and 5/9 (heavy).

Given the number of processors m, a target utilization cap U ∈ [1,m], and one of the
nine utilization distributions, a random task set was generated by repeatedly creating tasks
as described above until the task set’s total utilization exceeded U , and by then reducing the
last-added task’s execution cost en such that U was reached exactly (i.e., we ensured that∑n

i=1 ui = U). To avoid generating trivial task sets, we further ensured that each generated
task set contained at least m + 1 tasks adding additional tasks if necessary (after reducing
the execution cost of each task to ensure

∑n

i=1 ui = U).
Each task’s parameters LR

i,q , LW
i,q , NR

i,q , and NW
i,q were randomly chosen based on the

following parameters: the number of resources nr , the access probability pacc, the write
ratio pwrite, and a critical section length distribution. A given task Ti accessed resource �q

with probability pacc (i.e., P [Ni,q > 0] = pacc). If Ti accessed �q , then it was determined to
be a writer with probability pwrite, and a reader otherwise. The number of accesses Ni,q was
chosen uniformly from {1, . . . ,5}. The maximum request length Li,q was chosen uniformly

310 B.B. Brandenburg, J.H. Anderson

from one of three critical section length distributions. When using short critical sections,
each Li,q was chosen randomly from [1 µs,15 µs]; with intermediate critical sections, each
Li,q was randomly chosen from [1 µs,100 µs]; and finally, when assuming long critical
sections, each critical section length was randomly chosen from [5 µs,1280 µs]. To avoid
generating implausible task sets, we ensured that the sum of all critical sections does not
exceed a task’s execution cost (i.e.,

∑nr

q=1 Ni,q ·Li,q ≤ ei) by reducing critical section lengths
if necessary.

It is a widely acknowledged design principle that critical sections should be short: from
a throughput point of view, long critical sections impede scalability, and from a real-time
point of view, long critical sections result in pessimistic upper bounds on pi-blocking and
thus limit schedulability. We therefore believe most critical sections to be short in practice.
Nonetheless, in the schedulability study reported on in this paper, we also included inter-
mediate critical section lengths to allow for pessimism when determining Li,q parameters
in practice, and further considered long critical sections to allow for devices with inherently
long critical sections (e.g., GPUs). We chose the definition of long critical sections follow-
ing Lakshmanan et al., who assumed the stated range of critical section lengths in their
evaluation of the MPCP and the MPCP-VS [36].

In the last step, if c < m, each generated task set was partitioned onto the m
c

clusters
using the worst-fit decreasing heuristic. The worst-fit decreasing heuristic tends to spread
the workload evenly across all clusters, thereby leaving a roughly equal amount of spare
capacity in each cluster to compensate for utilization loss due to pi-blocking. In the case of
global scheduling (i.e., if m = c), partitioning is not required.

5.1.2 Tested parameter ranges

We conducted five separate schedulability studies using the described task set generation
method to investigate the OMLP’s performance in different scenarios. To avoid repetition,
we summarize the parameter ranges common to all experiments in this section, and then
describe each study’s individual goal, setup, and results in the following sections in detail.

Unless noted otherwise, we considered each combination of the following parameter
choices in each of the experiments. We considered three processor counts m ∈ {4,8,16}
and, for each processor count, three or four cluster sizes c ∈ {1, m

4 , m
2 ,m}. The number of

resources nr was varied across nr ∈ {m
4 , m

2 ,m,2m}. We let nr depend on m based on the in-
tuition that larger platforms are more likely to host complex workloads with a large number
of shared resources.

In experiments focused on mutex or RW protocols, we let the access probability range
across pacc ∈ {0.1,0.25,0.4}. In experiments involving the clustered OMLP’s k-exclusion
protocol, we increased the access probability to pacc ∈ {0.4,0.55,0.7} following the intu-
ition that resource replication is most appropriate if contention is inherently high.

In experiments involving the clustered OMLP’s RW protocol, we considered pwrite ∈
{0.05,0.1,0.2,0.3,0.5,0.7}; all other studies pertaining to only mutex and k-exclusion pro-
tocols used pwrite = 1.

As described in the discussion of the task set generation procedure, we considered short,
medium, and long critical section lengths, and nine different utilization distributions. In total,
this results in 3,564 parameter combinations (or scenarios) for mutex and k-exclusion ex-
periments, and in 21,384 parameter combinations in experiments involving RW constraints
(3,564 combinations for each choice of pwrite). In each scenario, we varied U ∈ [m

4 ,m] in
steps of 0.25 and generated and tested 1,000 task sets for each target utilization. In total, we
generated more than 1,000,000,000 task sets over the course of the experiments reported in
this paper.

The OMLP family of optimal multiprocessor real-time locking protocols 311

5.1.3 Evaluation criteria

Given the large number of considered scenarios, our schedulability data resulted in more
than 40,000 graphs when visualized as standard schedulablity plots (i.e., as a function of U ,
like those shown below in Figs. 11–15). Our discussion of the results necessarily focuses on
select example graphs since an exhaustive presentation of such a large data set is clearly in-
feasible. Nonetheless, we seek to report an objective aggregate view of the “big picture.” We
therefore chose to partially automate the evaluation by identifying each scenario in which
a given protocol performs better than another protocol, where “performs better” is defined
based on schedulability results with non-overlapping confidence intervals.

Let S(A,U) denote the fraction of task sets that could be claimed schedulable under the
locking protocol (or algorithm) A for a given utilization cap U . For each tested A and each
U , we determined the 95 % bootstrap percentile confidence interval of S(A,U).8 When
comparing two locking protocols A1 and A2, we say that A1 provides significantly higher
schedulability than A2 for a given U if and only if S(A1,U) > S(A2,U) and the respective
confidence intervals are disjoint.

Based on this definition of “better performing,” and with respect to each pair of tested
locking protocols A1 and A2, we classified each tested scenario into one of four groups.

1. Scenarios in which A1 is clearly preferable: A1 exhibits significantly higher schedulabil-
ity for all or some of the tested utilization caps U and A2 does not perform significantly
better than A1 for any U .

2. Analogously, scenarios in which A2 is clearly preferable.
3. Scenarios with mixed results: A1 and A2 both achieve significantly higher schedulability

than the other for some (but not all) values of U .
4. Scenarios without significant trends: neither A1 nor A2 achieve significantly higher

schedulability than the other for any value of U .

Having established precise evaluation criteria, we are now ready to present the key find-
ings from our schedulability study. In addition to discussing select schedulability graphs
(shown in Figs. 11–15), we report the number of scenarios in each of the above categories
in Tables 3–10 to provide some context for the highlighted examples. In particular, these
categories allow us to objectively quantify whether the compared locking protocols perform
well in “most” or only “few” of the tested scenarios. To the best of our knowledge, this is
the first paper to report aggregate schedulability experiment results using an objective metric
based on statistical significance.

8Bootstrapping is a standard technique for estimating sampling statistics for unknown population distribu-
tions (e.g., see [27]). Given a sample vector X = (x1, x2, . . . , xs) consisting of s observations, N bootstrap
sample vectors Y i = (yi

1, yi
2, . . . , yi

s), where i ∈ {1, . . . ,N}, are constructed by uniformly choosing each

yi
k

∈ {x1, x2, . . . , xs } (i.e., each Y i is drawn from X with replacement). The distribution of a statistic f (X)

can then be estimated by applying f to each Y i ; an estimate of the 95 %-confidence interval of f (X) can be
obtained from the 2.5th and 97.5th percentiles of the histogram of f (Y i). In our experiments, each xk , where
1 ≤ k ≤ s = 1,000, is a schedulability test result (i.e., xk ∈ {0,1}) and the computed statistic is the sample
mean (i.e., the fraction of schedulable task sets). Bootstrapping is well-suited to schedulability experiments
since it does not make any assumptions about the underlying population distribution. We used N = 10,000
bootstrap samples.

312 B.B. Brandenburg, J.H. Anderson

5.2 Comparison of mutex protocols for partitioned scheduling

In the first schedulability experiment, we compared the OMLP to two previously-published
real-time locking protocols to assess the practical viability of the OMLP and the s-oblivious
approach.

For the case 1 < c < m and for RW or k-exclusion synchronization, there are no prior
suspension-based real-time locking protocols to test against. However, the case c = 1 <

m (a partitioned multiprocessor system) has been the focus of much prior work on mutex
protocols, and for this case, the combination of the MPCP [36, 42, 43] and P-FP scheduling
is considered to be the de facto standard. For the MPCP, accurate s-aware schedulability
analysis exists [36]. In fact, the existing analysis of self-suspensions under uniprocessor FP
scheduling (and hence also under P-FP scheduling) is arguably among the most accurate
s-aware analysis published to date for any real-time scheduling policy. We therefore chose
the MPCP to compare the OMLP’ss-oblivious approach with the current state-of-the-art of
s-aware schedulability analysis.

Besides presenting improved analysis of the original MPCP, Lakshmanan et al.also pro-
posed a newer variant of the MPCP based on “virtual spinning” [36], where “spinning” jobs
do in fact suspend, but other local jobs may not issue requests until the “spinning” job’s
request is complete. Notably, the analysis of this newer variant, which we denote as MPCP-
VS, is s-oblivious. However, unlike the OMLP, the MPCP-VS does not ensure asymptotically
optimal maximum pi-blocking since it uses priority queues to order conflicting requests. By
comparing the OMLP with the MPCP-VS we can thus assess whether the OMLP’s optimality
leads to noticeable improvements in schedulability in practice.

Based on these considerations, we evaluated the following four combinations of locking
protocol, scheduler, and type of schedulability analysis:

– the clustered OMLP’s mutex protocol (Sect. 4.2) under P-EDF scheduling using the s-
oblivious analysis presented in Sect. A.4;

– the clustered OMLP’s mutex protocol under P-FP scheduling (using the same analysis);
– the MPCP [36, 42, 43] under P-FP scheduling using Lakshmanan et al.’ss-aware analy-

sis [36]; and
– the MPCP-VS [36] under P-FP scheduling using Lakshmanan et al.’s s-oblivious analy-

sis [36].

We generated task sets as described in Sect. 5.1.1 using the parameter combinations de-
scribed in Sect. 5.1.2. However, we only considered clusters of size c = 1 since the published
analysis of MPCP and MPCP-VS applies only to partitioned scheduling. Under P-EDF, we
established the schedulability of each partition with Liu and Layland’s classic s-oblivious
utilization bound [37] after inflating each ei by bi (see Sect. A.7); under P-FP scheduling,
we assigned rate-monotonic priorities [37] and applied uniprocessor response-time analy-
sis [2, 35].

Note that there exists a cyclic dependency between the OMLP’s blocking analysis and
response-time analysis: to compute safe response times, a bound on worst-case pi-blocking
is required, but a response-time bound is required to apply the blocking analysis presented
in the Appendix. Under P-FP scheduling, we resolved this dependency using an iterative ap-
proach. Starting with the (clearly optimistic) assumption ri = ei , we alternatingly computed
bounds on pi-blocking and then applied response-time analysis until reaching a fix-point for
each task’s response time (i.e., all pi-blocking bounds were re-computed while the response-
time of any task in any partition increased). Under P-EDF scheduling, we simply substituted
each task’s period pi for its maximum response-time ri (which is a safe, but likely pes-
simistic, bound since ri ≤ pi if the task set is deemed schedulable).

The OMLP family of optimal multiprocessor real-time locking protocols 313

Table 2 Summary of schedulability results: the clustered OMLP mutex protocol under P-FP scheduling with
s-oblivious analysis vs. the MPCP-VS under P-FP scheduling with s-oblivious analysis (see Sect. 5.1.3 for
definitions)

Critical sections OMLP preferable MPCP-VS preferable Mixed results No trends

short 279 0 0 45

medium 307 0 0 17

long 250 0 0 74

The described setup resulted in 972 schedulability graphs. Three representative examples
are shown in Fig. 11. We observed the following major trends.

OMLP vs. MPCP-VS Figure 11(a) shows schedulability under each of the four configura-
tions for bimodal light utilizations, short critical sections, m = 16, nr = 32, and pacc = 0.25.
The error bars in this (and all subsequent figures) indicate 95 % confidence intervals obtained
using the bootstrap percentile method, as described in Sect. 5.1.3. It is immediately apparent
that the OMLP under both P-FP and P-EDF provides significantly higher schedulability than
either MPCP variant. We consider the s-oblivious MPCP-VS first.

The OMLP under P-FP scheduling clearly outperforms the MPCP-VS until U ≈ 12. Since
both configurations use the same schedulability test (i.e., FP response-time analysis [2, 35]),
rely on s-oblivious analysis, and have been applied to the same generated task sets, this
provides strong evidence that the OMLP’s asymptotic optimality translates into significantly
improved pi-blocking bounds in practice. In fact, the OMLP outperformed the MPCP-VS in
the vast majority of the tested scenarios, whereas the MPCP-VS did not provide significantly
higher schedulability than the OMLP in any of the tested scenarios. This is apparent from
Table 2, which reports scenario counts based on the classification defined in Sect. 5.1.3 and
thus provides an objective summary of the entire data set.

For example, the first row in Table 2 reveals that the OMLP was clearly preferable in 279
of the 324 scenarios with short critical sections length, one of which is shown in Fig. 11(a).
In contrast, the MPCP-VS was never preferable to the OMLP, and the experiment also did not
yield any mixed results (i.e., scenarios without clear trends). In 45 of the scenarios involving
short critical sections, we did not observe any significant differences between the two pro-
tocols, which typically happens if there is only little contention for resources, in which case
the choice of locking protocol becomes irrelevant. One such example is shown in Fig. 11(c),
which we revisit below. The counts of scenarios involving medium and long critical sections
reveal that the OMLP outperforms the MPCP-VS in most of these cases as well. Overall, our
results strongly suggest that the OMLP provides superior schedulability in a wide range of
scenarios, and also validate the intuition underlying maximum pi-blocking, namely that it is
a useful complexity metric that reflects meaningful performance characteristics.

OMLP vs. MPCP While the MPCP performs somewhat better than the MPCP-VS in the
scenario depicted in Fig. 11(a), it still provides significantly lower schedulability than the
OMLP. In this particular example, the MPCP reaches zero schedulability already at U ≈ 10,
whereas the OMLP does so only at U ≈ 12 under P-FP scheduling, and only at U ≈ 13.5
under P-EDF scheduling. While the exact margin in schedulability differs from scenario
to scenario, this example is representative of a larger trend, as evidenced by the scenario
counts provided in Table 3. Similarly to the MPCP-VS, the MPCP was not preferable to
the OMLP in any of the tested scenarios. In contrast, the OMLP provided equal or superior

314 B.B. Brandenburg, J.H. Anderson

Fig. 11 Comparison of mutex protocols: the clustered OMLP under P-EDF scheduling, the clustered OMLP
under P-FP scheduling, the MPCP under P-FP scheduling and s-aware analysis, and the MPCP-VS under
P-FP scheduling and s-oblivious analysis

schedulability in the vast majority of the tested scenarios: across all critical section lengths,
the OMLP was clearly preferable in 811 out of the 972 tested scenarios. Notably, a few sce-
narios revealed mixed results, in the sense that both the MPCP and the OMLP under P-FP
scheduling were significantly better for some, but not all, U . One such example is shown
in Fig. 11(b), which depicts schedulability for uniform medium utilizations, long critical
sections, m = 8, nr = 2, and pacc = 0.10. While there are only few requests per job in this
scenario (there are only few resources with low access probability), schedulability under
each of the tested locking protocols is affected by the long critical sections. The OMLP un-
der P-FP scheduling provides significantly higher schedulability than the MPCP in the range

The OMLP family of optimal multiprocessor real-time locking protocols 315

Table 3 Summary of schedulability results: the clustered OMLP mutex protocol under P-FP scheduling
with s-oblivious analysis vs. the MPCP under P-FP scheduling with s-aware analysis (see Sect. 5.1.3 for
definitions)

Critical sections OMLP preferable MPCP preferable Mixed results No trends

short 273 0 4 47

medium 300 0 4 20

long 238 0 12 74

Table 4 Summary of schedulability results: the MPCP under P-FP scheduling with s-aware analysis vs. the
MPCP-VS under P-FP scheduling with s-oblivious analysis (see Sect. 5.1.3 for definitions)

Critical sections MPCP preferable MPCP-VS preferable Mixed results No trends

short 210 0 0 114

medium 246 0 0 78

long 192 0 0 132

U ∈ [2,5.5]. However, with increasing U , schedulability decreases under the OMLP some-
what faster than under the MPCP, with the result that the MPCP provides (slightly) higher
schedulability in the range [6.25,6.75]. Since neither the OMLP nor the MPCP achieve
equal or higher schedulability for all values of U , this scenario is counted as having mixed
results.

Nonetheless, the aggregate results reported in Table 3 document that there exist many
scenarios in which the OMLP provides better schedulability than the de-facto standard pro-
tocol for partitioned P-FP scheduling. This shows that the OMLP in particular, and the s-
oblivious analysis approach in general, have practical merit and can in fact provide superior
schedulability results. This also suggests that future evaluations of real-time locking pro-
tocols should consider both s-oblivious and s-aware alternatives—s-oblivious protocols are
not necessarily more pessimistic than s-aware locking protocols.

One might wonder whether this is primarily due to the OMLP’s design, or whether this
mostly reflects limitations in existing s-aware analysis. We believe the OMLP’s competi-
tiveness to be a result of both; however, given that the employed analysis of suspensions
under uniprocessor FP scheduling [2, 36] is already rather accurate, we do not expect this
observation to be invalidated in the foreseeable future.

MPCP vs. MPCP-VS Although our main goal was to compare the OMLP to both MPCP
variants, our data set also allows for a comparison of the s-aware MPCP with the s-oblivious
MPCP-VS. In fact, our results paint a very clean picture: the MPCP-VS performs signifi-
cantly worse than the MPCP in about two thirds of the tested scenarios, with the remainder
of the scenarios not showing a significant trend (see Table 4). This is illustrated by the sce-
narios shown in insets (a) and (b) of Fig. 11, where the MPCP-VS performs significantly
worse than the other tested protocols in the entire range where meaningful differences exist
(i.e., before schedulability reaches zero under all protocols).

The observation that the MPCP-VS performs significantly worse than the MPCP in most
cases confirms earlier results reported by Lakshmanan et al. [36], who came to a similar
conclusion using a different experimental setup and a different performance metric. In fu-
ture work, there is thus little reason to consider the MPCP-VS instead of better-performing

316 B.B. Brandenburg, J.H. Anderson

Table 5 Summary of schedulability results: P-EDF scheduling with the clustered OMLP vs. P-FP scheduling
with the clustered OMLP (see Sect. 5.1.3 for definitions)

Critical sections P-EDF preferable P-FP preferable Mixed results No trends

short 323 0 0 1

medium 317 0 0 7

long 265 0 0 59

alternatives such as the OMLP in case of s-oblivious analysis, or the classic MPCP [42, 43]
and the FMLP+ [14] in case of s-aware analysis.

P-FP vs. P-EDF One of the advantages of the OMLP family is that it is compatible with
any JLFP scheduler. The analysis presented in the Appendix therefore applies to both P-EDF
and P-FP scheduling. As one might expect, we found that the OMLP under P-EDF schedul-
ing almost always achieves significantly higher schedulability than the OMLP under P-FP
scheduling, despite using identical analysis. The difference in schedulability is entirely due
to the optimality of EDF on uniprocessors.

An example of this effect is shown in Fig. 11(c), which shows schedulability for the same
scenario as shown in inset (b) with short instead of long critical sections. Since contention
is low, pi-blocking is equally low under each of the tested locking protocols. As a result,
there are no significant differences among the locking protocols under P-FP scheduling (as
indicated by overlapping confidence intervals), whereas the OMLP under P-EDF scheduling
provides significantly higher schedulability despite nearly identical bounds on pi-blocking.
The OMLP under P-EDF is similarly the best-performing configuration in the scenarios de-
picted in insets (a) and (b) of the same figure. Overall, the OMLP under P-EDF is clearly
the best-performing configuration in 905 of the 972 tested scenarios (see Table 5), and fre-
quently by a large margin. The few scenarios in which no significant differences could be
observed are due to parameter combinations that result in excessive contention (especially
if long critical sections are involved), which causes equally low schedulability under all
considered locking protocols and schedulers.

While it is hardly surprising that schedulability is generally higher under P-EDF than
under P-FP, there is an important point to be made: the OMLP under P-FP scheduling is
mainly interesting in the context of “apples-to-apples” comparisons with other locking pro-
tocols for P-FP scheduling. If the goal is instead to maximize schedulability, then the OMLP
under P-EDF is clearly the better choice.

In summary, our schedulability study comparing mutex protocols found that, in a large
majority of the scenarios, the OMLP under P-FP scheduling performed better than either
the MPCP or the MPCP-VS. Further, the OMLP under P-EDF scheduling performed better
than any of the locking protocols under P-FP scheduling; there is thus little reason to fa-
vor P-FP scheduling over P-EDF scheduling from a locking point of view. The MPCP-VS
never outperformed any of the other locking protocols in any of the tested scenarios. It is
worth emphasizing that the point of these experiments is not to claim that the OMLP and
s-oblivious analysis are always superior. Rather, our results show that there exist (many)
scenarios in which the OMLP and s-oblivious analysis are a practical alternative that is
often competitive with, and at times even superior to, established s-aware locking proto-
cols.

This concludes our comparison of the OMLP with previously-proposed alternatives. In
the experiments discussed in the remainder of this section, we compared the OMLP family’s
four protocols with each other to determine when each variant is most appropriate.

The OMLP family of optimal multiprocessor real-time locking protocols 317

5.3 Comparison of the OMLP’s mutex protocols for global and clustered scheduling

In the second schedulability study, we compared the two mutex protocols of the OMLP
family for global and clustered scheduling. Since global scheduling is a special case of
clustered scheduling, it is not obvious that both protocols are needed. In fact, there are two
ways in which each protocol could conceivably be sufficient by itself:

– if the clustered OMLP always yields pi-blocking bounds comparable to those of the global
OMLP, then there is little reason to support the global OMLP as well; and, conversely,

– if it is possible to partition task sets such that each resource is shared only within each
cluster, and not across cluster boundaries, then a global locking protocol (applied to each
cluster) may suffice.

To test whether either possibility is in fact the case, we conducted a schedulability experi-
ment using the task set generation method described in Sect. 5.1.1. We compared the clus-
tered OMLP, which permits inter-cluster locking (i.e., the sharing of resources across cluster
boundaries), against the global OMLP instantiated within each cluster, which only permits
intra-cluster locking (i.e., resources may only be shared among tasks assigned to the same
cluster). Both protocols were applied on top of C-EDF scheduling; we did not consider P-FP
scheduling in this experiment.

Under the clustered OMLP, if c < m, each generated task set was partitioned on a task-
by-task basis using the worst-fit decreasing heuristic as described in Sect. 5.1.1. After com-
puting bounds on pi-blocking using the analysis presented in Sect. A.4 assuming ri = pi ,
we inflated each ei with bi in accordance with the s-oblivious analysis approach (Sect. A.7).
A task set was deemed schedulable if each cluster passed at least one of three standard s-
oblivious G-EDF schedulability tests [7, 12, 33] (if c > 1) or if none of the clusters was
over-utilized (if c = 1).

Under the global OMLP, an additional partitioning constraint must be enforced if c < m

since only intra-cluster locking is permitted. That is, instead of assigning individual tasks
to clusters, groups of tasks sharing resources must be assigned as a whole. Consider the
resource-sharing graph G obtained by creating a vertex for each task, and by creating an
edge between any two tasks sharing some resource. To satisfy the intra-cluster locking con-
straint, the partitioning phase must assign each connected component of G to one of the
clusters (without over-utilizing any of the clusters).

If a valid assignment of connected components to clusters could be found (or if c = m),
bounds on pi-blocking were obtained by applying the analysis presented in Sect. A.3 to the
subset of tasks in each cluster (assuming ri = pi). The schedulability of each cluster was
established using the same s-oblivious schedulability tests as in the case of the clustered
OMLP. If no valid assignment of connected components to clusters could be found using the
worst-fit decreasing heuristic, then the task set was deemed unschedulable.

Intra- vs. inter-cluster locking We evaluated both approaches using all 3,564 parameter
combinations from Sect. 5.1.2, including each combination of c and m. Our results clearly
show that neither locking protocol is always better than the other; rather, for each variant,
there exist scenarios in which it provides a significant advantage over the alternative.

The graph shown in Fig. 12(a) corresponds to a scenario in which the clustered OMLP
is clearly preferable to the global OMLP (within each cluster). In the depicted example
with exponential light utilizations, short critical sections, m = 16, c = 4, nr = 16, and
pacc = 0.10, schedulability under the global OMLP is close to zero even for small utiliza-
tion caps, whereas the clustered OMLP achieves schedulability close to one until U ≈ 8 and

318 B.B. Brandenburg, J.H. Anderson

Fig. 12 Comparison of the OMLP’s mutex protocols for global and clustered scheduling under C-EDF
scheduling

reaches zero schedulability only at U ≈ 12. The reason for this disparity is the difficulty of
partitioning large connected components. In the depicted scenario, each cluster of size c = 4
is relatively small compared to the total number of processors m = 16. Further, since the
light utilization distribution results in low average per-task utilizations, the task set size n

grows rapidly with increasing utilization caps U . Consequently, the average connected com-
ponent size also grows as U increases, and it hence becomes increasingly difficult, or even
impossible, to partition task sets such that resources are not shared across cluster boundaries.
Schedulability under the G-EDF is correspondingly low.

However, there also exist scenarios in which the global OMLP performs better than the
clustered OMLP. One such case is shown in Fig. 12(b), which depicts schedulability un-
der global scheduling (m = c) with exponential light distributions, medium critical sections,
nr = 4, and pacc = 0.1. Since partitioning is not required under global scheduling, the per-
formance of the global OMLP is not impacted by the intra-cluster locking constraint. While
the gap in observed schedulability is not as large as in inset (a), the global OMLP does
provide significantly higher schedulability for a wide range of utilization caps.

The two discussed examples illustrate that neither the clustered nor the global OMLP
are superfluous. In fact, the aggregate summary of the entire data set, reported in Table 6,
reveals that it is not even possible to clearly state which protocol is preferable “most” of the
time. In addition to the fact that we observed mixed results (i.e., significant differences, but
no clear winner) in more than 900 scenarios, each protocol is favored by different critical
section lengths. In the case of short critical sections, the clustered OMLP is clearly preferable
in 690 scenarios, whereas the global OMLP is only preferable in 40 scenarios. In contrast,

The OMLP family of optimal multiprocessor real-time locking protocols 319

Table 6 Summary of schedulability results: the OMLP’s mutex protocol for clustered scheduling (applied
across clusters using priority donation) vs. the OMLP’s mutex protocol for global scheduling (applied within
each cluster using priority inheritance)

Critical sections Inter-cluster locking Intra-cluster locking Mixed results No trends

short 690 40 341 117

medium 598 109 376 105

long 308 381 253 246

the clustered OMLP is less often preferable than the global OMLP in the case of long critical
sections (308 scenarios vs. 381 scenarios, respectively). What is the cause for this shift in
relative performance?

Recall from Sect. 4 that the two locking protocols use different progress mechanisms and
hence have different pi-blocking characteristics (summarized in Table 1). On the one hand,
jobs incur pi-blocking for the duration of at most m − 1 critical sections per request under
the clustered OMLP, whereas jobs may incur pi-blocking for up to 2m − 1 critical sections
per request under the global OMLP. On the other hand, the clustered OMLP uses priority
donation, which has the disadvantage that a job may incur pi-blocking upon release while
it serves as a priority donor. In contrast, the global OMLP is based on priority inheritance
and is hence independence-preserving—jobs incur pi-blocking only due to contention for
resources that they request.

Due to the lower per-request bound, tasks that issue more than one request are likely to
have lower pi-blocking bounds under the clustered OMLP. However, the clustered OMLP
may not be a feasible choice if there exists at least one task that cannot tolerate pi-blocking
due to priority donation (for example, if the task has only little slack or a very short period).
In fact, the results summarized in Table 6 show that the clustered OMLP becomes less com-
petitive (relative to the global OMLP) as critical section lengths increase, which suggests
that priority donation may indeed be the limiting factor in these scenarios. To test this hy-
pothesis, we conducted a third schedulability experiment with a modified task set generation
procedure.

Heterogeneous task sets To simulate task sets with a wide variety of temporal constraints,
we modified the task set generation procedure to produce less uniform task sets. Instead of
generating all tasks based on the same distributions, we created two classes of tasks, namely
urgent tasks and obstructing tasks.

Obstructing tasks were created in large parts as described in Sect. 5.1.1; however, the crit-
ical section lengths of obstructing tasks was drawn exclusively from the long critical section
distribution. In contrast, urgent tasks were configured to have only short critical sections.
Further, the period of urgent tasks was chosen uniformly from {3 ms,4 ms, . . . ,33 ms}. Fi-
nally, we ensured that each resource was shared among either only obstructing or only urgent
tasks, but not across task classes. By design, urgent tasks are thus sensitive to pi-blocking
(due to their short periods), but are not directly exposed to long critical sections.

To control the generation of urgent and obstructing tasks, we introduced an additional
urgent fraction parameter, denoted fu. Based on fu, the utilization cap U was divided such
that the total utilization of urgent tasks equaled U ·fu, with the remaining capacity consumed
by obstructing tasks. We considered fu ∈ { 1

4 , 1
2 , 3

4 } in our experiment.

Priority donation vs. priority inheritance We repeated the comparison of the clustered
OMLP and the global OMLP (instantiated within each cluster) as described above using

320 B.B. Brandenburg, J.H. Anderson

Fig. 13 Comparison of the OMLP’s mutex protocols for global and clustered scheduling under C-EDF
scheduling in the case of heterogeneous task sets

the heterogeneous task set generation procedure. As expected, the heterogeneous task sets
proved to be much more difficult to schedule, and especially so under the clustered OMLP.

Figure 13(a) depicts schedulability under each mutex protocol in the case of global
scheduling with uniform light utilizations, m = 8, nr = 2, and pacc = 0.1. Because prior-
ity donation exposes urgent tasks to delays due to the long critical sections of obstructing
tasks, schedulability is severely limited under the clustered OMLP. In contrast, the global
OMLP achieves high schedulability because no partitioning is required (since c = m) and
because jobs are not pi-blocked by unrelated requests under it. This demonstrates the value
of using an independence-preserving locking protocol if some tasks are sensitive to delays
and others have (excessively) long critical sections. In other words, priority inheritance is the
only viable progress mechanism in this case as both priority donation and priority boosting
create pi-blocking dependencies among all tasks.

However, instantiating the global OMLP within each cluster still requires partitioning
on the granularity of connected components. In the case of small clusters, satisfying the
intra-cluster locking constraint is often more limiting than the negative effects of priority
donation. This is apparent in Fig. 13(b), which shows much reduced schedulability under
the global OMLP in the case of bimodal heavy utilizations with m = 16, c = 4, nr = 4, and
pacc = 0.4. Due to the high access probability and the low number of resources, the resource
sharing graph G is likely to degenerate into a single connected component—in this case,
applying the global OMLP is infeasible for task sets that require more than c = 4 processors.
Thus, while schedulability under the clustered OMLP may not be particularly good in this

The OMLP family of optimal multiprocessor real-time locking protocols 321

Table 7 Summary of schedulability results: the OMLP’s mutex protocol for clustered scheduling (applied
across clusters using priority donation) vs. the OMLP’s mutex protocol for global scheduling (applied within
each cluster using priority inheritance)

Relative cluster size Priority donation Priority inheritance Mixed results No trends

1 ≤ c < m
2 807 309 404 100

m
2 ≤ c ≤ m 2 1685 179 78

difficult scenario, it is still significantly higher than under the global OMLP. The clustered
OMLP is hence clearly preferable in this example.

When considering the entire data set as a whole (see Table 7), it becomes apparent that
the relative cluster size is the performance-determining factor in the case of heterogeneous
task sets. If 1 ≤ c < m

2 , each cluster is small compared to the total number of processors;
partitioning connected components is therefore difficult in this case and schedulability under
the global OMLP is severely limited. Otherwise, if m

2 ≤ c ≤ m, partitioning is either not
required (under global scheduling) or comparably easy (there are only two large clusters if
c = m

2), which provides a major advantage to the global OMLP. This is obvious from the
scenario counts reported in Table 7: in scenarios with relatively small clusters, the clustered
OMLP (based on priority donation) is more than twice as often preferable than global OMLP,
but in scenarios with two large clusters or under global scheduling, the global OMLP (and
hence priority inheritance) is clearly preferable in the vast majority of the tested scenarios
(in more than 1,600 scenarios out of roughly 1950 scenarios in this category).

Overall, our experiments show that neither the global nor the clustered OMLP are ideal if
some degree of independence among (subsets of) tasks must be maintained under clustered
scheduling with c < m. However, this is not a limitation specific to the OMLP—rather, it
shows that there is a need for an asymptotically optimal, independence-preserving locking
protocol with support for inter-cluster resource sharing. We plan to study this issue in greater
detail in future work.

5.4 Comparison of the clustered OMLP’s mutex and RW protocols

In the fourth schedulablity experiment, we explored under which conditions the clustered
OMLP’s RW protocol is preferable to its mutex counterpart. We used the (homogeneous)
task set generation method described in Sect. 5.1.1 to compare both protocols under C-
EDF scheduling. Analogous to the experiments discussed in the previous section, we ac-
counted for pi-blocking under the mutex and RW protocols using the analysis presented in
Sect. A.4 and Sect. A.5, respectively, and then checked the temporal correctness of each
cluster using s-oblivious schedulability tests. We evaluated both protocols in all 21,384
scenarios resulting from the parameter combinations specified in Sect. 5.1.2, including
pwrite ∈ {0.05,0.1,0.2,0.3,0.5,0.7}.

Obviously, an RW lock should yield improved schedulability if most requests are read
requests. However, if this is not the case—if writes are frequent—then schedulability can in
fact be worse under phase-fair RW locks than under regular mutex locks. While the clustered
OMLP’s RW protocol ensures asymptotically optimal maximum pi-blocking for writers, its
bounds are subject to constant factors that are about twice as large as those of the mutex
protocol bounds (recall Sect. 4.6 and Table 1). That is, in the worst case, a writer may incur
twice as much pi-blocking under phase-fair RW locks since it can be delayed by both m− 1
previously-issued writes and m interleaved reader phases. In contrast, under the clustered

322 B.B. Brandenburg, J.H. Anderson

Fig. 14 Comparison of the clustered OMLP’s mutex and RW protocols under C-EDF scheduling

OMLP’s mutex protocol, a writer is delayed by at most m − 1 previously-issued requests of
any kind.

Fundamentally, phase-fairness is a tradeoff between greatly reduced pi-blocking for read-
ers and (possibly) doubled pi-blocking for writers, which is only beneficial if writes are
much less frequent than reads. It is therefore expected that the write ratio pwrite strongly
impacts the relative performance of the two locking protocols. Our results confirm that this
is indeed the case.

An example scenario in which the write ratio is suitably low (pwrite = 0.2) is shown
in Fig. 14(a), which shows schedulability under each of the two protocols for exponential
medium utilizations, short critical sections, m = 16, partitioned scheduling, nr = 16, and
pacc = 0.4. In this case, delaying writers in favor of (frequent) reads is a valid tradeoff. As
a result, schedulability is significantly higher under the RW protocol than under its mutex
counterpart over a wide range of utilization caps. The RW protocol is clearly preferable in
this case.

In contrast, inset (b) depicts an example in which the assumption underlying the RW
protocol is violated since, on average, more than two thirds of the requests are writes. Aside
pwrite, all parameters in the scenario depicted in inset (b) are the same as in the scenario
depicted in inset (a). While the mutex protocol is not affected by pwrite (all requests are
serialized anyway), schedulability under the RW protocol is markedly lower, to the point
that the mutex protocol is clearly preferable in this case—the relative performance of the
mutex protocol has improved (without changing in absolute terms) because schedulability
under the RW protocol has decreased.

The OMLP family of optimal multiprocessor real-time locking protocols 323

Table 8 Summary of
schedulability results: the
clustered OMLP’s RW protocol
vs. the clustered OMLP’s mutex
protocol

pwrite RW preferable Mutex preferable Mixed results No trends

0.05 2876 0 0 688

0.10 2758 0 0 806

0.20 2493 19 14 1038

0.30 2128 91 23 1322

0.50 539 314 1 2710

0.70 0 1343 0 2221

This effect is in fact representative of the entire data set. Table 8 reports the scenario
counts for each tested write ratio. If pwrite ≤ 0.10, the mutex protocol is never preferable
since it unnecessarily serializes reads. However, as the write ratio increases, the mutex pro-
tocol becomes more competitive. While the mutex protocol is preferable only in a few ex-
treme scenarios if pwrite = 0.20 or pwrite = 0.30, it already provides higher schedulability in
more than 300 scenarios if pwrite = 0.50, although the RW protocol remains preferable in
more than 500 of the tested scenarios. Finally, in the most extreme of the tested write ratios
(pwrite = 0.70), we did not find the RW protocol to be preferable in any of the tested sce-
narios, while the mutex protocol provided significantly higher schedulability in over 1,300
scenarios. However, it is not the case that the RW protocol is necessarily worse than the
mutex protocol if the write ratio is high. In many cases where there is little to be gained
from RW locks, the RW protocol simply reduces to mutex-like performance, as evidenced
by the large number of scenarios in the “no trends” column.

Overall, the schedulability experiment confirmed the intuition underlying RW locks: the
use of the clustered OMLP’s RW protocol likely results in improved schedulability if the
write ratio is low, and has no effect, or even a negative effect, if this requirement is not met.
This matches our earlier experience with spin-based phase-fair RW locks [18].

5.5 Comparison of the clustered OMLP’s mutex and k-exclusion protocols

In the fifth and final schedulability experiment, we compared the clustered OMLP’s mutex
and k-exclusion protocols under C-EDF scheduling. We sought to explore two questions:
does adding replicas improve schedulability significantly? And how should replicas be man-
aged?

With regard to the latter question, there are two fundamental ways that a set of tasks may
share kq replicas of a resource, as previously discussed in Sect. 4.4. Recall that either each
task may access any of the replicas, in which case a k-exclusion protocol is required, or
that each task is statically assigned one of the replicas, which are then managed individually
using a mutex protocol. The former approach corresponds to global processor scheduling,
whereas the latter approach, which we refer to as the p-mutex approach, is akin to partitioned
scheduling. When using the p-mutex approach, a heuristic is required to assign tasks to
resources. Since the goal is to minimize contention, requests should be spread out evenly
among the replicas. We therefore simply assigned tasks to replicas in a round-robin manner,
which ensured that each replica was used by roughly the same number of tasks. In future
work, it may be interesting to explore more-sophisticated replica assignment heuristics.

With regard to partitioning and schedulability testing, we used an experimental setup
analogous to the one described in the previous section. We compared seven different com-
binations of locking protocol and degree of replication kq :

– the clustered OMLP’s mutex protocol (without resource replication) as a baseline;

324 B.B. Brandenburg, J.H. Anderson

Table 9 Summary of schedulability results: the clustered OMLP’s k-exclusion protocol vs. the clustered
OMLP’s mutex protocol (without replication)

kq k-replication preferable Mutex preferable Mixed results No trends

2 2053 0 0 1511

3 2498 0 0 1066

4 2866 0 0 698

– three configurations of the clustered OMLP’s k-exclusion protocol, one for each kq ∈
{2,3,4}; and

– three configurations of the p-mutex approach using the clustered OMLP’s mutex protocol
to serialize accesses to each replica, similarly with kq ∈ {2,3,4}.

Note that all resources were assumed to have a uniform replication factor (e.g., in the con-
figuration of the k-exclusion protocol assuming kq = 3, each resource was assumed to be
replicated three times). While this is unlikely to be the case in practice, this approach allows
us to isolate the effects of resource replication.

We evaluated each configuration under each of the parameter combinations from
Sect. 5.1.2. Since plotting seven curves per graph would result in too much clutter, we
plotted four graphs corresponding to each scenario: one graph showing the mutex protocol
in comparison with each of the three configurations of the k-exclusion protocol, and one
graph for each tested kq comparing the k-exclusion protocol to its corresponding p-mutex
configuration.

Replication benefits A graph of the former kind for the case of exponential medium utiliza-
tions, short critical sections, m = 16, c = 1, nr = 8, and pacc = 0.7 is shown in Fig. 15(a). In
the depicted scenario, contention is high due to the high access probability. As expected,
schedulability increases significantly with each added replica. This example shows that
k-replication of resources can be a very effective measure to improve schedulability, an
observation that is representative of most of the considered scenarios. Table 9 provides a
summary of the effect of replicating each resource kq times compared to using the clus-
tered OMLP’s mutex protocol without resource replication. Reassuringly, the data shows
that the OMLP’s k-exclusion protocol is able to exploit resource replication to achieve lower
bounds pi-blocking in most scenarios, and that the OMLP’s k-exclusion protocol is never
worse than using the mutex protocol (without replication) instead. As might be expected,
the data further shows that the number of scenarios in which the k-exclusion protocol is
clearly preferable increases with the number of replicas. We conclude that adding replicas
is not only effective at reducing average contention at runtime, but also a potent measure for
reducing worst-case contention, and thus effective at improving schedulability.

P-mutex vs. k-exclusion Insets (b) and (c) of Fig. 15 show graphs comparing the clus-
tered OMLP’s k-exclusion protocol with the p-mutex approach for kq = 4. Surprisingly, the
two graphs show conflicting trends. Figure 15(b) depicts a high-contention scenario with
uniform light utilizations and short critical sections under global scheduling for m = 8,
nr = 16, and pacc = 0.70. Since task sets are relatively large (due to the very low per-task
utilizations), and since each task accesses many resources (due to the high access probability
and the large number of shared resources), each resource is shared by more than m · kq tasks
for large U . Consequently, under the p-mutex approach, each replica is assigned at least m

tasks, which implies that the analytical advantage of replication is lost since the clustered

The OMLP family of optimal multiprocessor real-time locking protocols 325

Fig. 15 Comparison of the clustered OMLP’s mutex and k-exclusion protocols under C-EDF scheduling

OMLP’s mutex per-request bound of m − 1 blocking requests becomes the limiting factor.
In contrast, the analysis of the OMLP’s k-exclusion protocol is capable of providing an an-
alytical advantage despite the high contention because its analysis considers all replicas as
a whole and can thus reflect the increased completion rate (recall Lemma 11). The OMLP’s
k-exclusion protocol is hence clearly preferable to the p-mutex approach in this scenario.

However, as is apparent in Fig. 15(c), this is not always the case. The depicted scenario
shows that the p-mutex approach provides significantly higher schedulability in the case
of heavy exponential utilizations, medium critical sections, m = 16, c = 1, nr = 8, and
pacc = 0.40. In this scenario, contention is much lower than in the scenario depicted in
inset (b) since the heavy utilization distribution results in smaller task set sizes, and also
because the access probability is lower. In this case, statically assigning tasks to replicas

326 B.B. Brandenburg, J.H. Anderson

Table 10 Summary of schedulability results: the clustered OMLP’s k-exclusion protocol (for kq = 4) vs. the
clustered OMLP’s mutex protocol (each task is statically assigned to one of the kq = 4 replicas)

Utilizations m k-exclusion preferable p-mutex preferable Mixed results No trends

light 4 280 0 0 44

8 222 121 1 88

16 127 161 7 137

medium 4 213 0 0 111

8 86 219 7 120

16 9 366 3 54

heavy 4 106 0 0 218

8 5 277 2 148

16 0 372 0 60

results in, on average, fewer than m tasks sharing each replica. Consequently, the bounds
on pi-blocking under the p-mutex approach are lower than under the k-exclusion protocol.
This suggests that it may be worthwhile to study in future work whether the bounds on pi-
blocking under the OMLP’s k-exclusion protocol can be tightened, or whether a different
queue structure would yield a k-exclusion protocol that is always preferable to the p-mutex
approach.

With the existing analysis, a mixed picture emerges when considering the entire data set.
Table 10 reports the scenario counts for the comparison of the p-mutex approach with the
clustered OMLP’s k-exclusion protocol for the case of kq = 4. The table is structured based
on the number of processors m and the “weight” of the employed per-task utilization distri-
butions (i.e., the uniform light, exponential light, and bimodal light utilization distributions
are reported together as “light utilizations”, etc.). The data reveals two major trends. First,
the k-exclusion protocol performs best for small m, or rather, if the ratio m/kq is small. This
is apparent both from the fact that the p-mutex approach is never clearly preferable to the
k-exclusion protocol if m = 4, and also from the fact that, with respect to each utilization
distribution weight, the number of scenarios in which the k-exclusion protocol is clearly
preferable decreases with increasing m. The second major trend is that the k-exclusion
protocol performs best for light utilization distributions (where there are many tasks and
contention is high), whereas the p-mutex approach is much more competitive for heavy uti-
lization distributions. This provides strong quantitative support for the above explanation of
the trends seen in insets (b) and (c) of Fig. 15.

Overall, our results show that in many scenarios there is clear value in supporting a ded-
icated k-exclusion protocol, but that one should not assume that the k-exclusion protocol is
always less pessimistic than a static task-to-replica assignment. Perhaps not coincidentally,
this matches the situation in real-time multiprocessor scheduling, where neither partitioned
nor global scheduling is always preferable, either.

5.6 Limitations and future directions

We have presented a large-scale, thorough empirical evaluation of the OMLP family of lock-
ing protocols. Our results show that the OMLP compares well with both the s-aware MPCP
and the s-oblivious MPCP-VS, and also that none of the protocols in the OMLP family is
redundant, in the sense that each protocol excels at certain parameter combinations and task
set compositions. However, as with any experimental study, and although we made an effort

The OMLP family of optimal multiprocessor real-time locking protocols 327

to consider a large range of diverse scenarios and configurations, there are some interesting
aspects that had to remain beyond the scope of our study (which is already quite large and
time-consuming, and in fact required several weeks of processor time on a large compute
cluster). We briefly mention two issues that would be interesting to consider in more detail
in future work.

For one, no attempt was made to take resource-sharing considerations into account when
partitioning task sets. That is, tasks were assigned using a worst-fit decreasing heuris-
tic based on each task’s utilization. Better results could likely be achieved by employing
resource-sharing-aware partitioning heuristics. However, such heuristics are still an area of
active research [34, 36, 41] and beyond the scope of this paper. It would be interesting to
reevaluate the relative performance of the considered locking protocols once it has become
clear which partitioning heuristics are best suited to partitioning task sets with shared re-
sources.

We also did not account for implementation overheads in the comparison of the locking
protocols. In an actual implementation, semaphore-based locking protocols incur potentially
high overheads because kernel support is typically required to implement priority inher-
itance, priority boosting, and priority donation. Further, suspensions are generally costly
because jobs lose cache affinity while suspended. As a result, spinlocks are often more effi-
cient for short critical sections [14].

We recognize the importance of considering implementation overheads and acknowledge
that it would be interesting to incorporate real-world overheads into our schedulability ex-
periments. Nonetheless, we chose to omit such overheads from the study presented in this
paper for the following reasons. First, each of the compared locking protocols in this paper
is a suspension-based locking protocol, which means that each protocol is likely impacted
equally by implementation overheads. That is, while the absolute performance of each tested
locking protocol would be affected by overheads, the performance of the locking protocols
relative to each other would likely not change even if overheads were included. And, sec-
ond, to account for real-world overheads, actual overheads must be collected and analyzed
in a real system, which constrains the combinations of c and m that can be tested to those
available in present lab machines. Since we are primarily interested in algorithmic differ-
ences in this paper, we instead chose to vary c and m freely to explore a larger range of
possible platforms. However, we note that we have implemented the MPCP, the MPCP-VS,
and a prototype of priority donation in LITMUSRT. Experiments similar to those presented
in this paper for the case m = 24 under consideration of overheads can be found in [14].

6 Conclusion

We have provided a general, precise definition of pi-blocking in suspension-based lock-
ing protocols and proposed maximum pi-blocking as a natural measure of a locking proto-
col’s blocking behavior. We identified two classes of commonly-used schedulability anal-
ysis, namely s-oblivious and s-aware analysis, and showed a lower bound on maximum
s-oblivious pi-blocking of Ω(m).

We have shown this bound to be asymptotically tight by designing the first suspension-
based multiprocessor real-time locking protocols with O(m) maximum pi-blocking under
s-oblivious pi-blocking. We showed that in the special case of mutex constraints under global
scheduling, optimal pi-blocking can be achieved with priority inheritance. To achieve opti-
mality in the other cases (i.e., RW and k-exclusion, or if 1 < c < m), we designed a new
form of restricted priority boosting, named priority donation, which is a novel mechanism
for ensuring resource-holder progress that works for 1 ≤ c ≤ m.

328 B.B. Brandenburg, J.H. Anderson

We have designed, analyzed, and empirically evaluated the OMLP family of protocols for
mutual, RW, and k-exclusion. The OMLP family is asymptotically optimal under s-oblivious
analysis under any JLFP scheduler with arbitrary cluster sizes. The two relaxed-exclusion
protocols have the desirable property that the reduction in contention is reflected analytically
in improved worst-case acquisition delays (O(1) for readers and O(m

kq
) in the k-exclusion

case, compared to O(m) for all jobs under mutex locks). The clustered OMLP’s mutex pro-
tocol is the first of its kind for clustered scheduling with 1 < c < m; the RW and k-exclusion
protocols are further the first of their kind for the special cases of partitioned and global
scheduling as well.

We conducted a large-scale schedulability study involving more than one billion task
sets to assess the OMLP’s practical viability. To objectively report the results from the more
than 40,000 generated graphs, we developed a classification system based on statistical sig-
nificance that allows us to summarize trends from a large number of evaluated parameter
configurations without requiring manual intervention (and without introducing human bias).
Using this new methodology, we made three key observations: the s-oblivious analysis ap-
proach is practical and not necessarily more pessimistic than existing s-aware analysis; the
OMLP is competitive with, and often superior to, the s-aware MPCP and the s-oblivious
MPCP-VS; and there is no single best choice for all scenarios. Rather, each of the protocols
in the OMLP family has specific advantages that make it the best-performing protocol in
certain scenarios. Taken together, the OMLP family provides high schedulability in a wide
range of scenarios.

Besides the empirical work remarked upon in Sect. 5.6, a number of intriguing algorith-
mic challenges remain to be addressed in future work, including support for fine-grained
locking and nested critical sections, optimal locking protocols for clustered scheduling un-
der s-aware analysis, tight lower bounds on s-aware and s-oblivious maximum pi-blocking
under RW and k-exclusion protocols, and the design of optimal RW and k-exclusion proto-
cols for both types of analysis.

Acknowledgements We thank Tomas Kalibera for suggesting the use of bootstrapping in schedulability
experiments. Work supported by the Max Planck Society; NSF grants CNS 0834270, CNS 0834132, and CNS
1016954; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549; and AFRL grant FA8750-11-
1-0033. The first author was supported in part by a UNC Dissertation Completion Fellowship.

Appendix: Schedulability analysis

In this appendix, we first introduce a generic framework for expressing bounds on pi-
blocking and then apply it to bound pi-blocking under each of the locking protocols pre-
sented in this paper. The blocking analysis presented in the following is essential for deriv-
ing safe blocking bounds suitable for schedulability analysis. However, such bounds tend to
be somewhat technical in nature and are primarily required only for implementing schedula-
bility tests (as used in the schedulability experiments presented in Sect. 5); the casual reader
may safely skip this appendix and consult the overview presented in Sect. 4 instead.

The framework presented in the following is generic in the sense that it is not tied to any
particular locking protocol. It serves two purposes. For one, it avoids redundancy in the sub-
sequent analysis of the locking protocols, which have structurally similar blocking bounds.
Second, the presented analysis takes a holistic analysis approach to reduce the pessimism
inherent in analyzing requests individually. That is, it is intended to be applied to each job
as a whole and bounds blocking across all requests that a job issues, instead of bounding
delays on a request-by-request basis.

The OMLP family of optimal multiprocessor real-time locking protocols 329

The presented holistic analysis approach was first used to analyze the FMLP under P-
FP scheduling [16], and subsequently further developed to analyze RW spinlocks [18]. The
version presented herein has been somewhat simplified compared to the previous variants.
We next explain the intuition underlying the approach, which we then formalize in Sect. A.2
below.

A.1 Holistic blocking analysis

In the following, let Ji denote an arbitrary job of the task Ti for which a bound on maximum
blocking is being derived. The main idea of the holistic approach is to avoid accounting
for any individual possibly-blocking request more than once, and to avoid accounting for
requests that cannot possibly interfere with Ji ’s requests. In particular, when a job request
the same resource more than once, the holistic approach can avoid substantial pessimism
compared to analyzing each resource request in isolation, and especially so if long requests
occur much less frequently than short requests (i.e., if there are large differences among the
tasks’ Li,q , Ni,q , and pi parameters).

Example 9 To illustrate possible pessimism when analyzing requests individually, consider
the following scenario (in this and the following examples, the use of the clustered OMLP’s
mutex variant is assumed). Suppose a task Ti shares a serially-reusable resource �q with
another task Tx . Further, suppose Ji requests �q up to Ni,q = 20 times and that jobs of Tx

hold �q for at most Lx,q = 10 time units. Finally, suppose jobs of Tx require �q at most
once while any Ji is pending. When analyzing each of Ji ’s many requests individually (i.e.,
when bounding the maximum pi-blocking incurred by a single request), Tx ’s sole interfering
request is effectively considered to block each of Ji ’s requests since Tx ’s request might delay
any of the requests (but not all at once). Consequently, Ji ’s overall bound on pi-blocking
due to requests for �q would be Ni,q · Lx,q = 200 time units, whereas the actual maximum
possible delay is only Lx,q = 10 time units since, when considering Ji ’s entire execution, Jx

obviously delays Ji with at most only one blocking request for �q , and not with up to 20.

This example demonstrates that maximum contention should be analyzed as a whole
across all of Ji ’s requests for a particular resource. (Since we assume that requests for re-
sources are not nested, blocking bounds for individual resources are independent from each
other and can be derived individually.) The extent to which Ji is blocked due to requests for
a resource �q in the worst case is limited by the following constraints:

1. Maximum number of requests issued by other jobs. As discussed above in Example 9, if
jobs of Tx issue at most k requests while any Ji is pending, then Ji will be blocked by at
most k requests of jobs of Tx , regardless of the number of requests issued by Ji .

2. Maximum number of interfering requests per request issued by Ji . Suppose Ji requests a
serially-reusable resource �q only once, that m = 4, and that �q is requested by other jobs
up to k = 100 times while Ji is pending. In this case, Ji is delayed by at most m − 1 = 3
competing requests, irrespective of the total number of requests k for �q since priority
donation limits the maximum queue length to m jobs.

3. Maximum number of interfering requests per task. For example, suppose �q is shared
among three tasks Ti , Tx , and Ty . If Ji issues only one request, then it is blocked by at
most one request from Tx and one request from Ty , irrespective of the total number of
requests issued by these tasks, and irrespective of the number of processors. Due to the
FIFO ordering in the wait queue FQq , each task can precede Ji at most once per request.

330 B.B. Brandenburg, J.H. Anderson

4. Task locality. For example, suppose Ti shares a resource with tasks Tx and Ty under
partitioned scheduling (c = 1), and that Ti and Tx are assigned to processor 1, whereas
Ty is assigned to processor 2. Jobs of Ty can cause Ji to incur acquisition delay because
they can issue conflicting requests while Ji is scheduled. In contrast, jobs of Tx cannot
cause Ji to incur acquisition delay because jobs of Tx are not scheduled while Ji is
executing; however, a job Jx can cause Ji to incur pi-blocking if Ji must serve as Jx ’s
priority donor upon release.

We formalize these four constraints next.

A.2 Interference sets

We begin with Constraint 1 by bounding the maximum resource requirements of compet-
ing tasks. In the task model assumed in this paper, a task Ti ’s resource requirements are
characterized by the parameters Ni,q and Li,q . The main advantages of this model are that
it is general enough to reflect many possible job behaviors (e.g., no particular request or-
der or minimum separation of requests is assumed) and that the required information can
be obtained as part of worst-case execution time analysis (or empirically bounded if such
analysis is not available). However, it is possible that more detailed knowledge is available
for specific applications.

For example, it could be the case that jobs of a task Ti access a resource �q twice, and
that the second access is always much shorter than the first access. In this case, using a
single upper bound Li,q for both requests is needlessly pessimistic. A similar concern arises
with resources that are not accessed by every job of Ti . For, example to reduce overheads, an
application Ta could be programmed to record status information in a shared log �l only once
every five jobs. Assuming that each Ja requests access to �l would needlessly overestimate
contention for �l . However, explicitly incorporating all such considerations yields a task
model that is overly complicated for our goal (which is to study the underlying algorithmic
properties of the protocols).

We instead use an abstraction called task interference bound to achieve a separation of
concerns between the modeling of resource requirements and the actual analysis of locking
protocols, which is structurally independent from model considerations. A task’s interfer-
ence bound (for non-processor resources) is similar to a demand bound function (for pro-
cessor time) in that it “upper bounds” a task’s worst-case resource requirement during some
interval. The actual blocking analysis is expressed in terms of task interference, which can
be defined to take advantage of detailed application-specific resource usage information.
The primary benefit of this approach is that derived blocking terms can be reused to derive
less pessimistic bounds when additional information in form of a more-detailed task model
is available.

In the following, to achieve the desired separation of concerns, we formalize a task’s “in-
terference bound” as a set of requests that safely approximates a task’s “actual contention”
for a resource. Recall from Sect. 2.2 that Ri,q,v denotes the vth request for resource �q issued
by any Ji , and that Li,q,v denotes the request length of Ri,q,v . This allows us to formalize
the concept of a task’s “contention for a resource.”

Definition 6 Suppose jobs of a task Ti execute k resource requests for a resource �q during
an interval [t0, t1). In a concrete, fixed schedule, the contention due to Ti during [t0, t1) is
the set of requests

Ci,q(t0, t1) � {Ri,q,v, Ri,q,(v+1), . . . , Rx,q,(v+k−1)}

The OMLP family of optimal multiprocessor real-time locking protocols 331

such that Ri,q,v is the first request and Ri,q,(v+k−1) is last request issued by any Ji during
[t0, t1).

In general, v and k are unknown prior to the execution of Ti , as is the length of each
request in Ci,q(t0, t1). To enable a priori analysis, a generic notion of worst-case contention
is required. The purpose of Ti ’s request interference bound, given next, is to define a set of
generic requests (i.e., virtual requests defined for analysis purposes) that upper-bound the
worst-case contention during any interval of length t1 − t0. That is, the interference bound
for an interval of length t1 − t0 contains at least as many requests as Ti issues in any interval
of length t1 − t0 in any actual schedule, and each generic request is at least as long as a
corresponding actual one. This can be formalized as follows.

Definition 7 The task interference bound for an interval of length t , denoted tif (Ti, �q, t),
is a set of generic requests that satisfies the following two properties.

1. For any Ci,q(t0, t1) with regard to some actual schedule, one can choose a set of corre-
sponding generic requests C ′

i,q ⊆ tif (Ti, �q, t1 − t0) that satisfies

∣
∣C ′

i,q

∣
∣ = ∣

∣Ci,q(t0, t1)
∣
∣ and

∑

Ri,q,v∈Ci,q (t0,t1)

Li,q,v ≤
∑

Ri,q,w∈C′
i,q

Li,q,w.

2. Interference bounds are inclusive:

t ≤ t ′ ⇒ tif (Ti, �q, t) ⊆ tif
(
Ti, �q, t

′).

Property 1 ensures that the task interference bound does not underestimate the number and
length of requests in any actual execution of Ti , and Property 2 ensures that a derived bound
remains valid when analyzing a larger-than-necessary interval (i.e., when over-estimating a
job’s response time). In the case of RW constraints, we analogously define task Ti ’s read
interference bound, denoted as rif (Ti, �q, t), with respect to read requests for �q , and Ti ’s
write interference bound, denoted as wif (Ti, �q, t) with respect to write requests for �q .

These definitions serve as an interface that allows the analysis of specific lock types pre-
sented in the following sections to be seamlessly integrated with more-refined task and re-
source models. Next, we provide a suitable definition of tif (Ti, �q, t) for the model assumed
in this paper. To this end, we require the following well-known bound on the maximum
number of jobs that can execute requests in a given interval. Recall from Sect. 2 that pi

denotes Ti ’s period and ri denotes Ti ’s maximum response time.

Lemma 16 At most � t+ri
pi

� distinct jobs of a task Ti can execute in any interval of length t

(without proof, see e.g. [14, 18]).

It follows from Lemma 16 and the definition of Ni,q that jobs of Ti issue at most �(t +
ri)/pi� ·Ni,q requests for �q over any interval of length t . In the worst case, each request for
�q is of length Li,q . This yields the following interference bound for the task model assumed
herein.

Definition 8 The request interference bound for task Ti with respect to resource �q over any
interval of length t is the set of requests

tif (Ti, �q, t) �
{

Ri,q,v | 1 ≤ v ≤ Ni,q ·
⌈

t + ri

pi

⌉}

,

332 B.B. Brandenburg, J.H. Anderson

where Li,q,v = Li,q for each Ri,q,v . If Ti does not access a given resource �q , then
tif (Ti, �q, t) = ∅ for all t . We analogously define task Ti ’s read and write interference bounds
as rif (Ti, �q, t) and wif (Ti, �q, t), respectively.

Based on per-task interference bounds, we next introduce a generic, parametrized “ag-
gregate interference bound” for use in the subsequent analysis of specific locking protocols.
We first define three convenience functions over sets of requests, which serve to simplify the
expression of “aggregate interference” and protocol-specific bounds on blocking.

Definition 9 Given a set of requests S, we let Sk denote the kth longest request in S, where
1 ≤ k ≤ |S| (with ties broken arbitrarily but consistently). Formally, if 1 ≤ k ≤ l ≤ |S| and
Sk = Ra,b,c and Sl = Rx,y,z, then La,b,c ≥ Lx,y,z.

Definition 10 Given a set of requests S, we denote the set of the l longest requests
in S as top(l, S) � {Sk | 1 ≤ k ≤ min(l, |S|)} and their total duration as total(l, S) �∑

Ri,q,v∈ top(l,S) Li,q,v . If l = 0 or S = ∅, then total(l, S) = 0.

A task interference bound limits the maximum contention from jobs of a single task.
Using the above definitions, we can formalize the notion of contention from a set of tasks.
Recall Constraint 3 from Sect. A.1 above, namely that the number of requests per task that
can possibly cause Ji to incur acquisition delay is limited if jobs wait in FIFO order. If a
task Tx can delay Ji with at most l requests, then it is sufficient to consider only the l longest
requests in Tx ’s interference bound. We therefore define the aggregate interference bound
with a per-task “interference limit” parameter.

Definition 11 The aggregate interference bound of a set of tasks τ with respect to a resource
�q over any interval of length t and subject to an interference limit l is given by

tifs(τ, �q, t, l) �
⋃

Tx∈τ

top
(
l, tif (Tx, �q, t)

)
.

A task set’s aggregate read interference and aggregate write interference, denoted as
rifs(τ, �q, t, l) and wifs(τ, �q, t, l), respectively, are defined analogously with respect to read
and write interference.

Given an interference limit l, tifs(τ, �q, t, l) contains the l longest requests in each task’s
interference bound for �q and t . In the task model assumed in this paper, each request
in tif (Tx, �q, t) is in fact of the same length Lx,q,v = Lx,q (see Definition 8). We define
tifs(τ, �q, t, l) with additional generality to accomodate more-expressive task models for
which tif (Tx, �q, t) may contain non-uniform request lengths.

The holistic blocking analysis framework incorporates Constraints 1 and 3 from Sect. A.1
in a generic fashion. The remaining Constraints 2 and 4 are easier to incorporate on a
protocol-by-protocol basis, which we do next to derive concrete, non-asymptotic bounds
for the locking protocols presented in this paper.

A.3 The global OMLP for mutual exclusion

We begin with the global OMLP for mutex constraints under s-oblivious schedulability anal-
ysis. Since the global OMLP uses a hybrid queue that consists of a FIFO queue FQq (which

The OMLP family of optimal multiprocessor real-time locking protocols 333

holds at most m jobs) and of a priority queue PQq (which is only used if at least m + 1 jobs
are queued), maximum s-oblivious pi-blocking under the global OMLP depends on how
many tasks share a given resource.

Definition 12 In the following, let Aq � |{Ti | Ti ∈ τ ∧ Ni,q > 0}| denote the number of
tasks that access resource �q .

If Aq ≤ m + 1, then at most m jobs are waiting to acquire �q at any time, which implies
that at most one job is queued in PQq . In this case, the global OMLP reduces to a simple
FIFO protocol.

Lemma 17 Under the global OMLP, if Aq ≤ m + 1, then a job Ji incurs at most

bi,q = total
(
(Aq − 1) · Ni,q, tifs

(
τ \ {Ti}, �q, ri ,Ni,q

))

s-oblivious pi-blocking due to requests for resource �q .

Proof Ji ’s response time ri upper-bounds the duration of the interval during which other
jobs can issue conflicting requests; that is, the aggregate task interference bound tifs(τ \
{Ti}, ri,Ni,q) for any interval of length ri is a sufficient approximation of the resource de-
mands of competing tasks. If Ji is never enqueued in PQq , then the lemma follows trivially.

Otherwise, if Ji is enqueued in PQq , then m jobs are already enqueued in FQq at the time
of Ji ’s request. Since Aq ≤ m + 1, this implies that no other job is enqueued in PQq . As
soon as the head of FQq releases �q , Ji is moved to FQq . Hence there is at most one job in
PQq at any time, and the ordering of PQq is irrelevant.

The FIFO ordering of FQq implies that each of Ji ’s requests is preceded by at most
one request from each other task that accesses �q . The per-task interference limit is hence
Ni,q . Since �q is shared among only Aq ≤ m + 1 tasks, one of which is Ti , no more than
(Aq − 1) · Ni,q requests pi-block Ji in total. Priority inheritance ensures that the resource-
holding job is scheduled whenever Ji incurs s-oblivious pi-blocking; the cumulative duration
of the (Aq − 1) · Ni,q longest requests for �q by tasks other than Ji thus bounds maximum
s-oblivious pi-blocking. �

In the case of Aq > m+1, higher-priority jobs of some other task Tx may “skip ahead” of
Ji repeatedly while Ji waits in PQq . However, the per-task interference limit is still limited
to 2 · Ni,q , that is, the per-task interference limit is only doubled even if jobs of Tx “skip
ahead” an arbitrary number of times.

Lemma 18 Let Tx denote some task other than Ti that accesses �q (i.e., Ti �= Tx and
Nx,q > 1). Under the global OMLP, jobs of Tx cause Ji to incur s-oblivious pi-blocking
for at most the duration of two requests each time that Ji requests �q .

Proof In order to pi-block Ji , a request issued by some Jx must precede Ji ’s request in
FQq (i.e., Jx enters FQq before Ji does). If Aq ≤ m + 1, the bound follows analogously to
Lemma 17 since FQq is FIFO-ordered.

Hence assume Aq > m + 1. In this case, jobs of Tx may enter FQq repeatedly while Ji

waits in PQq . Let ta denote the first time that a job of Tx , denoted Jx,a , enters FQq , and let
tb denote the second time that a job of Tx , denoted Jx,b , enters FQq while Ji is continuously

334 B.B. Brandenburg, J.H. Anderson

waiting in PQq . Since tasks are sequential, Jx,b necessarily issued its request after Ji issued
its request (this is not necessarily the case with Jx,a).

Further, let t1 denote the time that Ji enters FQq (as indicated in Fig. 10). If t1 does not
exist (i.e., if Ji never enters FQq), then either FQq is continuously populated with higher-
priority jobs and Ji does not incur s-oblivious pi-blocking, or some requests fails to complete
(which is not possible since each Li,q is presumed finite). Therefore assume t1 exists.

Ji does not incur s-oblivious pi-blocking during [tb, t1). Since Ji is waiting in PQq at
time ta , Jx,a is necessarily preceded by m − 1 other jobs in FQq , which must complete
before Jx,a’s request is satisfied. Since tasks are sequential, Jx,a has completed its request
before Jx,b enters FQq at time tb . Therefore, at least m higher-priority jobs must have entered
FQq during [ta, tb); otherwise, Ji would no longer be waiting in PQq at time tb . The presence
of m higher-priority pending jobs rules out s-oblivious pi-blocking after tb (until Ji enters
FQq at time t1).

Therefore, at most one of the requests issued by jobs of Tx after Ji issued its request
pi-blocks Ji . Since sporadic tasks are sequential, at most one request of Tx that was issued
prior to Ji ’s request is incomplete when Ji issues its request. Hence, at most two requests
of Tx cause Ji to incur pi-blocking. �

As a result, the per-task interference limit in the case of Aq > m+1 is 2 ·Ni,q . This yields
the following bound.

Lemma 19 Under the global OMLP, if Aq > m + 1, then a job Ji incurs at most

bi,q = total
(
(2 · m − 1) · Ni,q, tifs

(
τ \ {Ti}, �q, ri ,2 · Ni,q

))

s-oblivious pi-blocking due to requests for resource �q .

Proof By Lemma 14, Ji incurs s-oblivious pi-blocking for the combined duration of at
most 2 · m − 1 requests each time that it requests �q , which implies that Ji is delayed by at
most (2 · m − 1) · Ni,q requests in total. Lemma 18 implies an interference limit of 2 · Ni,q .
Priority inheritance ensures that the resource-holding job is scheduled whenever Ji incurs
pi-blocking. The bound follows. �

This yields the following overall bound on maximum s-oblivious pi-blocking.

Theorem 4 Under the global OMLP, a job Ji incurs s-oblivious pi-blocking for at most

bi =
nr∑

q=1

total
(
(xq − 1) · Ni,q, tifs

(
τ \ {Ti}, �q, ri, lq · Ni,q

))

time units, where xq � Aq and lq � 1 if Aq ≤ m+1, and xq � 2 ·m and lq � 2 if Aq > m+1.

Proof Follows from Lemmas 17 and 19, since resource requests are not nested, and since
Ji does not incur s-oblivious pi-blocking under the global OMLP while not requesting re-
sources. �

This concludes the analysis of the global OMLP. Next, we consider the clustered OMLP
from Sects. 4.2–4.4, which uses priority donation instead of priority inheritance.

The OMLP family of optimal multiprocessor real-time locking protocols 335

A.4 The clustered OMLP for mutual exclusion

A job Ji is subject to two sources of s-oblivious pi-blocking under the clustered OMLP. Ji

can be delayed each time it issues requests for shared resources, and additionally once upon
release if it serves as a priority donor. We begin with the mutex variant of the clustered
OMLP, which is the simplest of the three protocols based on priority donation. Recall from
Sect. 4.2 that each resource �q is protected by a simple FIFO queue FQq .

Lemma 20 Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi,q,j =
{

total(Ni,q · c, tifs(τj , �q, ri ,Ni,q)) if j �= Pi

total(Ni,q · (c − 1), tifs(τj \ {Ti}, �q, ri ,Ni,q)) if j = Pi

pi-blocking due to requests for resource �q issued by jobs of tasks assigned to the j th cluster.

Proof By Lemma 4, priority donation ensures that at most c requests are incomplete at
any time in each cluster; therefore, at most c requests from each cluster Cj precede Ji

in FQq each time that it issues a request. The strict FIFO ordering in FQq ensures a per-
task interference limit of Ni,q . Due to priority donation, resource-holding jobs are always
scheduled (Lemma 2). In the case of Ji ’s local cluster (i.e., if j = Pi), only c−1 requests can
interfere since Ji ’s own request counts towards the limit of c concurrent requests imposed
by priority donation. Since jobs and tasks are sequential, Ji is not delayed by requests of
(other) jobs of Ti . �

When bounding the maximum pi-blocking due to priority donation, we only need to
consider the set of tasks that could have released a lower-priority job prior to Ji ’s arrival
since priorities are only donated to jobs with lower base priority. This set of tasks necessarily
depends on the specific scheduling policy.

Definition 13 We let lower(Ti) denote the set of local tasks that could potentially require
one of Ti ’s jobs to serve as a priority donor upon release. Under EDF-based schedulers,
lower(Ti) includes only tasks with longer relative deadlines. Under FP-based schedulers,
lower(Ti) includes tasks with lower priorities.

Lemma 21 Under the clustered OMLP’s mutex protocol, a job Ji incurs at most bD
i s-

oblivious pi-blocking upon release while serving as a priority donor, where

bD
i = max

1≤q≤nr

max
Tx∈lower(Ti)

Nx,q>0

(

Lx,q +
m/c∑

j=1

b′
x,q,j

)

, and

b′
x,q,j =

{
total(c, tifs(τj , �q, rx,1)) if j �= Px ,

total(c − 1, tifs(τj \ {Ti, Tx}, �q, rx,1)) if j = Px .

Proof By Lemma 3, maximum s-oblivious pi-blocking due to priority donation is limited to
one request span. Analogously to Lemma 20, bD

i bounds the maximum request span of any
local, potentially lower-priority job Jx by considering the c longest requests in each remote
cluster that could cause Jx to incur acquisition delay, and the c − 1 longest requests in Jx ’s
local cluster. �

336 B.B. Brandenburg, J.H. Anderson

Theorem 5 Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi = bD
i +

nr∑

q=1

m/c∑

j=1

bi,q,j

s-oblivious pi-blocking due to requests for shared resources, where bi,q,j and bD
i are defined

as in Lemmas 20 and 21, respectively.

Proof Follows from Lemmas 20 and 21, and the assumptions that resource requests are not
nested and that tasks do not migrate across cluster boundaries. �

A.5 The clustered OMLP for RW exclusion

The bounds on maximum pi-blocking under the OMLP’s RW protocol are structurally simi-
lar to the bounds on maximum spin-blocking and pi-blocking under non-preemptive phase-
fair RW spinlocks that we previously presented in [18]. This is because the OMLP imple-
ments phase-fairness, and because priority donation allows at most c concurrent requests in
each cluster, which has an effect that is equivalent to non-preemptive execution.

We begin by considering the set of potentially blocking write requests. Since write re-
quests are satisfied in FIFO order with respect to other write requests, maximum acquisition
delay incurred by a writer due to earlier-issued write requests is the same under the OMLP’s
mutex and RW variants. However, since reader and writer phases alternate, the maximum
acquisition delay incurred by a reader due to earlier-issued write requests is limited to one
critical section. That is, at most NW

i,q · c + NR
i,q write requests issued by jobs of a remote

cluster can block Ji under the clustered OMLP’s RW variant. In the case of Ji ’s local clus-
ter, if c > 1, then the same reasoning applies and no more than NW

i,q · (c − 1) + NR
i,q write

requests block Ji . In the special case of c = 1, local jobs cannot cause Ji to incur acquisition
delay since they are not scheduled while Ji waits. These considerations lead to the following
definition of the set of possibly-interfering write requests.

Definition 14 In the following, let xrem = NW
i,q · c +NR

i,q and x loc = NW
i,q · (c − 1)+NR

i,q , and
define the sets of possibly-interfering write requests from jobs in the j th cluster, denoted as
W(Ti, j, �q), as follows.

W(Ti, j, �q) =

⎧
⎪⎨

⎪⎩

top(xrem, wifs(τj , �q, ri , (N
W
i,q + NR

i,q))) if j �= Pi,

top(x loc, wifs(τj \ {Ti}, �q, ri , (N
W
i,q + NR

i,q))) if j = Pi and c > 1,

∅ if j = Pi and c = 1.

Further, let Wi,q denote the union of all possibly-interfering write requests across all clusters,
and let wi,q denote the maximum number of blocking write requests.

Wi,q =
m/c⋃

j=1

W(Ti, j, �q) wi,q = |Wi,q |

Next, we consider the set of potentially blocking read requests. The defining property
of an RW lock is that readers do not directly block other readers. That is, in the absence
of any writers, a reader is not delayed in RW locks regardless of the number of concurrent
read requests. Intuitively, a reader phase can only transitively block another read request if

The OMLP family of optimal multiprocessor real-time locking protocols 337

said phase is “assisted” by an also-blocking, interspersed write request. This intuition can
be formalized to characterize acquisition delay due to interfering read requests in terms of
the number of interfering write requests.

Lemma 22 (From [14, 18]) Let Ji denote a job that issues at most NW
i,q write requests for

a resource �q , let w denote the number of write requests that cause Ji ’s write requests for
�q to incur acquisition delay, and let r denote the number of reader phases that cause Ji ’s
write requests for �q to incur acquisition delay. If �q is protected by a phase-fair RW lock,
then r ≤ w + NW

i,q .

Similarly, a writer that is not delayed by other writers incurs acquisition delay for the
duration of at most one read request regardless of the number of blocking readers. For ex-
ample, if m − 1 readers hold a resource �q when Ji issues a write request for �q , then all
m− 1 readers proceed in parallel and Ji incurs acquisition delay only for the duration of the
longest earlier-issued read request. Therefore, Ji incurs acquisition delay due to interfering
read requests for the combined duration of at most NR

i,q + (m− 1) ·NW
i,q read requests (recall

Lemmas 8 and 9). Taken together, this leads to the following definition.

Definition 15 Let ri,q = min(wi,q + NW
i,q, NR

i,q + (m − 1) · NW
i,q), and define the sets of

possibly-interfering read requests from jobs in the j th cluster, denoted as R(Ti, j, �q), as
follows.

R(Ti, j, �q) =

⎧
⎪⎨

⎪⎩

top(ri,q , rifs(τj , �q, ri , ri,q)) if j �= Pi,

top(ri,q , rifs(τj \ {Ti}, �q, ri , ri,q)) if j = Pi and c > 1,

∅ if j = Pi and c = 1.

Analogously to Wi,q , let Ri,q denote the set of all possibly interfering read requests across
all clusters.

Ri,q =
m/c⋃

j=1

R(Ti, j, �q).

With these definitions in place, we can state the following bound on pi-blocking due to
requests for a given resource.

Lemma 23 Under the clustered OMLP’s RW protocol, a job Ji incurs pi-blocking due to its
read and write requests for resource �q for at most bi,q = total(wi,q , Wi,q)+ total(ri,q , Ri,q)

time units.

Proof Analogously to Lemma 20. Each time that Ji issues a write request, it can be preceded
by up to c other write requests in each cluster since the writer queue WQq is FIFO ordered,
and because priority donation allows at most c concurrent requests per cluster. Also due
to the FIFO order, each other task can block each of Ji ’s write requests with at most one
request. Each time that Ji issues a read request, it is blocked by at most one write request
since the OMLP implements phase-fairness. Therefore, the per-task interference with regard
to write requests is NW

i,q + NR
i,q , and in total Ji ’s NR

i,q read requests and NW
i,q write requests

are blocked by at most NR
i,q + NW

i,q · c write requests in the case of a remote cluster, and
by at most NR

i,q + NW
i,q · (c − 1) requests in the case of Ji ’s local cluster. The definitions of

W(Ti, j, �i,q) and Wi,q follow.

338 B.B. Brandenburg, J.H. Anderson

By Lemma 22, the upper bound on the total number of blocking writes wi,q implies an
upper bound of wi,q + NW

i,q on the number of blocking reader phases. The total number
of blocking reader phases is also limited to NR

i,q + (m − 1) · NW
i,q : due to priority donation

and because reader and writer phases alternate in a phase-fair RW lock, each of Ji ’s read
requests is transitively blocked by at most one reader phase, and each of Ji ’s write requests
is blocked by at most m − 1 interspersed reader phases (since at most m − 1 write requests
block each of Ji ’s write requests). The lesser of the two bounds limits the total number of
blocking reader phases ri,q . The definitions of R(Ti, j, �q) and Ri,q follow.

Since Ji is blocked by at most wi,q writer phases and ri,q reader phases, total s-oblivious
pi-blocking is bounded by the wi,q longest requests in Wi,q and the ri,q longest request in
Ri,q . �

Since the clustered OMLP uses priority donation, a job may also incur s-oblivious pi-
blocking when serving as a priority donor. The duration of priority donation depends on
the request span of the priority recipient’s request, which may be either a write or a read.
The maximum acquisition delay of a single write request for resource �q issued by job Ji

can be bounded by instantiating Definitions 14 and 15 assuming NR
i,q = 0 and NW

i,q = 1.
Similarly, the maximum acquisition delay of a single read request for �q can be bounded by
instantiating said definitions assuming NR

i,q = 1 and NW
i,q = 0. To avoid needless repetition,

we use the following definitions to denote these two special cases.

Definition 16 Let W ′
i,q and w′

i,q denote the values of Wi,q and wi,q , respectively, that result
when assuming NR

i,q = 0 and NW
i,q = 1 in Definition 14 above. Similarly, let W ′′

i,q and w′′
i,q

denote the values of Wi,q and wi,q , respectively, that result when assuming NR
i,q = 1 and

NW
i,q = 0 in Definition 14 above.

Definition 17 Let R′
i,q and r ′

i,q denote the values of Ri,q and ri,q , respectively, that result
when assuming NR

i,q = 0 and NW
i,q = 1 in Definition 15 above. Similarly, let R′′

i,q and R′′
i,q

denote the values of Ri,q and Ri,q , respectively, that result when assuming NR
i,q = 1 and

NW
i,q = 0 in Definition 15 above.

With these special cases in place, we can express the maximum request span. Recall from
Definition 13 that we let lower(Ti) denote the set of tasks local to Ti that could potentially
cause Ji to incur pi-blocking upon release.

Lemma 24 Under the clustered OMLP’s RW protocol, a job Ji incurs at most bD
i =

max(b′
i , b

′′
i) s-oblivious pi-blocking upon release while serving as a priority donor, where

b′
i = max

1≤q≤nr

max
Tx∈lower(Ti)

NW
x,q>0

{
LW

x,q + b′
x,q

}
, and

b′
x,q = total

(
w′

x,q , W ′
x,q

) + total
(
r ′
x,q , R′

x,q

)
,

bounds the case of a writing priority recipient, and where

b′′
i = max

1≤q≤nr

max
Tx∈lower(Ti)

NR
x,q>0

{
LR

x,q + b′′
x,q

}
, and

b′′
x,q = total

(
w′′

x,q , W ′′
x,q

) + total
(
r ′′
x,q , R′′

x,q

)
.

The OMLP family of optimal multiprocessor real-time locking protocols 339

bounds the case of a reading priority recipient.

Proof Follows analogously to Lemma 21 since Ji serves as a priority donor at most once
and at most for the duration of one request span. The maximum request span of a lower-
priority write request is bounded by b′

i ; the maximum request span of a lower-priority read
request is bounded by b′′

i . The maximum of either scenario bounds maximum s-oblivious
pi-blocking due to priority donation under the clustered OMLP for RW exclusion. �

This yields the following bound on s-oblivious pi-blocking.

Theorem 6 Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi = bD
i +

nr∑

q=1

bi,q

s-oblivious pi-blocking due to read and write requests for shared resources, where bi,q and
bD

i are defined as in Lemmas 23 and 24, respectively.

Proof Follows from Lemmas 23 and 24, and the assumptions that resource requests are not
nested and that tasks do not migrate across cluster boundaries. �

A.6 The clustered OMLP for k-exclusion

In this section, we establish a bound on s-oblivious pi-blocking under the clustered OMLP
for k-exclusion, which is presented in Sect. 4.4. The presented analysis is reasonably tight
if blocking requests are relatively uniform in duration. However, if request lengths are heav-
ily skewed (i.e., if there are some infrequent, long-running requests, but most requests are
short), then a more accurate bound could be obtained by applying multiprocessor response-
time analysis for non-preemptive global FIFO scheduling to each resource. In the fol-
lowing simpler analysis, which suffices for our purposes, some pessimism arises because
Lemma 11, which implicitly lower-bounds the request completion rate, does not take non-
uniform request lengths into account.

Lemma 25 Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most bi,q

s-oblivious pi-blocking due to requests for resource �q , where

bi,q = total

(

Ni,q ·
⌈

m − kq

kq

⌉

,

m/c⋃

j=1

bi,q,j

)

, and

bi,q,j =
{

top(Ni,q · c, tifs(τj , �q, ri ,Ni,q)) if j �= Pi,

top(Ni,q · (c − 1), tifs(τj \ {Ti}, �q, ri,Ni,q)) if j = Pi .

Proof By Lemma 4, priority donation ensures that at most c requests are incomplete at any
time in each cluster; therefore, at most c requests in each cluster precede Ji in KQq or hold
a replica of �q at the time that Ji issues a request. The FIFO ordering of jobs in KQq ensures
a per-task interference limit of Ni,q . Therefore, the set of the Ni,q · c longest requests issued
by jobs in the j th cluster, denoted bi,q,j , bounds the worst-case interference from jobs in

340 B.B. Brandenburg, J.H. Anderson

that cluster. In the case of Ji ’s local cluster, only c − 1 requests can interfere since Ji ’s own
request counts towards the limit of c concurrent requests imposed by priority donation.

Lemma 11 implies that Ji holds a replica of �q after at most �(m−kq)/kq� prior requests
for �q complete. Therefore, across all Ni,q requests, Ji is pi-blocked at most for the cumula-
tive duration of the Ni,q · �(m − kq)/kq� longest requests issued by jobs in any cluster. �

To bound maximum s-oblivious pi-blocking due to priority donation, we again require a
bound for a single request. Such a bound can be obtained by applying Lemma 25 above to a
single request.

Definition 18 Let b′
i,q denote the value of bi,q computed assuming Ni,q = 1 in Lemma 25

above.

Recall from Definition 13 that we let lower(Ti) denote the set of tasks local to Ti that
could potentially cause Ji to incur pi-blocking upon release.

Lemma 26 Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most

bD
i = max

1≤q≤nr

max
Tx∈lower(Ti)

Nx,q>0

{
Lx,q + b′

x,q

}

s-oblivious pi-blocking upon release while serving as a priority donor.

Proof Follows analogously to Lemma 21 and Lemma 24. �

Theorem 7 Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most

bi = bD
i +

nr∑

q=1

bi,q

s-oblivious pi-blocking due to requests for shared resources, where bi,q and bD
i are defined

as in Lemmas 25 and 26, respectively.

Proof Follows from Lemmas 25 and 26, and since resource requests are not nested. �

A.7 Schedulability test

Having derived bounds on maximum s-oblivious pi-blocking, any sustainable [6, 8] locking-
unaware schedulability test can be used to establish schedulability under the OMLP. In short,
we require a sustainable schedulability test because each task’s parameter bi is only an upper
bound (i.e., it is not exact); therefore the employed schedulability test must be resilient to
execution cost decreases at runtime.

Recall that bi was derived assuming that suspended higher-priority jobs are accounted
for as demand. Thus, each per-job execution time must be inflated by bi before applying
existing schedulability tests that assume tasks to be independent.

Theorem 8 Let T denote a sustainable schedulability test for independent tasks for the
employed JLFP scheduling policy. A task set τ is schedulable under the OMLP if τ ′ �
{T ′

i (ei + bi,pi) | Ti ∈ τ } is deemed schedulable by T .

The OMLP family of optimal multiprocessor real-time locking protocols 341

Note that the derivation of bi itself does not depend on the actual scheduling policy or
T ; the OMLP can thus be applied to any JLFP scheduling policy and any corresponding
sustainable schedulability test.

References

1. Andersson B, Easwaran A (2010) Provably good multiprocessor scheduling with resource sharing. Real-
Time Syst 46(2):153–159

2. Audsley N, Burns A, Richardson M, Tindell K, Wellings A (1993) Applying new scheduling theory to
static priority pre-emptive scheduling. Softw Eng J 8(5):284–292

3. Baker T (1991) Stack-based scheduling for realtime processes. Real-Time Syst 3(1):67–99
4. Baker T (2005) A comparison of global and partitioned EDF schedulability tests for multiprocessors.

Tech Rep TR-051101, Florida State University
5. Baker T, Baruah S (2007) Schedulability analysis of multiprocessor sporadic task systems. In: Handbook

of real-time and embedded systems. Chapman Hall/CRC, London
6. Baker T, Baruah S (2009) Sustainable multiprocessor scheduling of sporadic task systems. In: Proceed-

ings of the 21st Euromicro conference on real-time systems, pp 141–150
7. Baruah S (2007) Techniques for multiprocessor global schedulability analysis. In: Proceedings of the

28th IEEE real-time systems symposium, pp 119–128
8. Baruah S, Burns A (2006) Sustainable scheduling analysis. In: Proceedings of the 27th IEEE real-time

systems symposium, pp 159–168
9. Bastoni A (2011) Towards the integration of theory and practice in multiprocessor real-time scheduling.

Ph.D. thesis, Universita‘ degli Studi di Roma “Tor Vergata”
10. Bastoni A, Brandenburg B, Anderson J (2010) An empirical comparison of global, partitioned, and clus-

tered multiprocessor EDF schedulers. In: Proceedings of the 31st IEEE real-time systems symposium,
pp 14–24

11. Bastoni A, Brandenburg B, Anderson J (2011) Is semi-partitioned scheduling practical? In: Proceedings
of the 23rd Euromicro conference on real-time systems, pp 125–135

12. Bertogna M, Cirinei M (2007) Response-time analysis for globally scheduled symmetric multiprocessor
platforms. In: Proceedings of the 28th IEEE real-time systems symposium, pp 149–160

13. Block A, Leontyev H, Brandenburg B, Anderson J (2007) A flexible real-time locking protocol for
multiprocessors. In: Proceedings of the 13th IEEE conference on embedded and real-time computing
systems and applications, pp 47–57

14. Brandenburg B (2011) Scheduling and locking in multiprocessor real-time operating systems. Ph.D.
thesis, The University of North Carolina at Chapel Hill

15. Brandenburg B, Anderson J (2008) A comparison of the M-PCP, D-PCP, and FMLP on LITMUSRT. In:
Proceedings of the 12th international conference on principles of distributed systems. LNCS, vol 5401.
Springer, Berlin, pp 105–124

16. Brandenburg B, Anderson J (2008) An implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP
real-time synchronization protocols in LITMUSRT. In: Proceedings of the 14th IEEE real-time and em-
bedded technology and applications symposium, pp 185–194

17. Brandenburg B, Anderson J (2010) Optimality results for multiprocessor real-time locking. In: Proceed-
ings of the 31st real-time systems symposium, pp 49–60

18. Brandenburg B, Anderson J (2010) Spin-based reader-writer synchronization for multiprocessor real-
time systems. Real-Time Syst 46(1):25–87

19. Brandenburg B, Anderson J (2011) Real-time resource-sharing under clustered scheduling: mutex,
reader-writer, and k-exclusion locks. In: Proceedings of the 9th ACM international conference on em-
bedded software

20. Brandenburg B, Calandrino J, Block A, Leontyev H, Anderson J (2008) Synchronization on real-time
multiprocessors: to block or not to block, to suspend or spin? In: Proceedings of the 14th IEEE real-time
and embedded technology and applications symposium, pp 342–353

21. Calandrino J, Anderson J, Baumberger D (2007) A hybrid real-time scheduling approach for large-scale
multicore platforms. In: Proceedings of the 19th Euromicro conference on real-time systems, pp 247–
256

22. Calandrino J, Leontyev H, Block A, Devi U, Anderson J (2006) LITMUSRT: a testbed for empirically
comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE real-time systems sym-
posium, pp 111–123

342 B.B. Brandenburg, J.H. Anderson

23. Carpenter J, Funk S, Holman P, Srinivasan A, Anderson J, Baruah S (2004) A categorization of real-time
multiprocessor scheduling problems and algorithms. In: Handbook of scheduling: algorithms, models,
and performance analysis. Chapman Hall/CRC, London

24. Chen C, Tripathi S (1994) Multiprocessor priority ceiling based protocols. Tech Rep CS-TR-3252, Univ
of Maryland

25. Chen M, Lin K (1991) A priority ceiling protocol for multiple-instance resources. In: Proceedings of the
12th IEEE real-time system symposium, pp 140–149

26. Courtois P, Heymans F, Parnas D (1971) Concurrent control with “readers” and “writers”. Commun
ACM 14(10):667–668

27. Davison A, Hinkley D (1997) Bootstrap methods and their application. Cambridge series in statistical
and probabilistic mathematics. Cambridge University Press, Cambridge

28. Devi U, Leontyev H, Anderson J (2006) Efficient synchronization under global EDF scheduling on
multiprocessors. In: Proceedings of the 18th Euromicro conference on real-time systems, pp 75–84

29. Easwaran A, Andersson B (2009) Resource sharing in global fixed-priority preemptive multiprocessor
scheduling. In: Proceedings of the 30th IEEE real-time systems symposium, pp 377–386

30. Elliott G, Anderson J (2011) An optimal k-exclusion real-time locking protocol motivated by multi-GPU
systems. In: Proceedings of the 19th international conference on real-time and network systems

31. Faggioli D, Lipari G, Cucinotta T (2010) The multiprocessor bandwidth inheritance protocol. In: Pro-
ceedings of the 22nd Euromicro conference on real-time systems, pp 90–99

32. Gai P, di Natale M, Lipari G, Ferrari A, Gabellini C, Marceca P (2003) A comparison of MPCP and
MSRP when sharing resources in the Janus multiple processor on a chip platform. In: Proceedings of the
9th IEEE real-time and embedded technology application symposium, pp 189–198

33. Goossens J, Funk S, Baruah S (2003) Priority-driven scheduling of periodic task systems on multipro-
cessors. Real-Time Syst 25(2–3):187–205

34. Hsiu PC, Lee DN, Kuo TW (2011) Task synchronization and allocation for many-core real-time systems.
In: Proceedings of the 9th ACM international conference on embedded software. ACM, New York, pp
79–88

35. Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J 29(5):390–395
36. Lakshmanan K, Niz D, Rajkumar R (2009) Coordinated task scheduling, allocation and synchronization

on multiprocessors. In: Proceedings of the 30th IEEE real-time systems symposium, pp 469–478
37. Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard real-time environment.

J ACM 30:46–61
38. Liu J (2000) Real-time systems. Prentice Hall, New York
39. Macariu G, Cretu V (2011) Limited blocking resource sharing for global multiprocessor scheduling. In:

Proceedings of the 23rd Euromicro conference on real-time systems, pp 262–271
40. Nemati F, Behnam M, Nolte T (2011) Independently-developed real-time systems on multi-cores with

shared resources. In: Proceedings of the 23rd Euromicro conference on real-time systems, pp 251–261
41. Nemati F, Nolte T, Behnam M (2010) Partitioning real-time systems on multiprocessors with shared

resources. In: Proceedings of the 14th international conference on principles of distributed systems.
LNCS, vol 6490, pp 253–269

42. Rajkumar R (1990) Real-time synchronization protocols for shared memory multiprocessors. In: Pro-
ceedings of the 10th international conference on distributed computing systems, pp 116–123

43. Rajkumar RS (1991) In: Real-time systems—a priority inheritance approach. Kluwer Academic, Dor-
drecht

44. Rajkumar R, Sha L, Lehoczky J (1988) Real-time synchronization protocols for multiprocessors. In:
Proceedings of the 9th IEEE real-time systems symposium, pp 259–269

45. Ridouard F, Richard P, Cottet F (2004) Negative results for scheduling independent hard real-time tasks
with self-suspensions. In: Proceedings of the 25th IEEE real-time systems symposium, pp 47–56

46. Schliecker S, Negrean M, Ernst R (2009) Response time analysis on multicore ECUs with shared re-
sources. IEEE Trans Ind Informatics 5(4):402–413

47. Sha L, Rajkumar R, Lehoczky J (1990) Priority inheritance protocols: an approach to real-time synchro-
nization. IEEE Trans Comput 39(9):1175–1185

	The OMLP family of optimal multiprocessor real-time locking protocols
	Abstract
	Introduction
	Related work

	System model
	Scheduling
	Resource model
	Locking protocols
	Priority inversion and blocking

	Blocking optimality
	Priority inversions in multiprocessor systems
	A blocking complexity measure
	Lower bound on maximum s-oblivious pi-blocking

	The O(m) locking protocol family
	Resource-holder progress
	Limits of priority boosting
	Priority donation
	Request rule
	Donor rules

	The clustered OMLP for mutual exclusion
	Structure
	Rules

	The clustered OMLP for RW exclusion
	Structure
	Reader rules
	Writer rules

	The clustered OMLP for k-exclusion
	Structure
	Rules

	An independence-preserving mutex protocol
	Wait queue choices
	The global OMLP for mutual exclusion
	Structure
	Rules

	Optimality, combinations, and limitations
	Non-asymptotic optimality
	Optimality of relaxed-exclusion protocols
	Highly replicated resources
	Unrelated self-suspensions
	Protocol combinations

	Empirical evaluation
	Experimental setup and evaluation
	Task set generation
	Tested parameter ranges
	Evaluation criteria

	Comparison of mutex protocols for partitioned scheduling
	OMLP vs. MPCP-VS
	OMLP vs. MPCP
	MPCP vs. MPCP-VS
	P-FP vs. P-EDF

	Comparison of the OMLP's mutex protocols for global and clustered scheduling
	Intra- vs. inter-cluster locking
	Heterogeneous task sets
	Priority donation vs. priority inheritance

	Comparison of the clustered OMLP's mutex and RW protocols
	Comparison of the clustered OMLP's mutex and k-exclusion protocols
	Replication benefits
	P-mutex vs. k-exclusion

	Limitations and future directions

	Conclusion
	Acknowledgements
	Appendix: Schedulability analysis
	Holistic blocking analysis
	Interference sets
	The global OMLP for mutual exclusion
	The clustered OMLP for mutual exclusion
	The clustered OMLP for RW exclusion
	The clustered OMLP for k-exclusion
	Schedulability test

	References

