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Abstract In this paper, we propose a methodology for accelerating application segments by

partitioning them between reconfigurable hardware blocks of different granularity. Critical

parts are speeded-up on the coarse-grain reconfigurable hardware for meeting the timing

requirements of application code mapped on the reconfigurable logic. The reconfigurable

processing units are embedded in a generic hybrid system architecture which can model a

large number of existing heterogeneous reconfigurable platforms. The fine-grain reconfig-

urable logic is realized by an FPGA unit, while the coarse-grain reconfigurable hardware

by our developed high-performance data-path. The methodology mainly consists of three

stages; the analysis, the mapping of the application parts onto fine and coarse-grain reconfig-

urable hardware, and the partitioning engine. A prototype software framework realizes the

partitioning flow. In this work, the methodology is validated using five real-life applications.

Analytical partitioning experiments show that the speedup relative to the all-FPGA mapping

solution ranges from 1.5 to 4.0, while the specified timing constraints are satisfied for all the

applications.
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1. Introduction

Reconfigurable architectures have been a topic of intensive research activities in the past

few years. Reconfigurable fabrics can unify the performance of ASICs and the flexibility

offered by the microprocessors [1]. In particular, hybrid (mixed) granularity reconfigurable

systems [1–4] offer extra advantages in terms of performance and great flexibility to effi-

ciently implement computational intensive applications, like Digital Signal Processing (DSP)

and multimedia. These applications are characterized by mixed functionality, data and con-

trol. Hybrid reconfigurable architectures usually consist of: fine-grain reconfigurable units

typically implemented in Field Programmable Gate Array (FPGA) technology, coarse-grain

reconfigurable units implemented in ASIC technology, data and program memories, recon-

figurable interconnection network and microprocessor(s). Due to the special characteristics

of the heterogeneous (coarse and fine-grain) reconfigurable units included in a hybrid system

architecture, certain parts of the application are better suited to be executed on the coarse-grain

units and other parts on the fine-grain reconfigurable units.

The fine-grain reconfigurable hardware’s granularity is typically four or five bits. Small bit-

width operations can be efficiently executed on fine-grain hardware, as the granularity of the

Configurable Logic Blocks (CLBs) of contemporary FPGA devices is four or five bits. Tasks

of Finite State Machine type of functionality (e.g. control structures) are also good candidates

to be implemented by the fine-grain reconfigurable hardware. The coarse-grain reconfigurable

blocks efficiently execute word-level or sub word-level operations [1, 4, 5]. These blocks can

slightly modify their functionality according to the application requirements. The execution

of computational intensive parts of applications, like loops, on coarse-grain reconfigurable

hardware offers great advantages in terms of performance, area and power consumption

relative to the execution of these operations on the fine-grain reconfigurable units [1–3, 5, 6].

So, for exploiting the advantages offered by the coarse-grain reconfigurable hardware, the

development of a methodology for partitioning an application onto the coarse and fine-grain

reconfigurable hardware of a hybrid system is considered essential.

In this paper, an automated partitioning methodology between the fine and coarse-grain

reconfigurable hardware of an embedded hybrid platform is introduced. The goal of the

methodology is to improve system’s performance for satisfying the timing constraints of

application parts executed on the reconfigurable logic of the platform. The method is pa-

rameterized in respect to the fine and the coarse-grain reconfigurable parts of the target

architecture. Both types of reconfigurable hardware are characterized in terms of timing and

area features. The main parts of the method are the analysis procedure for detecting critical

parts, called kernels, of the application segments mapped on the mixed granularity recon-

figurable hardware, the mapping procedures for the fine and coarse-grain reconfigurable

hardware, and the partitioning engine. In this work, for validating the effectiveness of the

proposed method, we assume specific mapping algorithms for the fine and the coarse-grain

reconfigurable logic. However, existing mapping procedures [7, 8] can be used for calculating

the execution cycles on the FPGA or other types of coarse-grain reconfigurable hardware

(and their corresponding mapping algorithms) can be considered [5, 9].

System’s performance in embedded systems is typically improved when application’s

segments that contribute to the majority of the execution time, are speeded-up [10, 11].

Thus, we focus on these critical parts for accelerating an application through partitioning and

mapping them on the coarse-grain reconfigurable hardware. A prototype software frame-

work has been developed for implementing the proposed methodology. The methodology

is evaluated in this paper using five real-life applications: (a) an IEEE 802.11a Orthogonal

Frequency Division Multiplexing (OFDM) transmitter [12], (b) a cavity detector [13], (c)
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a video compression technique [14], (d) a wavelet-based image compressor [15], and (e) a

JPEG still image encoder [16]. The performed experiments showed that the timing specifi-

cations of the applications are satisfied and the performance improvements, relative to an all

FPGA solution, by applying the proposed part itioning methodology range from 1.5 to 4.0.

The rest of the paper is organized as follows: The related work is outlined in section 2,

while section 3 describes the proposed partitioning methodology. Experimental results are

given in section 4. Finally, section 5 concludes the paper and presents future activities.

2. Related work

This section presents existing research activities in developing hybrid reconfigurable systems

and in hardware/software partitioning methodologies for reconfigurable architectures.

2.1. Hybrid reconfigurable systems

There has been considerable research for developing reconfigurable architectures in the

past [1]. We are focusing on hybrid granularity systems containing fine and coarse-grain

reconfigurable logic.

The Pleiades [3] System-on-Chip (SoC) architecture is an approach that combines an

on-chip microprocessor with a number of heterogeneous reconfigurable units of different

granularities connected via a reconfigurable interconnection network. The Strategically Pro-

grammable System (SPS) [2] is a hybrid reconfigurable system architecture that is composed

by fine-grain reconfigurable units and coarse-grain modules which are pre-placed within a

fully reconfigurable fabric. Chameleon heterogeneous SoC platform [4] contains a general

purpose processor, an FPGA unit and a coarse-grain reconfigurable part. The latter part

is composed by reconfigurable processor tiles, called MONTIUM. The hybrid granularity

approach has been recently adopted in current FPGA devices, like the Xilinx Virtex-II/4

[17] and Altera Stratix [18]. These devices contain hardwired units, configured for example

as multiply-accumulate operators, which operate on word-level operands and they can be

considered as the coarse-grain hardware.

In the aforementioned hybrid reconfigurable systems, there is no automated partitioning

methodology between the fine and coarse-grain reconfigurable units for improving applica-

tion’s performance by mapping kernels on the coarse-grain reconfigurable hardware.

2.2. Partitioning for reconfigurable architectures

Hardware/software partitioning can improve performance [19] and in some cases even re-

duce power consumption [20]. More recently, hardware/software partitioning techniques for

single-chip systems composed by a microprocessor and FPGA [7, 11, 21–23], were devel-

oped. The FPGA unit was treated as an extension of the microprocessor. Critical parts of the

application (typically loop structures) are moved for execution on the FPGA for improved

performance and usually reduced energy consumption. This is due to the fact that it was

observed that most embedded applications (usually DSP and multimedia ones) spend the

majority of their execution time in loops or small code segments [10, 11, 23] which are

characterized as kernels. This means that an extensive solution space search, as in past hard-

ware/partitioning works [19, 20] is not necessary. However, the aforementioned partitioning

methods do not consider coarse-grain reconfigurable blocks. Thus, they can not further accel-

erate an application since they do not benefit from the ability of the coarse-grain hardware for
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speeding-up applications [5, 6, 24]. Hardware/software partitioning approaches for systems

composed by a processor and a coarse-grain reconfigurable array were presented in [25, 26].

Fine-grain reconfigurable hardware was not considered in those systems. So, custom or excep-

tional operations, like bit manipulations or divisions, cannot be efficiently executed on those

systems. For example, the Processing Elements (PEs) of existing coarse-grain reconfigurable

architectures [4, 5, 24, 26] do not support division operations.

3. Partitioning method

3.1. Hybrid reconfigurable architecture

The generic hybrid reconfigurable SoC considered by the methodology, which mainly targets

DSP and multimedia applications, is shown in Fig. 1. This embedded system includes coarse

and fine-grain reconfigurable hardware units for data processing, shared data RAM, and

a reconfigurable interconnection network. In this work, the coarse-grain hardware is our-

developed high-performance coarse-grain reconfigurable data-path proposed in [27], while

the fine-grain reconfigurable hardware is realized by an FPGA. Both the coarse and the fine-

grain reconfigurable hardware units compose the Reconfigurable Functional Unit (RFU) of

the hybrid system. All the above components are integrated in a SoC and they are configured

by an instruction-set processor. The microprocessor executes control-intensive parts of an

application. For example, the Medium Access (MAC) layer of a wireless LAN protocol [12] is

executed on the microprocessor, while the baseband processing, which is more computational

intensive than the MAC layer, is implemented on the RFU of the hybrid SoC. This generic

architecture can model a variety of existing hybrid reconfigurable architectures, like the ones

considered in [2–4].

The execution (programming) model of the hybrid reconfigurable system architecture con-

siders that the data communication among the computational components (microprocessor

and RFU) uses shared-memory mechanism. The shared memory is comprised by the sys-

tem’s shared data RAM and memory-mapped registers within both types of reconfigurable

logic. Scalar variables, either live-in or live-out ones, are exchanged via the shared registers.

Global variables and data arrays are allocated in the system’s shared data RAM. The micro-

processor, the fine and the coarse-grain reconfigurable hardware have access to the shared

Reconfigurable Interconnect Network

Coarse-grain 
reconfigurable 

hw blocks

Fine-grain 
reconfigurable 

hw blocks

Micro-
processor

Instruction 
RAM

Shared Data RAM

Control
Data Data

Data

Data
Control
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Fig. 1 Generic hybrid reconfigurable platform
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memory. The communication mechanism used by the computational nodes preserves data co-

herency by requiring their execution to be mutually exclusive. The mutual exclusive execution

makes the programming of the system architecture easier by eliminating complicated analysis

and synchronization procedures. The system architecture is also simpler with the exclusive

execution because the microprocessor and the RFU will never access the same memory

address space simultaneously.

3.2. Method overview

Fig. 2 shows a generic design flow for mapping an application to a hybrid reconfigurable

system. First, a hardware/software partitioning stage, like the ones in [11, 19, 20, 23], defines

the software parts to be executed on the processor and on the RFU. The software parts decided

to be executed on the reconfigurable hardware contribute the most to the execution time of

an application. Our methodology focuses on partitioning the code mapped on the RFU to the

fine and coarse-grain reconfigurable hardware for satisfying timing specifications.

In Fig. 3, the flow of the proposed RFU partitioning methodology is shown. The input is the

code mapped on the RFU which is described in a high-level language like C/C++. As previ-

ously mentioned, research activities [10, 11, 21, 23] have shown that basic blocks (BBs) inside

loop structures represent a significant portion of the execution time in DSP and multimedia

applications. The term basic block expresses a sequence of operations (instructions) with no

branches into or out of the middle. At the end of each basic block there is a branch instruction

that controls which basic block executes next. The basic block is a compiler construct that

represents the instructions composing a Data Flow Graph (DFG) representation. The pro-

posed RFU partitioning methodology focuses on finding kernels (critical basic blocks) of the

application segments selected for execution on the RFU. These kernels are executed on the

coarse-grain reconfigurable hardware so that the execution time of the application segments

meets the timing constraints.

In step 1, the Control Data Flow Graph (CDFG) representation is created from the source

code. This representation is extensively used in mapping applications on reconfigurable

hardware. The partitioning method utilizes a hierarchical CDFG [28] for modeling data and

control-flow dependencies. The control-flow structures, like branches and loops, are modeled

through the hierarchy, while the data dependencies are modeled by DFGs. For constructing

the CDFG, the SUIF2 [34] and MachineSUIF [35] compiler infrastructures are utilized.

Proper compiler passes have been developed for the automation of the CDFG creation. The

CDFG is input to the steps of mapping for fine and coarse-grain reconfigurable hardware and

to the partitioning engine.

In step 2, the CDFG is mapped on the fine-grain hardware and the execution time is

calculated. If the execution time of the application code mapped on the RFU meets the

Hw/Sw partitioning

RFU Partitioning

Code on RFUCode on processor

Compilation

Software

Microprocessor RFU

Fig. 2 General design flow for
hybrid reconfigurable systems
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Fig. 3 Flow of the RFU partitioning methodology

timing constraints, then the methodology exits, since there is no need to continue with the

next steps, i.e. to partition the application onto fine and coarse-grain hardware. If the timing

constraints are not satisfied, then we proceed to step 3, which is the analysis procedure.

In the analysis procedure, the application’s source code is processed, for identifying the

kernels, which are the candidates to be mapped onto the coarse-grain hardware. The rest of the

application code is mapped onto the fine-grain logic of the architecture. The identification of

kernels is a combination of dynamic and static analysis. The kernels are ordered in decreasing

order of computational complexity. The analysis procedure is performed at a smaller level

(the basic block level) and not at the loop level as in profiling tools of previous works

[10, 11].

In the partitioning engine (step 4), kernels are moved one by one for execution (and

thus acceleration) on the coarse-grain reconfigurable hardware. After this movement, the

execution time of the application is calculated to check if the application’s timing constraints

are met. For computing the execution time, the mapping to the fine and coarse-grain hardware

takes place.
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The mapping to the coarse-grain reconfigurable logic of the architecture is the step 5 of

the proposed methodology. If there is still a violation in the execution time of the application

code mapped on the RFU, the procedures of moving kernels to the coarse-grain hardware and

mapping the parts of the application onto the fine and coarse-grain reconfigurable harware,

are repeated until the timing constraints are satisfied.

Since the mapping procedures for both types of reconfigurable hardware determine the

execution time, we propose appropriate algorithms to perform these procedures. However,

the proposed method is parametric in respect to the mapping algorithms for both types of

reconfigurable hardware [5, 7, 8, 9], since it is interested in knowing the execution times

of application’s parts on the reconfigurable blocks. Furthermore, the partitioning method

is parametric to the type of fine and coarse-grain reconfigurable hardware, as the mapping

algorithms abstract the hardware by considering resource constraints, timing and area charac-

teristics. In the following sections, we describe the analysis process, the mapping procedures

and the partitioning engine.

3.3. Analysis procedure

The analysis step identifies the kernels of the input application code mapped on the recon-

figurable hardware and provides the input to the partitioning engine block, as it is shown in

Fig. 3. The kernels are candidates to be mapped onto the coarse-grain reconfigurable hard-

ware, while the non-critical parts of the application are executed on the fine-grain hardware.

The inherent computational complexity (counts of basic operations and memory accesses)

is a meaningful measure to identify critical basic blocks. This information can be obtained

through a combination of: (a) dynamic analysis, and (b) static analysis, within basic blocks

of the input specification. For the analysis procedure we have developed scripts in Lex [29],

which is a lexical analyzer used for parsing the input code.

Code of the application mapped 
on the reconfigurable hw (C/C++)

Source code parsing

Identified loops

Parsing and re-writing the 
application's code 

Placed counters in BBs 
inside loops

Representative inputs

BB execution frequency 

Weighted sum calculation 
of the operations inside BBs

Weight of each BB

Dynamic analysis 

Static analysis

Preprocessing

Application execution

Fig. 4 Diagram of the dynamic and static analysis
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The diagram of the static and dynamic analysis procedures is illustrated in Fig. 4. At the

preprocessing sub-step, loop structures (for, while and do-while) are identified in the source

code. The identified loops are inputs to both dynamic and static analysis procedures. For the

dynamic analysis, Lex scripts were developed for re-writing the application’s source code by

placing a counter at each basic block inside every loop. Then, the modified source code (after

counter placement) is compiled and executed with input vectors that represent the typical

operation of the application. The placed counters give the execution frequencies for all basic

blocks inside loops of the input source code. Lex is also used for the static analysis. A Lex

script has been developed for identifying the type of operations inside each basic block.

Operations in a basic block do not have a uniform cost, thus a weighted sum of the operations

composing a specific basic block is calculated using the same Lex script. The weight of an

operation, e.g. a multiplication one, is related to the delay typically required for the execution

of this operation. For example, a multiplication operation is assigned with a larger weight

than an ALU one.

The total weight, representing the computational complexity of a basic block, is computed

as the product of the basic block’s execution frequency (exec freq) times the weighted sum

of the operations of this basic block (bb weight), i.e.:

total weight = exec freq · bb weight (1)

The exec freq is reported from the dynamic analysis, while the bb weight parameter from

the static analysis. After all critical basic blocks in the input source code have been identified,

an ordering of these critical basic blocks takes place. These kernels are sorted in descending

order of computational complexity. Thus, the first kernel which is going to be mapped onto

the coarse-grain hardware, if the execution requirement is not met, is the most computational

demanding one.

The developed analysis procedure makes sure that the kernels consist of word-level oper-

ations that better match the granularity of the coarse-grain reconfigurable hardware and not

by bit-levels ones which are more efficiently executed on the FPGA. Additionally, computa-

tionally intensive basic blocks are not considered as kernels if they consist of operations like

divisions or square roots which are characterized as exceptional since they are not supported

by the functional units of our coarse-grain reconfigurable hardware and of existing architec-

tures [4, 5, 9]. Those basic blocks are going to be mapped on the FPGA. Thus, the developed

flow ensures that the detected kernels will be composed by word-level operations that they

can be implemented on the functional units of the coarse-grain reconfigurable hardware (e.g.

like 16-bit multiplications).

3.4. Mapping onto fine-grain reconfigurable hardware

The considered mapping procedure for the fine-grain reconfigurable hardware is based on a

temporal partitioning algorithm. Temporal partitioning resolves the hardware implementa-

tion of an application that does not fit into the FPGA hardware by time-sharing the device in

a way that each partition fits in the available hardware resources, i.e. the CLBs of an FPGA.

Then, the partitioned application is executed by time-sharing the device such that the initial

functionality is maintained. Time-sharing is achieved through the dynamic reconfiguration

of the device which is a mechanism supported by modern FPGAs, either commercial [17,

18], or academic ones [21, 30]. A temporal partitioning procedure results in the concept of

virtual hardware [31]. The importance of the temporal partitioning (and respectively of the

virtual hardware notion) has been demonstrated with large and computationally complex
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applications [32, 33] although the reconfiguration time of the considered FPGAs was rel-

atively high. The mapping procedure in this paper aims in efficiently exploiting the vir-

tual hardware concept. We notice that there are mapping methodologies for FPGAs which

consider static reconfiguration of the FPGA [7, 8]. However, those methodologies ap-

proach FPGAs the same way that they approach ASICs; thus the dynamic reconfigura-

tion capabilities of the FPGAs are not exploited. For example, when an application’s part

does not fit on the FPGA it is discarded by those methods from execution on the FPGA,

something that does not occur in the temporal partitioning method. Additionally, it has

been shown in [33] that a temporal partitioning based mapping can achieve better ex-

ecution times compared to a mapping that considers static reconfiguration of the FPGA

device.

3.4.1. Description of the mapping procedure

The diagram of the mapping procedure for fine-grain reconfigurable hardware is given in

Fig. 5. The input is the DFG of a non-critical basic block which will be executed on the

FPGA. We mention that the mapping method handles CDFGs by iteratively mapping the

DFGs composing the CDFG. If, for example, a CDFG contains more than one basic block

(DFG), then its execution cycles are the sum of the execution cycles of the DFGs comprising

it. Furthermore, if the CDFG represents a loop that has no conditional statements inside (i.e.

it is composed by one basic block), then its execution cycles is the loop body’s execution

cycles times the number of iterations of the loop.

Afterwards, optimizations are automatically applied to the DFG, like dead code elimi-

nation, common sub-expression elimination and constant propagation. Furthermore, to ac-

commodate the implementation of operations like divisions or square root computations on

the FPGA, these operations are transformed into series of primitive operations, as multipli-

cations and ALU-type ones. For example, the divisions are transformed to shifts, while a

square root computation can be decomposed to simpler operations using a method, like the

Friden algorithm [36].

Temporal 
Partitioning 

High-Level 
Synthesis of TPs 

FPGA area

...TP2 TPn

+

+ +

*

Execution cycles

DFG

Optimizations

Fig. 5 Diagram of the mapping
procedure for FPGAs
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The temporal partitioning algorithm partitions the DFG into segments under the constraint

of the FPGA area. The temporal partitioning procedure has to exploit the operation parallelism

of the DFG for reducing the execution time and thus improving performance. For each

temporal partition (TP), high-level synthesis is performed for estimating its execution cycles.

For minimizing the execution time of each partition of the input DFG, we have implemented

the As Soon As Possible (ASAP) scheduling algorithm [28]. This type of scheduling can be

performed since the temporal partitioning algorithm does not consider resource sharing and

all the operations of the partition fit on the FPGA.

The resource sharing usually does not lead to better solution in terms of performance

for designs targeting FPGAs. Multiplexers are used to provide with the proper inputs the

functional units when resource sharing takes place (e.g. as in list and Force Directed based

synthesis systems [28]). However, multiplexers can occupy larger FPGA area than the area of

the functional resources. Most importantly, the propagation delay of a multiplexer is added

to the delay of the functional units (like a multiplier one) which results in the reduction of the

clock frequency in each control-step [28] of the schedule. The clock frequency of the syn-

thesized circuit is smaller than in the case of a circuit with no multiplexers; thus performance

is decreased. Additionally, a large number of multiplexers is usually instantiated in order

to maximize the sharing of functional units in existing behavioural synthesis systems [28].

This complicates the placement and routing (P&R) on the FPGA which has an effect in not

achieving the best as possible clock frequency due to poor P&R. In high-level synthesized

designs targeting FPGAs, it is better to use an extra functional unit than perform resource

sharing due to the aforementioned reasons. Thus, we have considered ASAP-based tem-

poral partitioning and ASAP scheduling in each temporal partition for avoiding resource

sharing which usually degrades the performance of behavioural synthesized designs on

FPGAs.

According to the application’s data and control-flow, the appropriate partition is loaded

to the FPGA. Data memories are used for storing the input and output values among

the temporal partitions. For example, local data memories embedded in the FPGA, as

in devices of [17, 18], can be used. We note that for each temporal partition, full re-

configuration of the FPGA is performed. The reconfiguration time has the same value

for each partition of a basic block mapped onto FPGA and it is added to the execution

time of each basic block’s partition. Finally, the mapping procedure reports the execu-

tion cycles of the partitioned DFG and the configuration of the fine-grain reconfigurable

logic.

The considered temporal partitioning algorithm classifies the nodes (operations) of the

input DFG according to its ASAP levels [28]. The ASAP levels expose the parallelism

hidden in the DFG, i.e. all the DFG nodes with the same level can be considered for parallel

execution. The approach followed is that the nodes are executed in increasing order relative to

their ASAP levels. Such an approach also exploits the maximum operation parallelism from

the input DFG which leads in faster as possible execution on the FPGA. For the temporal

partitioning of the DFG, the ASAP level of the DFG node ui , the FPGA area - area(ui ) -

occupied by each node and the area AFPGA available for mapping the DFG operations on the

FPGA are considered. The algorithm traverses each node of the DFG, level by level, and

assigns them to a partition. The DFG nodes are assigned to partitions numbered 1 and beyond.

All the nodes from level 1 to the maximum level of any node in the DFG are traversed. Nodes

of the same ASAP level are placed in a single partition. If the available area in the FPGA

hardware is exhausted, then the nodes are assigned to the next partition. If the nodes in the

current ASAP level are all assigned to a partition, then the next level nodes are considered for

that partition. Initially, a partition has no nodes. As the area(ui ) and AFPGA are parameters
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in our algorithm, the specific temporal partitioning algorithm is retargetable to the type of

FPGA.

3.5. Mapping onto coarse-grain reconfigurable hardware

3.5.1. Coarse-grain reconfigurable data-path

For the coarse-grain hardware, the high-performance coarse-grain reconfigurable data-path

and the mapping methodology presented in [27] are considered in this work. This data-

path consists of a set of hardwired Coarse-Grain Components (CGCs), a reconfigurable

interconnection network, and a register bank. A CGC unit is an n × m array of nodes, where

n is the number of rows and m the number of columns. In Fig. 6a, such a CGC (called

hereafter as 2 × 2 CGC) with 2 nodes per row and 2 nodes per column is illustrated. The

2 × 2 CGC consists of four nodes whose interconnection is shown in Fig. 6a, four inputs (in1,

in2, in3, in4) connected to the register bank, four additional inputs (A, B, C , D) connected to

the register bank or to another CGC, two outputs (out1, out2) also connected to the register

bank and/or to another CGC, and two outputs (out3, out4) whose values are stored in the

register bank. An n × m CGC has an analogous structure. Particularly, the first-row nodes

obtain their inputs from the register bank. All the other CGC nodes obtain their inputs from

the register bank and/or a row with a smaller index from the same and/or another CGC. For

the case of the CGC outputs, the last-row nodes store the results of their operations to the

register bank. All the other nodes can give their results to the register bank, to the same CGC

or to another CGC in the data-path.

Each CGC node contains two 16-bit functional units that are a multiplier and an ALU

as shown in Fig. 6b. The ALU performs shifting, arithmetic (add/subtract), and logical

operations. Each time either the multiplier or the ALU is activated according to the control

signals Sel1, Sel2 and Sel3, as shown in Fig. 6b. The flexible interconnection among the

nodes inside a CGC allows in easily realizing any desired operation combination (like a

multiply-accumulate operation) by properly configuring the existing steering logic (i.e. the

multiplexers and the tri-state buffers). Additionally, due to the CGC data-path’s features, the

stages of the mapping methodology are accommodated by simple, yet efficient algorithms. An

average performance improvement of 44%, relative to existing high-performance data-path,

was achieved with the usage of the CGC data-path [27].

Node
1

Node
2

Node
3

Node
4

In 1 In 2 In 3 In 4

Out 3 Out 4

To register bank

or to another CGC

To register bank

or to another CGC

B C C D

2 2 2 2

BA

A,B,C,D come

from register bank

or from other CGC

Out 1 Out 2
Buffer Buffer

In A In B

Out

Sel 1 Sel 2

* ALU

Sel 3

(a) (b)

Fig. 6 (a) Architecture of the 2 × 2 CGC, (b) CGC node architecture
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3.5.2. Description of the mapping algorithm

The diagram of the mapping procedure for the CCG data-path is shown in Fig. 7. The input

to the mapping algorithm is the DFG of a candidate basic block (kernel) to be mapped

on the CGC data-path. The input DFG is scheduled using the developed scheduler for the

CGC data-path. In our case, scheduling is a resource-constrained problem with the goal of

execution cycles minimization, since the number and type of CGCs (e.g. three 2 × 2 CGCs)

in the data-path is input to the mapping algorithm. A proper list-based scheduler has been

developed. The priority function [28] of the list scheduler is derived by properly labeling the

DFG nodes. Particularly, the nodes are labeled with weights of their longest path to the sink

node of the DFG, and they are ranked in decreasing order. The most urgent operations are

scheduled first. The resource constraints for the list-based scheduler are determined by the

total number of CGC nodes at the first rows of all the CGCs in the data-path. If there are p
n × m CGCs in the data-path, there are p · m nodes in the first rows, since each CGC row

consists of m nodes. Thus, p · m operations can be executed in parallel at each clock cycle

of the schedule. For example, if there are three 2 × 2 CGCs in the data-path, six operations

can be executed in parallel at every cycle of the schedule.

Due to the features of the introduced CGC-based data-path, a simple but effective algorithm

is used to perform binding. The pseudo-code of the binding algorithm is illustrated in Fig. 8.

The binding algorithm maps the DFG operations to the CGC nodes in a row-wise manner,

using the map to CGC() function. We define a term called CGC index that represents the

current level of CGC nodes that bind the DFG operations. The CGC index takes the values

from 0 and n-1, as the CGC consists of n levels (rows) of operations. After CGC binding,

the overall latency of the DFG is measured in clock cycles having period TCGC that is set for

having unit execution delay for the CGCs.

The mapping flow outputs the execution cycles and the configuration of the CGC data-path.

The mapping procedure handles CDFGs by iteratively mapping the DFGs composing the

CDFG. For more detailed description about the CGC data-path and the respective mapping

algorithm, the reader is referred to [27].

3.6. Partitioning engine

The partitioning engine moves kernels one by one for execution onto the coarse-grain recon-

figurable hardware until the timing constraints of the application code mapped on the RFU

are satisfied. After the movement of each kernel to the coarse-grain hardware, the execution

time of the application is calculated to check if these constraints are met. The mapping proce-

dures to the fine and coarse-grain hardware are required for computing the execution times.

Scheduling

Binding

DFG

# and type 
of CGCs

Execution cycles

Fig. 7 Mapping procedure for
the coarse-grain reconfigurable
hardware
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while (the DFG is not fully bound)  

  for the number of CGCs  

   for (CGC_index=0; CGC_index <n; CGC_index ++)   

    while (col_idx < number of ops in a row && col_idx < number of DFG nodes not covered) 

        map_to_CGC(DFG_node, CGC_index, col_idx) 

    end while; 

   end for; 

  end for; 

end while;  

Fig. 8 CGC binding algorithm

Due to the mutual exclusive execution of the fine and coarse-grain reconfigurable hardware,

the total time for executing an application onto the RFU of the targeted platform is:

ttotal = tFPGA + tcoarse (2)

where tFPGA is the execution time of non-critical basic blocks on the FPGA and tcoarse is the

execution time of the kernels on the coarse-grain reconfigurable hardware. The communica-

tion time between the fine and coarse-grain reconfigurable hardware is included in the tFPGA

and in the tcoarse.

The tcoarse equals:

tcoarse =
∑

i

tto coarse(B Bi ) · Exec freq(B Bi ) (3)

where tto coarse is the time required for executing the basic block BBi on the coarse-grain

reconfigurable hardware, and Exec freq(BBi ) is the execution frequency of the BBi . Similarly,

tFPGA equals:

tFPGA =
∑

i

tto FPGA(B Bi ) · Exec freq(B Bi ) (4)

where tto FPGA includes the reconfiguration time of the FPGA for all the generated temporal

partitions after the mapping of the basic block BBi .

4. Experiments

We have developed a prototype framework in C++, also utilizing academic tools [29, 34,

35], to implement the flow of the proposed partitioning method (Fig. 3). The execution times

of the application parts mapped on the RFU were estimated using this prototype framework.

4.1. Experimental set-up

In this paper, we apply the proposed partitioning method to five real-world applications

written in C language. These applications are: (a) the baseband processing of an IEEE
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802.11a OFDM transmitter [12], (b) a cavity detector which is a medical image processing

application [13], (c) a wavelet-based image compressor, that its source code is derived from the

Honeywell benchmarks [15], (d) a video compression technique, called Quadtree Structured

Difference Pulse Code Modulation (QSDPCM) [14], and (e) a JPEG-compliant still image

encoder [16]. The OFDM transmitter and the JPEG encoder were developed by the AMDREL

project partners [37], while the cavity detector and the QSDPCM are in-house benchmarks.

The clock cycle period of the reconfigurable part of the hybrid architecture is set to the

clock period of the FPGA. We have considered that the clock cycle period TFPGA of the FPGA

hardware is two times larger than the CGC data-path’s clock period TCGC, i.e.

TFPGA = 2 · TCGC (5)

These two clock periods remain constant for the five benchmark applications partitioned

on the reconfigurable logic of the platform. The coarse-grain reconfigurable hardware is

clocked at a constant frequency as in existing coarse-grain architectures [4, 5, 24]. On the

contrary, when different designs are synthesized from an RTL description in FPGA logic with

a tool like Synplify Pro [38], different delays are reported and consequently the FPGA can be

clocked at different frequencies. However, with our temporal partitioning based methodology,

we can set the clock frequency of the FPGA to a constant value. As it is mentioned in section

3.4.1, ASAP scheduling is performed in each generated temporal partition. In high-level

synthesis of applications, the clock period of each control-step remains constant and the

execution time equals the number of control-steps (cycles) times the clock period [28]. The

clock period is typically set to accommodate the delay of a functional unit. In our experiments,

the clock period of the FPGA is defined by the delay of an ALU unit. In this case, we have

found by experimentation that a multiplication operation endures two clock cycles, while

the ALU operations have unit execution delay. We mention that the basic blocks of the

five applications consist of arithmetic operations of type ALU and multiplication (e.g. no

divisions are present). Also, the total number of ALU operations was considerably larger

than the multiplications in these applications. We did not set the clock period of the FPGA

to the delay of a multiplier since this would have resulted in large slack times wasted in

control-steps executing ALU operations; thus for reducing the slack times we set the clock

period to accommodate the ALU’s delay.

We have synthesized an RTL VHDL description of a CGC data-path composed by three

2 × 2 CGCs to a 0.13 μm standard cell CMOS technology and we found that the clock

frequency can be set to 200 MHz. We have also synthesized a 16-bit ALU, supporting 12

operations, on a Xilinx Virtex FPGA and the reported maximum clock frequency from the

Synplify Pro was approximately 100 MHz. Due to these two experimental observations, we

set TFPGA = 2 · TCGC. However, there are coarse-grain reconfigurable architectures that can

be clocked at a higher frequency than the 200 MHz as in the case of the reconfigurable DSP

core of [24] which can be clocked up to 500 MHz. Thus, the ratio TFPGA/TCGC can be larger

than two.

For the experiments, we assume two different FPGA devices. For the first FPGA device

(FPGA1), the area is equal to 1500 units, i.e. AFPGA = 1500. This area value is approxi-

mately equal to the number of CLB slices in the Xilinx Virtex-II XC2V250 device [17].

For the second FPGA (FPGA2), the area equals 5000 units (AFPGA = 5000), and it approxi-

mately corresponds to the number of CLB slices in the XC2V1000 device. We also consider

two cases of CGC-based data-paths composed by: (a) two 2 × 2 CGCs (CGC1 case) and

(b) three 2 × 2 CGCs (CGC2 case). Thus, four different combinations of the FPGA and CGC
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data-path are assumed in the experimentation. In [27], we have found that CGCs with a value

of 2 ≤ n ≤ 3 and 2 ≤ m ≤ 3 are adequate to be used for improving performance. This is the

reason why we have considered 2 × 2 CGC units in this experimentation. The microprocessor

of the hybrid platform is considered to be a MIPS32 4KP [39] clocked at 100 MHz.

We have assumed that the full reconfiguration of the FPGA endures 5 clock cycles. This

reconfiguration time was also reported for the FPGA part of the academic Garp architecture

[21]. For the contemporary commercial FPGAs [17, 18], the full reconfiguration time is

usually a few milliseconds. However, with reconfiguration caches or other proper developed

mechanisms, as in [21, 30], the full reconfiguration can last few FPGA cycles. On the other

hand, the CGC data-path is reconfigured in a cycle-by-cycle basis.

The applications’ execution clock cycles are derived by using the following inputs: (a) 6

payload symbols for the OFDM transmitter at a 54 Mbps rate, (b) an image of size 640 × 400

bytes for the cavity detector, (c) two video frames of size 176 × 144 bytes each for the

QSDPCM, (d) an image of size 512 × 512 bytes for the wavelet-based image compressor,

and (e) an image of size 256 × 256 bytes for the JPEG encoder. The timing constraints to be

met, for the application parts mapped on the RFU, are: (a) 50,000 clock cycles for the OFDM

transmitter, (b) 8,000,000 cycles for the cavity detector, (c) 5,000,000 cycles for the image

compressor, (d) 16,000,000 cycles for the QSDPCM, and (e) 6,000,000 cycles for the JPEG

encoder.

4.2. Experimentation

4.2.1. Execution times of the overall applications on the hybrid platform

Results are provided in this section from executing the complete applications on the hybrid

platform of Fig. 1. A straightforward hardware/software partitioning approach is utilized

where basic blocks contributing more than 5% to the total execution time of the application

were selected for execution on the reconfigurable logic. Such kind of hardware/software

partitioning decision has been previously used in works considering the partitioning in mi-

croprocessor/FPGA systems [11, 23] and it has been shown to achieve very good speedups.

The rest of the code of the five applications is executed on the MIPS32 4KP processor. The

number of basic blocks (BBs) of each application decided to be mapped on the RFU is shown

in Table 1.

The execution times and overall application speedups for the five applications are pre-

sented in Table 2. The execution cycles of software on the MIPS are estimated using the

instruction-set simulator MIPSsimTM of the MIPS Software Toolkit [39]. CyclesMIPS repre-

sents the execution cycles of the software of the whole application on the MIPS processor.

CyclesBB MIPS corresponds to the execution cycles of the basic blocks, selected for map-

ping on the RFU, on the MIPS. CyclesBB FPGA is the number of cycles, for executing the

selected basic blocks on the FPGA1 as reported by the developed FPGA mapping procedure.

Table 1 Number of BBs
selected for execution on the
reconfigurable hardware

Application # of BBs on RFU

OFDM trans. 18

Cavity det. 11

Compressor 19

QSDPCM 25

JPEG enc. 15
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Table 2 Execution cycles and overall application speedups by executing the applications on
the hybrid platform. The RFU is composed by the FPGA1

Application CyclesMIPS CyclesBB MIPS CyclesBB FPGA App. Sp.

OFDM trans. 2,452,875 1,706,275 101,564 2.9

Cavity det. 931,663,757 456,697,920 27,184,400 1.9

Compressor 257,513,945 144,941,251 11,149,327 2.1

QSDPCM 1,515,988,093 527,309,461 51,697,006 1.5

JPEG enc. 149,057,881 100,954,390 8,343,338 2.6

Average 2.2

App. Sp. represents the estimated overall application speedup after executing the basic blocks

on the FPGA. The application speedup is calculated as:

App.Sp. = CyclesMIPS/(CyclesMIPS − CyclesBB MIPS + CyclesBB FPGA) (6)

Such values of speedups as the ones presented in Table 2 are considered as significant

in existing works [11, 23]. Furthermore, it is deduced that the performance of the basic

blocks is largely improved when they are executed on the FPGA1 instead on the MIPS32

processor. Although, the achieved application speedups are important, the timing constraints

of the applications code on the RFU are not met as it is inferred by comparing the timing

constraints reported in section 4.1 with the CyclesB B F PG A values. This is also the situation

when the FPGA2 is used in the RFU, although it employs more CLB slices than the FPGA1.

So, the proposed partitioning methodology for the mixed granularity reconfigurable logic

has to be utilized for meeting the timing requirements by accelerating kernels on the CGC

reconfigurable data-paths.

4.2.2. Results for partitioning applications on the RFU

This section presents the results by applying the proposed partitioning methodology to the

basic blocks selected to be executed on the reconfigurable logic of the platform, for satisfying

the timing specifications.

We have executed the partitioning engine, using the developed framework, and we

have selected the necessary basic blocks to be mapped on the CGC data-path for sat-

isfying the specified timing constraints. The results of the analysis procedure are given

in Table 3. For the OFDM transmitter the BB3, BB8 and BB10 are required for meet-

ing the specification requirements. For the cavity detector the BB2, BB4, BB5 and BB9

are selected for mapping onto coarse-grain hardware, while for the wavelet-based image

compressor the BB9, BB10, BB11 and BB12 are selected. For the QSDPCM the BB5,

BB11, BB13 and BB14 are characterized as kernels. Finally, the BB1, BB2 and BB6 of

the JPEG encoder are selected for satisfying the specified timing constraint. The aforemen-

tioned BBs are the kernels of each application. The kernels of the five applications are

located in loops and they consist of word-level operations that match the granularity of the

CGCs.

Table 4 reports the execution clock cycles (Initial Cycles) of the applications’ parts on

the FPGAs, without accelerating kernels on the CGC data-path, for the two considered

FPGA devices. These cycles include the reconfiguration time of the FPGA. For meeting the

timing constraints, the kernels of the five applications were mapped on the CGC1 and CGC2
data-paths. For each application, the number of clock cycles resulting after the partitioning
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Table 3 Ordered total weights of basic blocks

Basic Block number Execution frequency Weighted sum Total weight

OFDM transmitter
10 336 115 38,640

8 1,200 25 30,000

3 864 24 20,736

5 370 12 4,440

2 400 10 4,000

Cavity detector
2 95,222 40 3,808,880

4 95,222 40 3,808,880

5 63,481 32 2,031,392

9 63,481 32 2,031,392

7 64,000 12 768,000

Image compressor
11 21,280 96 2,042,880

9 21,280 80 1,702,400

12 21,504 48 1,032,192

10 21,504 48 1,032,192

5 27,533 20 550,660

QSDPCM
13 456,192 30 13,685,760

11 316,800 34 10,771,200

5 256,608 29 7,441,632

14 228,096 32 7,299,072

15 114,048 25 2,851,200

JPEG encoder
6 22,189 48 1,065,072

2 8,192 85 696,320

1 8,192 83 679,936

12 8,192 40 327,680

8 7,732 32 247,424

and the acceleration on the CGC1 and CGC2 architectures is given (Final Cycles column).

The number after each application’s name refers to the CGC data-path; the (1) corresponds

to the CGC1 case, while the (2) to the CGC2 data-path. Also, in Table 4 the speedup of the

partitioned solutions relative to the all-FPGA case is given. The speedup equals to the ratio

Initial Cycles / Final Cycles.

It is clear from the results of Table 4, that by choosing costly BBs to be mapped on

the coarse-grain reconfigurable hardware, application’s performance is largely improved and

the timing constraint of the application code mapped on the RFU is satisfied in every case.

These results prove the effectiveness of both the proposed partitioning methodology and of

the developed software framework.

The speedups (when refer to the same FPGA device) are slightly greater when the CGC2
data-path (three 2 × 2 CGCs) is used for executing kernels relative to the CGC1 case. This

is due to the larger number of arithmetic units in the CCG2 that better exploit the available

operation parallelism in the applications than the CGC1 data-path. The results of Table 4 also

illustrate that the speedups due to the partitioning are greater when a smaller FPGA device

is used in the hybrid platform. The average speedup after partitioning, when the FPGA1 is
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Table 4 Execution cycles and speedups by using the partitioning methodology

AFPGA = 1500 AFPGA = 5000

Application Initial cycles Final cycles Speedup Initial cycles Final cycles Speedup

OFDM (1) 101,564 37,404 2.7 97,796 39,472 2.5

OFDM (2) 37,164 2.7 39,232 2.5

Cavity (1) 27,184,400 7,251,366 3.7 26,930,476 7,480,688 3.6

Cavity (2) 6,870,480 4.0 7,049,863 3.8

Compressor (1) 11,149,327 4,139,023 2.7 10,743,199 4,073,375 2.6

Compressor (2) 4,053,007 2.8 3,987,359 2.7

QSDPCM (1) 51,697,006 13,671,502 3.8 35,033,326 12,746,446 2.7

QSDPCM (2) 13,443,406 3.8 12,518,350 2.8

JPEG (1) 8,343,338 5,379,562 1.6 7,610,154 5,012,970 1.5

JPEG (2) 5,362,410 1.6 4,897,206 1.5

Average 2.9 2.6

used in the hybrid platform, is 2.9. For the larger FPGA2 device the average speedup for the

five applications is 2.6. We can state that this observation is analogous to the case of existing

hardware/software partitioning works for microprocessor/FPGA systems [11, 23] where the

speedups are greater when the FPGA logic is coupled with a low-performance instruction-set

processor. In our partitioning scenario, the hardware used for improving performance is the

CGC data-path, while the FPGA is used for the “initial” execution (before partitioning) of

the application which is like the case of the instruction-set processor in processor/FPGA

platforms.

4.2.2.1. Effect of the FPGA reconfiguration time on the performance improvements We have

performed an experiment in respect to the reconfiguration time of the FPGA. We have assumed

two different times for the full reconfiguration of the FPGA: (a) 5 cycles which is the case

of the results in Table 4, and (b) 1,000,000 cycles which is in the order of milliseconds, as in

commercial FPGAs [17, 18]. In this experiment, the RFU of the hybrid platform includes the

FPGA2 (AFPGA = 5000) and the CGC1 (two 2 × 2 CGCs). Fig. 9 shows the speedups over

the all-FPGA execution for the two reconfiguration time scenarios. The average speedup for

the FPGA2/CGC1 case is equal to 3.0 for the reconfiguration time of 106 cycles, where for

the case of 5 cycles required for reconfiguration the average speedup is 2.6. We mention

that for the reconfiguration time of 106 cycles, the average speedup for all the cases of

FPGAs and CGC data-paths is 3.2. On the other hand, it is inferred from Table 4 that the

average speedup for all cases is 2.8 (= (2.9 + 2.6)/2) when the reconfiguration time is equal to

5 cycles.

By comparing the speedups for these two FPGA reconfiguration times, we infer that even

for small reconfiguration times (which can occur in academic FPGAs [21, 30]) we achieve

speedups which are not significantly smaller than the ones reported with a more realistic

FPGA reconfiguration time. We have selected as the main experimentation scenario in this

paper, the FPGA reconfiguration time to be equal to 5 cycles for illustrating the fact that the

proposed partitioning flow can achieve important speedups (as shown in Table 4) even in this

reconfiguration time scenario which is not considered as a realistic situation for the majority

of contemporary FPGAs [17, 18].
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Fig. 9 Comparing the speedups over the all-FPGA execution for two different reconfiguration times
(AFPGA = 5000, two 2 × 2 CGCs)

5. Conclusions-Future work

A methodology for partitioning application code between fine and coarse-grain reconfig-

urable blocks of a hybrid granularity architecture was presented. The methodology was

validated using five real-life applications. Although the methodology is parametric in respect

to the mapping procedures used, specific mapping algorithms for the fine and coarse-grain

reconfigurable blocks were also assumed. The experiments showed that the timing constraints

of application code mapped on the reconfigurable hardware can be satisfied by proper parti-

tioning. The speedup improvement relative to the all fine-grain solution ranges from 1.5 to

4.0 in the considered experimentation. Future work focuses on partitioning application code

on the RFU for satisfying energy consumption constraints.
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