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Abstract Dental pulp stem cells (DPSCs), one type of

mesenchymal stem cells, are considered to be a type of

tool cells for regenerative medicine and tissue engineer-

ing. Our previous studies found that the stimulation with

lipopolysaccharide (LPS) might introduce senescence of

DPSCs, and this senescence would have a positive

correlation with the concentration of LPS. The b-
galactosidase (SA-b-gal) staining was used to evaluate

the senescence of DPSCs and immunofluorescence to

show the morphology of DPSCs. Our findings suggested

that the activity of SA-b-gal has increased after repeated
stimulation with LPS and the morphology of DPSCs has

changed with the stimulation with LPS. We also found

that LPS bound to the Toll-like receptor 4 (TLR4)/

myeloid differentiation factor (MyD) 88 signaling path-

way. Protein and mRNA expression of TLR4, MyD88

were enhanced inDPSCswith LPS stimulation, resulting

in the activation of nuclear factor-jB (NF-jB) signaling,
which exhibited the expression of p65 improved in the

nucleus while the decreasing of IjB-a. Simultaneously,

the expression of p53 and p21, the downstream proteins

of the NF-jB signaling, has increased. In summary,

DPSCs tend to undergo senescence after repeated

stimulation in an inflammatory microenvironment. Ulti-

mately, these findings may lead to a new direction for

cell-based therapy in oral diseases and other regenerative

medicines.
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Introduction

Dental pulp stem cells (DPSCs), one type of mes-

enchymal stem cells (MSCs), are multipotent cells

which originate from dental pulp tissue, have been

becoming tool cells for regenerative medicine and

tissue engineering (Kolf et al. 2015; Meng et al. 2015).

DPSCs can differentiate into distinct cell types, such

as osteoblasts, chondroblasts, neuroblast, adipocytes,

myoblasts, etc. (D’Alimonte et al. 2013; Hilkens et al.

2013). However, the differentiating capability of

MSCs or DPSCs may be inhibited once those stem

cells show senecsence (Sui et al. 2016; Trial et al.

2016). When those stem cells are transplanted into

recipient region, they would be surrounded by the

unclear microenvironment which includes stress state

or cytokines released from ambient cells of the

recipient tissue (Yang et al. 2012). Lipopolysaccha-

ride (LPS), a major component of the cell wall of

gram-negative bacteria, plays an important role in

infectious diseases such as periodontitis and pulpitis

(Huang et al. 2015; Rutherford and Gu 2000). LPS can

induce the expression of proinflammatory cytokines,

such as interleukin-6 (IL-6) and IL-8 and tumour

necrosis factor-a (TNF-a) (Kalaiyarasu et al. 2016;

Marques et al. 2016) and it exerts its biological effects

by promoting the production of various inflammatory

mediators. It has been proven that inflammatory

mediators can stimulate MSCs to differentiation or

senescence or some other physiological and patholog-

ical processes in different conditions (Brennen et al.

2013; Mantovani et al. 2014; Zhu et al. 2013). In our

previous researches, we used LPS to imitate an

inflammatory microenvironment, and we have proven

that repeated LPS stimulation promotes senescence of

DPSCs (Feng et al. 2014). The b-galactosidase (SA-b-
gal) activity was stronly associated with senescent

cells, since it was not detectable in quiescent cells or

terminally differentiated cells, although there are

exceptions. SA-b-gal activity is now a widely used

biomarker in studies of cellular senescence in culture

and in vivo (Debacq-Chainiaux et al. 2009; Dimri et al.

1995). SA-b-gal staining would be used to evaluate the

senescence of DPSCs. Several signaling pathways,

including MAPK, AP-1, NF-jB, have been proven to

participate in LPS mediated senescence of DPSCs

(Jung et al. 2016). However, the mechanism that LPS

targets DPSCs on senescence is still unclear.

Increasing evidence suggested that LPS is a specific

ligand of toll-like receptor 4 (TLR4) (Andonegui et al.

2009), and TLR4 plays a critical role in the recognition

of G- bacterial components (LPS). Previous studies

have shown that LPS can induce inflammatory liver

injury via TLR4/myeloid differentiation factor (MyD)

88 signal pathway (Yao et al. 2016). TLR4 will

activate NF-jB protein once stimulated by LPS via

two major signaling pathways: a MyD88-dependent

pathway that acts via NF-jB to induce pro-inflamma-

tory cytokines such as TNF-a, and a MyD88-inde-

pendent pathway that acts via type I interferons to

enhance the expression of interferon-inducible genes

(Broad et al. 2007; Hernandez et al. 2016). On the

other hand, NF-jB signaling also plays an important

role in the response to inflammation, and its activation

leads to the expression of various proinflammatory

cytokines including IL-1b, IL-6 and TNF-a, and the

expression of p65 in nucleus will be increased while

inhibitor of nuclear factor jB alpha (IjB-a) will be
decreased in this process (Imam et al. 2015; Zhao et al.

2014, 2016). At the same time, the expression of p53

and p21, the downstream signal of NF-jB which had

been reported in other inflammatory diseases, will be

increased (Debelec-Butuner et al. 2014; O’Prey et al.

2010).

Senescence acts as a physiological or pathological

phenomenon, which is characterized by a functional

disorder, a decline of homoeostasis, and reduced

capacity to respond properly to impair (Faner et al.

2012; Sui et al. 2016). Accumulating evidence has

proven that the activation of p53 and p21 plays a key

role in the senescence of the cells (Kim et al. 2016a;

Oren 2003;Wang et al. 2016b). It has been proven that

microenvironmental pathologic factors, such as

inflammation factors LPS, TNF-a, IL, impair the

biological functions of MSCs such as osteogenesis

(Sui et al. 2016). Senescence will be evaluated by

senescence-associated b-galactosidase (SA-b-gal)
staining, which has been proven that the SA-b-gal-
positive cells would increase along with the number of

the aging cells increasing (Wang et al. 2016a).

However, the mechanisms at the molecular level

which act in inflammation microenvironment signals
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induce the senescence of DPSCs are not fully

understood.

Materials and methods

Cell cultures

Normal human impacted third molars were collected

from patients 13–23 years of age (n = 9) after giving

the informed consents which had been approved by the

Ethics Committee of the Affiliated Hospital of Nan-

tong University. The ethical committee approval

number was 2016–077. All subjects were free of

carious lesions and oral infection. We isolated DPSCs

by cleaning the tooth surface, cutting around the

cementoenamel junction using sterilized dental fissure

burs and then opening to reveal the pulp chamber. The

pulp was then digested in a solution of 3 mg/ml

collagenase type I for 1 h at 37 �C. Single-cell

suspensions were obtained by passing the digested

tissues through a 70-lm cell strainer (BD Falcon,

Bedford, MA, USA). Cell suspensions of dental pulp

were seeded into 25 cm2 culture dishes and cultured in

Dulbecco modified Eagle medium (DMEM) supple-

mented with 10% fetal bovine serum (FBS), 100 U/ml

penicillin and 100 lg/ml streptomycin at 37 �C in 5%

CO2. The medium was changed every 3 days.

Approximately 7–10 days after seeding, the cells

became nearly confluent. Cells were passaged at the

ratio of 1:3 when they reached 85–90% confluence.

The adherent cells were released from the dishes with

0.25% trypsin (Gibco, USA) and seeded into new fresh

culture flasks. All the experiments described below

were performed using DPSCs from the mixed popu-

lation of cells at passage 3 (P3). In our previous

expressions, our colleagues have analyzed the

immunophenotype of DPSC (Feng et al. 2013), with

both being highly positive for CD29 and CD105, but

negative for CD31 and CD34. DPSCs were further

identified by osteogenic, chondrogenic and adipogenic

differentiation (Feng et al. 2013, 2014). The culture

received either Escherichia coli LPS serotype 0111:B4

(Sigma, ST. Louis, MO, USA) stimulation (10 ng/ml)

at the indicated times or normal saline as a control.

Four groups were analyzed with the following stimuli

added to the culture: (1) DPSCs stimulated with

normal saline as a control; (2) DPSCs stimulated with

LPS once for 6 h; (3) DPSCs stimulated with LPS 3

times, once every 48 h for 6 h each, and (4) DPSCs

stimulated with LPS 6 times, once every 24 h for 6 h

each (Yu et al. 2012). After stimulation, all groups

were cultured in the SA-b-gal assay.

Cell proliferation assay

The LPS-treated DPSCs proliferation assay was

performed using the BrdU assay kit according to the

manufacturer’s protocol. Generally, cells were incu-

bated with 100 lM BrdU labeling solution for 4 h at

37 �C. After removing the culture medium, the cells

were fixed and the DNA was denatured by FixDenat

solution. The anti-BrdU-POD working solution and

substrate solution were then added, and the absor-

bances of the samples were measured by an ELISA

plate reader at 370 nm wave length.

Determination of cell number

DPSCs were seeded at 0.7 9 104 cells/well into

6-well plates in triplicate for each experimental

condition. DPSCs were collected after plating and

dissociated. The total cell numbers were counted.

SA-b-gal assay

The SA-b-gal assay was used to detect cell senescence.

The SA-b-gal activity was determined using a kit from

the Chemical Company following the manufacturer’s

instructions (Abcam, Cambridge, MA, USA). In brief,

cells were cultured on slips in the 24-well plates

overnight and fixed with paraformaldehyde. After incu-

bation with SA-b-gal overnight, the slips were washed

and analyzed under the microscope. The senescent cells

were identified as blue-stained cells by standard light

microscopy, and a total of 1000 cells were counted in 20

random fields on a slide to determine the percentage of

SA-b-gal-positive cells.

siRNAs and Transfection

Double-stranded RNA nucleotides targeted to human

p65 were obtained from Santa Cruz Biotechnology.

Transfection of DPSCs with duplex synthetic siRNA

was performed using Lipofectamine 2000 reagent

(Invitrogen) according to the manufacturer’s instruc-

tions. Cells were assayed after 48 h of transfection.

Cells were further stimulated by LPS.
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Western blot

Cells were lysed in buffer consisting of 50 mM TRIS,

150 mM NaCl, 2% sodium dodecyl sulfate (SDS) and

a protease inhibitor mixture. After centrifugation at

12,000 rpm for 12 min, protein concentrations were

determined using the Bradford assay (Bio-Rad,

Berkeley, CA, USA). The resulting supernatant

(50 lg of protein) was subjected to SDS–polyacry-

lamide gel electrophoresis (PAGE). The separated

proteins were transferred onto polyvinylidene fluoride

(PVDF) membranes at 350 mA for 2.5 h in a blotting

apparatus (Bio-RAD). Membranes were blocked with

5% nonfat milk and incubated with primary antibodies

(1:400) at 4 �C overnight and subsequently with anti-

rabbit horseradish peroxidase-conjugated secondary

antibodies (1:1000) for 2 h at room temperature.

Concomitantly, GAPDH was run as a reference

protein. The following primary antibodies were used:

GAPDH (anti-rabbit, Santa Cruz Biotechnology,

Santa Cruz, CA, USA), p65 (anti-rabbit, Santa

Cruz Biotechnology), b-actin (anti-rabbit, Santa

Cruz Biotechnology), IjBa (anti-rabbit, Sigma), p53

(anti-rabbit, Sigma), p21 (anti-rabbit, Sigma).

Immunofluorescent staining

DPSCs were fixed with 4% PFA for 1 h, washed with

phosphate buffer solution (PBS) containing 0.1% Triton

X-100 (PBST), and blocked for 30 min in PBST

supplemented with 10% FBS. Cells were then incubated

with one of the following primary antibodies (1:100) in

the same solution overnight at 4 �C: F-actin (anti-rabbit,
Santa Cruz Biotechnology), p65 (anti-rabbit, Santa

Cruz Biotechnology), p53 (anti-rabbit, Sigma), p21

(anti-rabbit, Sigma). Cells were then washed and

incubated in secondary antibodies for 2 h at room

temperature. Nuclei were stained with (4060-diamidino-

2-phenylindole dihydrochloride) (DAPI) (1:800, Santa

Cruz). The cells were examined using a Leica fluores-

cence microscope (Wetzlar, Germany). For immunoflu-

orescence assay of the skeleton of DPSCs, DPSCs were

washed once with PBS and fixed in 4% paraformalde-

hyde (PFA) for 15 min. After permeabilization and

blocking, they were incubated with fluorescein isothio-

cyanate-conjugated phalloidin. The stained cells were

then examined using a Leica fluorescence microscope.

The total cell number of every field was estimated by

counting DAPI stained nuclei.

Reverse transcription-polymerase chain reaction

(RT–PCR) analysis

Total cellular RNAwas isolated from cells and reverse

transcribed using conventional protocols. PCR was

performed to test the mRNA level of TLR4, MyD88,

p53, p21, GAPDH and b-actin. Primers of mRNA for

PCR analysis are listed in Table 1. All primer

sequences were determined using established Gen-

Bank sequences. The primers were used to amplify the

duplicate PCR reactions. Each sample was analyzed in

triplicate and GAPDH or b-actin was used as a control.

Nucleocytoplasmic separation

Cultured DPSCs were collected, washed with PBS and

suspended in hypotonic buffer to achieve nuclear

extracts. The cultured DPSCs were homogenized, and

the nuclei were pelleted. Then we removed the

cytoplasmic extracts and re-suspended nuclei in a

low-salt buffer. A high-salt buffer was added to release

soluble proteins from the nuclei, and the nuclei were

removed by centrifugation. The nuclear extracts were

dialyzed into a moderate salt solution.

Statistical analysis

All data are presented as mean ± SEM from at least

three independent experiments, each performed with

triplicate samples. Differences between groups were

tested for statistical significance using ANOVA.

Student’s t test was used to determine significance

with SPSS 16.0 software. A value for P\ 0.05 was

considered as statistically significant.

Table 1 Nucleotide sequence of specific primers

Genes Sequence (50-30)

TLR4 Forward: GATGCTTCTTGCTGGCTGC

Reverse: ACCTTCATGGATGATGTTGGC

MyD88 Forward: CTACAGAGCAAGGAATGTGACT

Reverse: ATAGTGATGAACCGCAGGATAC

GAPDH Forward: TCCATGACAACTTTGGTATCG

Reverse: TGTAGCCAAATTCGTTGTCA

p53 Forward: CCGCAGTCAGATCCTAGCG

Reverse: AATCATCCATTGCTTGGGACG

p21 Forward: GTGGACCTGTCACTGTCTT
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Results

Effects of LPS on DPSCs senescence

The number of SA-b-gal-positive DPSCs obviously

increased after treatment with LPS, furthermore the

strongest staining were seen in LPS stimulation 6

times (Fig. 1a, b). The proliferation of DPSCs was

measured with a BrdU assay. The result suggested that

the growth of DPSCs was slower after repeated

stimulation with LPS for 3 or 6 times (Fig. 1c). After

repeated stimulation with LPS for 3 or 6 times, the

total number of DPSCs declined (Fig. 1d). The F-actin

distribution was disordered and accumulated around

the nuclear region in the LPS-treated DPSCs (Fig. 1e).

These results indicated that repeated LPS stimulation

promoted senescence of DPSCs.

LPS-induced expression of TLR4 and MyD88,

and TLR4/MyD88 signaling promoted the nuclear

translocation of p65

We examined the expression of TLR4 and MyD88 by

RT–PCR. The results showed that expression level of

TLR4 and MyD88 were up-regulated in a repeated-

times dependent manner after stimulation with LPS

(Fig. 2a, b). We also tested the expression of IjB-a
and p65 by Western blot after LPS stimulation. The

results suggested that the expression level of nuclear

p65 had increased while the expression of IjB-a had

been reduced dependent on the repeated-times of LPS

stimulation (Fig. 2c, d). The immunofluorescence

result also proved that LPS stimulation increased the

nuclear translocation of p65 (Fig. 2e). These results

indicated that repeated LPS stimulation enhanced the

TLR4/MyD88 signaling, and the NF-jB pathway had

been activated through the nuclear translocation of

p65 and the inhibition of IjB-a.

The up-regulation of p53 and p21 expression

was induced by LPS in DPSCs

We examined the expression of p53 and p21 by

Western blot and RT–PCR. The results indicated after

stimulation with LPS, that the expression of p53 and

p21 was up-regulated in a repeated-times dependent

mode both at a protein and messenger RNA level

(Fig. 3a–d). The immunofluorescence staining

showed the number of p53 and p21-positive cells

significantly increased after treatment with LPS 6

times (Fig. 3e). These results indicated that repeated

LPS stimulation enhanced the expression of p53 and

p21.

Knockdown of p65 expression reversed

the senescence characteristics of DPSCs treated

with LPS

To further confirm the role of p65 in LPS induced

senescence, p65 siRNA was transfected in DPSCs

which stimulated with LPS. We found that the

expression of p65 protein was remarkably decreased

in the p65 siRNA-transfected DPSCs (Fig. 4a, b). Less

SA-b-gal-positive cells were observed when p65

expression was knocked down in DPSCs treated with

LPS (Control—34 ± 3.5%, LPS 6 times—

81 ± 6.7%, p65 siRNA—44 ± 4.7%) (Fig. 4c, d).

The proliferation was reversed in p65-knockdown

DPSCs with LPS-treatment (Control—89 ± 8.2%,

LPS 6 times—36 ± 3.2%, p65 siRNA—63 ± 5.6%)

(Fig. 4e) and the total number of DPSCs had the same

change in the above process (Fig. 4f). Further, the

abnormal distribution of F-actin was effectively

ameliorated in p65-knockdown LPS-treated DPSCs

(Fig. 4g). The results indicated that p65 plays an

antagonistic role in the process of senescence in

DPSCs induced by LPS-stimulation.

Discussion

In our experiments, we demonstrated for the first time

that TLR4/MyD88-NF-jB-p53/p21 signaling path-

way was activated in the senescence of DPSCs treated

by LPS. As the expression of TLR4 and MyD88 in an

inflammatory microenvironment increased, the

expression of the senescence marker SA-b-gal was
also increased while the proliferation and the total

number of DPSCs were declined and the F-actin

distribution was disordered. The above changes were

reversed in the p65 siRNA-transfected DPSCs, which

siRNA of p65 can weaken the NF-jB signal, and then

influence the senescence of DPSCs.

An intimate relationship between inflammation and

aging had been demonstrated in previous studies (Tran

et al. 2016). Several signaling pathways, such as

TLR4/p16INK4A, involved in this process have been

reported (Feng et al. 2014). Previous experiments
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showed that LPS induced the expression of TLR-4 in

DPSCs (Botero et al. 2010). DPSCs can be isolated

from the inflammatory microenvironment, and the

endodontist is the most common disease. DPSCs, from

inflamed-pulps, would not lose the potential of tissue

regeneration in vivo as well as the periodontal

ligament stem cells isolated from the periodontitis

tissue (Alongi et al. 2010; Liu et al. 2016). Replicative

senescence and stress-induced premature senescence

are two main types of senescence, and the latter is the
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situation at which stimulators such as inflammation or

oxidative stress evoke a senescent cell phenotype

(Dierick et al. 2002). Not only LPS but TNF-a or other

inflammation factors may lead the senescence of stem

cells (Qu et al. 2016; Yang et al. 2016). Our

experiment tried to explain that the inflammation

induced by LPS is a critical effector that leads to the

premature senescence of DPSCs. The results also

showed that the shape of DPSCs receiving repeated

LPS stimulation were disordered observed through

F-actin distribution compared to control cells or cells

once stimulated. Additionally, as a maker of senes-

cence, more SA-b-gal-positive cells were found after

repeated LPS stimulation. Studies demonstrated that

SA-b-gal activity was related to the increase of

lysosomal enzymes which are probably linked to

increased lysosomal biogenesis observed in senescent

cells (Kurz et al. 2000; Lee et al. 2006). SA-b-gal was
not detectable in quiescent cells or terminally differ-

entiated cells in most situations (Debacq-Chainiaux

et al. 2009; Price et al. 2002). Our findings are similar

to previous evidence that an inflammatory microenvi-

ronment induces cell senescence, and so does it in

DPSCs. Therefore, the way of fighting against inflam-

mation will be searched continuously. A recent study

found that the immunogenicity of human gingival

mesenchymal stem cells would be reduced after

treatment by Cannabidiol (Libro et al. 2016). More

attention should be paid to promote the ability of

multipotential differentiation or other biological func-

tion of DPSCs.

Comprehensive evidences suggest that the NF-jB
signaling pathway plays an important role in the

process of senescence (Rovillain et al. 2011). TLR4 is

the pattern recognition receptor for the G- bacterial

wall component LPS (Dunzendorfer et al. 2004). Two

different pathways, MyD88-dependent and MyD88-

independent or TRIF-dependent, were involved in the

synthesis and secretion of a variety of inflammatory

cytokines after activation of TLR4 signaling (Akira

and Takeda 2004; Cinel and Opal 2009; Lu et al.

2008). MyD88 has been considered a kernel adaptor

protein in signal transduction pathway of most TLRs

and can interact with TLRs, leading to activation of the

NF-jB or other pathways (Imai et al. 2008; Smyth

et al. 2013). In addition, it has been proven that TLR4/

NF-jB signaling seemed to play a role during

osteogenic differentiation of adipose-derived mes-

enchymal stromal cells and proliferation in vitro

stimulated by LPS in an appropriate condition (Kim

et al. 2016b). More studies should be performed in this

aspect to find the positive effect of LPS in clinical

application of DPSCs. Recent data have also shown

that the expression of the downstream molecules of

TLR4/MyD88, such as IjBa which is an inhibitor of

NF-jB signaling, would be significantly decreased,

while the p65, an active subunit of NF-jB, would
translocate into the nucleus (Yu et al. 2016; Zhang

et al. 2016). Our results also showed similar changes

that confirmed that NF-jB signaling pathway was

activated (Fig. 2). After NF-jB signaling activation,

p53 and p21, the downstream molecules, transmitted

the stimulation of LPS sequentially, and led to

correspondingly biological effect (Genov et al. 2016;

Gu et al. 2013). Recent studies also suggested that NF-

jB induces cell senescence by directly activating p53

and p21 (Ferrand et al. 2015; Rovillain et al. 2011).

p53 activation is a typical response observed in

cellular and replicative senescence (Beausejour et al.

2003). It had been reported that the p53/p21 pathway

was found to play a more important role than the p38

MAPK/p16INK4a pathway in the senescence of CEP

cells in vivo and in vitro (Zhou et al. 2016). Our

experiment also concluded that p53/p21 pathway was

involved in the senescence of DPSCs through TLR4/

MyD88-NF-jB signaling stimulated by LPS (Fig. 3).

Conversely, we acquired the knockdown p65 with

bFig. 1 Effects of LPS on the DPSCs senescence. a, b Senes-

cence-associated-b-galactosidase (SA-b-gal) was induced by

repeated stimulation with LPS in DPSCs. The senescent DPSCs

were identified by blue staining using standard light microscopy

and a total of 1000 cells was counted in 20 random fields on a

slide to determine the percentage of SA-b-gal-positive cells.

SA-b-gal-positive cells were identified in cells receiving

repeated stimulation with LPS for 3 or 6 times much more

easily, and the strongest staining being observed in cells

receiving LPS stimulation 6 times (*P\ 0.05, original magni-

fication: 9200). Bar 50 lm (a). c The BrdU labeling assay was

used to detect the cell proliferation ratio. The absorbance

showed the proliferation rate. DPSCs from repeated stimulation

with LPS for 3 or 6 times grew slowlier than those from the

control group and only one single LPS stimulation (*P\ 0.05).

d The cell number was identified by counting after exposure to

LPS. The population doubling time of DPSCs from the controls

and only one single LPS stimulation were both faster than those

from the repeated stimulation with LPS for 3 or 6 times

(*P\ 0.05). e DPSCs were stained by FITC-Phalloidin.

Immuno-fluorescence showed that the F-actin distribution was

abnormal in DPSCs from LPS treated 6 times (original

magnification 9200). Scale bars: 50 lm (e)
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Fig. 2 Activation of TLR4/MyD88-NF-jB signaling pathway

after LPS stimulation in DPSCs. a, b Total RNA was isolated

after DPSCs have been stimulated with normal saline or with

LPS only once, 3 times, or 6 times, followed by analysis with

reverse transcription plus polymerase chain reaction (RT–PCR).

D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

expression was determined as a control. c, d Western blot

analysis of IjBa and cytoplasmic/nuclear p65 expression. The

nuclear p65 expression was significantly increased in the LPS

stimulation for once, 3 times and 6 times compared with that in

the control group. The IjBa expression was significantly

decreased in the LPS stimulation for once, 3 times and 6 times

compared with that in the control group. GAPDH or b-tubulin or
b-actin expression were determined as a control. e Immunoflu-

orescent of p65. Blue, DAPI. In the LPS stimulation for 6 times

group, there was a clear increase in the p65 expression in the

nucleus. Bar 50 lm (e). (Color figure online)
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siRNA so that we could test the influence of p65 in

DPSCs senescence. Knockdown of p65 (siRNA-p65)

could reverse the senescence of DPSCs acted as less

SA-b-gal-positive cells, enhancing the proliferation

and the increase of the total number of DPSCs with

less abnormal distribution of F-actin (Fig. 4).

In summary, our data demonstrate that TLR4/

MyD88-NF-jB-p53/p21 performed a link between

inflammation led by LPS and senescence. Further

studies should be undertaken to prevent senescence so

that to extend the DPSCs strategies for the treatment of

the diseases surrounding by inflammation.

Fig. 3 The up-regulation of p53 and p21 expression was

induced by LPS in DPSCs. a, bWestern blot analysis of p53 and

p21 expression. The p53 and p21 expression were significantly

increased in the LPS stimulation for 3 times and 6 times

compared with that in the control group or stimulation only for

once. b-actin expression was determined as a control. c, d RT–

PCR analysis of p53 and p21 expression had a similar result to

western blot. b-actin expression was determined as a control.

e Immunofluorescence of p53 and p21. Blue, DAPI. In the LPS

stimulation for 6 times group, there was a clear increasing in p53

and p21 expression in nuclear. Bar 50 lm (e). (Color

figure online)
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