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Abstract Efficient xenofree expansion methods to

replace fetal bovine serum (FBS)-based culture meth-

ods are strongly encouraged by the regulators and are

needed to facilitate the adoption of mesenchymal

stromal cell (MSC)-based therapies. In the current

study we established a clinically-compliant and

reproducible animal serum-free culture protocol for

bone marrow-(BM-) MSCs based on an optimized

platelet-derived supplement. Our study compared two

different platelet-derived supplements, platelet lysate

PL1 versus PL2, produced by two different methods

and lysed with different amounts of freeze–thaw

cycles. Our study also explored the effect of a low

oxygen concentration on BM-MSCs. FBS-supple-

mented BM-MSC culture served as control. Growth

kinetics, differentiation and immunomodulatory po-

tential, morphology, karyotype and immunopheno-

type was analysed. Growth kinetics in long-term

culture was also studied. Based on the initial results,

we chose to further process develop the PL1-supple-

mented culture protocol at 20 % oxygen. The results

from 11 individual BM-MSC batches expanded in the

chosenconditionwere consistent, yielding6.60 9 109±

4.74 9 109 cells from only 20 ml of bone marrow.

The cells suppressed T-cell proliferation, displayed

normal karyotype and typical MSC differentiation

potential and phenotype. The BM-MSCs were, howev-

er, consistently HLA-DR positive when cultured in

platelet lysate (7.5–66.1 %). We additionally show that

culture media antibiotics and sterile filtration of the

platelet lysate can be successfully omitted.We present a

robust and reproducible clinically-compliant culture

method for BM-MSCs based on platelet lysate, which

enables high quantities of HLA-DR positive MSCs at a

low passage number (p2) and suitable for clinical use.
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FBS Fetal bovine serum

MSC Mesenchymal stromal/stem cell

BM Bone marrow

PL Platelet lysate

PRP Platelet rich plasma

CO2 Carbon dioxide

FRCBS Finnish Red Cross Blood Service

MNC Mononuclear cell

CFU-F Colony forming unit-fibroblasts

PD Population doubling

CD Cluster of differentiation

HLA Human leucocyte antigen
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Neu5Gc N-Glycolylneuraminic acid

PB Peripheral blood

SD Standard deviation

ANOVA Analysis of variance

GMP Good manufacturing practice

ISCT International Society of Cell Therapy

MLR Mixed lymphocyte reaction

Introduction

Mesenchymal stromal cells (MSCs) are multipotent

non-hematopoietic cells that are commonly isolated

from bone marrow (BM) or adipose tissue. In the BM,

these cells comprise only a small population of cells,

0.001–0.01 % (Pittenger et al. 1999), however they can

be isolated and expanded for several passages in vitro.

MSCs are able to differentiate to cell types of

mesodermal origin such as adipocytes, chondrocytes

and osteoblasts (Pittenger et al. 1999), and have thus

generated interest in their potential application in

tissue regenerative therapies (Dimarino et al. 2013;

Sensebe and Bourin 2009). MSCs also potently

suppress T-cell mediated rejection reactions and

ameliorate clinical graft-versus-host reactions (Aggar-

wal and Pittenger 2005; Le Blanc et al. 2008).

Furthermore, via activity on innate immune cells such

as dendritic cells (DCs) and myeloid-derived suppres-

sor cells (MDSCs) and regulatory T-cell (Aggarwal

and Pittenger 2005; Yen et al. 2013), MSCs may have

potential in inducing transplantation tolerance (Kim

et al. 2013; Sensebe and Bourin 2009; Shi et al. 2011).

Several trials have explored the clinical utility of

MSCs, both for immunosuppressive and regenerative

purposes. These therapies require considerable

amounts of cells. Traditionally the cells are expanded

in vitro in monolayer cultures containing fetal bovine

serum (FBS). The use of animal-derived components

is associated with a risk of transmission of xenogenic

infectious agents and immunization (Cervenakova

et al. 2011; Horwitz et al. 2002; Liu et al. 2008; Sundin

et al. 2007) and the use of alternative supplements or

completely defined culture media would thus be

preferred and is highly encouraged by the regulators

(Guideline on human cell-based medicinal products,

EMEA/CHMP/410869/2006 and note for guidance on

minimising the risk of transmitting animal spongiform

encephalopathy agents via human and veterinary

medicinal products, 0EMA/410/01 rev.3). A number

of studies have examined supplementing MSC cell

culture media with different human blood-derived

components such as platelet-derived supplements,

human serum or umbilical cord blood serum (Bieback

et al. 2009; Doucet et al. 2005; Fekete et al. 2012a;

Schallmoser et al. 2007; Shafaei et al. 2011; Shah-

dadfar et al. 2005; Shetty et al. 2007). The methods

employed for the production of platelet extracts are

diverse (Bieback 2013). They are produced either

from platelet rich plasma (PRP), which is commonly

prepared by combining four buffy coat units and one

AB-plasma unit with subsequent leukocyte-depletion

(Schallmoser et al. 2007), or from platelet concen-

trates in additive solution, even expired ones (Bieback

et al. 2009; Fekete et al. 2012a). Mojica-Henshaw

et al. (2013) have shown that serum-converted platelet

lysate (PL) can also be used as medium supplement,

with the advantage that porcine-derived heparin can be

omitted from the culture medium. The release of

growth factors from platelets is usually induced by 2–4

freeze–thaw cycles of the platelet units or by activat-

ing the platelets with thrombin (Bieback et al. 2009). It

has been suggested that at least four repeated freeze–

thaw cycles might further enhance the liberation of

growth factors from the platelets (Wasterlain et al.

2012). The final PL supplements are produced by

either pooling several units (Schallmoser et al. 2007)

or using just one unit (Horn et al. 2010).

Besides the culture medium the environment of the

cells in vitro is defined by the surrounding atmosphere.

Traditionally cell cultures are performed at normal

atmospheric oxygen concentration (20 %) in incuba-

tors where only the carbon dioxide (CO2) level is

regulated. The physiological oxygen concentration in

human tissues is, however, much lower (2–13 %) and

several stem cell types proliferate more rapidly,

undergo significantly less apoptosis and DNA damage

at low oxygen concentrations (Csete 2005; Estrada

et al. 2012; Mohyeldin et al. 2010; Sullivan et al.

2006). Interestingly, it has been shown that low

oxygen might be beneficial for the growth of MSCs at

least in later passages (Dos Santos et al. 2010; Drela

et al. 2014; Ren et al. 2006). In our study we wanted to

test if low oxygen significantly improves cell growth

also at low cell passages.

The expansion of MSCs in vitro is a necessary step

to gain a sufficient number of cells for clinical needs.

892 Cytotechnology (2016) 68:891–906

123



The culture time must, however, be kept to a minimum

in order to avoid detrimental effects on the cells.

Commonly used MSC cell doses that are used in the

clinic for immunomodulatory purposes are in the

range of 1–2 9 106/kg (Ball et al. 2013; Prasad et al.

2011; Ringden et al. 2006). As even six doses may be

needed per patient, it equals over 109 cells for a single

adult patient. It would clinically also be preferable to

produce these doses from a single MSC donor. The

purpose of this study was therefore to develop a

reproducible culture method for clinical MSCs based

on platelet-derived supplements that would yield

sufficient cell numbers for at least six treatments from

only 20 ml of BM.

Since many research papers have described a

successful replacement of FBS by PL in MSC culture,

we wanted to explore if a PL-based protocol to culture

BM-MSCs could be further developed to a manufac-

turingmethod that (1) would yield high numbers ([109

cells) of high quality cells after a low amount of

passaging and from only 20 ml of BM and (2) could be

easily and cost-effectively adapted to clinical- and

GMP-grade cell manufacturing. In our current study

we compared two different PL supplements, PL1 and

PL2, to determine which would be better suited in a

clinical cell manufacturing protocol. Our study also

explored several other parameters to establish the most

optimal and robust culture protocol for low passage

BM-MSCs: the effect of a low oxygen concentration (3

vs 20 % concentration), the effect of repeated freeze–

thaw cycles (five vs two) on the functionality of the PL

and the omission of antibiotics and the sterile filtration

step of the PL supplemented culture media. FBS-

supplemented BM-MSC culture served as control.

We present a clinically-compliant, antibiotic-free

BM-MSC culture protocol based on unfiltered PL

supplement that can replace FBS also in large scale

cell expansion and yielding high quantities of HLA-

DR positive MSCs for clinical use.

Materials and methods

Platelet lysate supplements

Two different PL supplements (PL1 and PL2) were

used in the study, see Table 1 for an overview of the

PL supplement characteristics. All platelet units used

in the study were produced by a licensed blood T
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establishment, the Finnish Red Cross Blood Service

(FRCBS) in Helsinki, Finland. The blood donors were

tested according to the Finnish regulations for the

preparation of blood components and in line with the

regulations by the Council of Europe [Guide to the

preparation, use and quality assurance of blood

components, Recommendation No.R (95)15]. The

blood donors tested negative for Anti-HCV, Anti-

HIV-1?2, HBsAg, Syphilis, HCV-RNA, HIV-1-

RNA, HBV-DNA and HAV-RNA and Parvo B19-

DNA levels were below 105 IU/ml. The platelet units

used in this study were done following standard

operating procedures within the quality system of the

FRCBS and with clear release criteria involving the

donor test results, platelet amounts, residual leuko-

cytes and weight.

PL1 was essentially produced as described by

Schallmoser et al. (2007). PRP units were produced

by combining buffy coats of four individual blood

donors with one unit of AB-plasma. The platelets

were separated by centrifugation and the remaining

leukocytes were removed by filtration, after which the

units were frozen at -20 �C. PL1 pools were

subsequently produced by pooling 2–13 thawed

PRP units and the combined pool was then frozen

in aliquots at -20 �C. Thus each PL1 pool originated

from buffy coats of 8–52 individual blood donors and

was frozen twice during production. The efficiency of

each PL1 pool to support MSC growth was tested in a

5–7 day proliferation assay and with 2–4 different

BM-MSC batches as responder cells (Table 2). The

pools were released for use if the responder cells

exhibited a population doubling of 3 and above

during the 5–7 day assay. To produce PL2, expired

bags of platelet concentrates in 30 % additive solu-

tion SSP (MacoPharma, Langen, Germany and 70 %

plasma) were centrifuged at 3,2009g for 20 min at

room temperature. The pellets were suspended in

20 ml of pooled frozen AB-plasma (Octaplas AB,

Octapharma AG, Lachen, Switzerland) per bag of

platelets, frozen at -70 �C and subsequently thawed

in a ?37 �C water bath. After five freeze–thaw cycles

the platelets were centrifuged at 3,2009g for 20 min

at room temperature and the supernatants were

collected and stored at -20 �C. Each PL2 lysate

was tested for efficiency by supporting MSC growth

at least at the same levels as FBS before producing

the PL2 pool. The PL2 pool for this study was

prepared by pooling 15 individual PL2 units thus

originating from 60 individual donors.

All pools of PLwere also tested for sterility byBacT/

ALERT (bioMérieux, SA, Marcy-I’Etoile, France).

When thawed for use the supplements were finally

centrifuged at 3,2009g for 20 min at room temperature

(RT) immediately before use and the supernatant was

used.

Bone marrow harvest

BM was collected from 15 voluntary healthy donors,

aged 20–40, after written informed consent. The study

was approved by the Ethical Committee of the

Hospital District of Helsinki and Uusimaa. 20 ml of

BM was drawn under local anaesthesia from the

posterior iliac crest into heparinized syringes. The

samples were processed within 2 h from harvest. For

mononuclear cell (MNC) isolation the BM samples

were diluted 1:3 with DPBS CTSTM (Life Technolo-

gies, Thermo Fisher Scientific, Waltham, MA, USA)

and 2 mM EDTA (pH 7.2) or later on in the study with

Versene (EDTA) 0.02 % (Lonza, Basel, Switzerland)

and layered on Ficoll-Paque PREMIUM (GE Health-

care Bio-Sciences, Uppsala, Sweden) and centrifuged

at 4009g, 40 min at RT. The BM-MNCs were

collected, washed with DPBS CTSTM-EDTA/Versene

and counted as described in the next chapter.

Table 2 Functionality

testing of the platelet lysate

1 (PL1) supplement pools

based on MSC population

doubling (PD) in a 5–7 day

proliferation test. MSCs

from 2 to 4 different donors

served as responder cells

PL1 pool Number of PRP units Number of donors Number of PDs (mean) Range of PDs

Pool 1 2 8 4.44 3.0–5.88

Pool 2 3 12 4.54 3.17–5.91

Pool 3 6 24 4.82 3.46–6.19

Pool 4 4 16 5.27 4.75–5.78

Pool 5 4 16 5.00 4.32–5.83

Pool 6 11 44 5.11 4.39–5.81

Pool 7 13 52 3.82 3.32–4.32

894 Cytotechnology (2016) 68:891–906

123



Culture of MSCs

The BM-MSC basal medium consisted of D-MEM

(low glucose, Life Technologies), 100 U/ml penicillin,

100 lg/ml streptomycin (Life Technologies) and

40 IU/ml heparin (Heparin LEO� 5000 IE/KY/ml,

Leo Pharma, Malmö, Sweden) to prevent gelatinization

and avoid clots. Later on in the study, the antibiotics

were omitted when process developmental work was

transferred to a cleanroom environment. The basal

medium was supplemented either with 10 % PL1 or

with 0.5 % PL2 and 2.5 % AB-plasma (Octaplas,

Octapharma), see Table 1. The control medium con-

sisted of basal medium and 10 % FBS without heparin.

The PL1 and PL2 containingmedia were initially sterile

filtrated with a 0.22 lm filter before use in culture.

Later on in the study and opposite to other published

protocols (Schallmoser et al. 2007), we omitted the

filtration process with the PL1 supplemented medium

as clinically-compliant and xenofree filters were not

available in the culture scale needed. The BM-MNCs

were plated in culture vessels at 400,000 cells/cm2 and

were placed in a humidified incubator at ?37 �C, 5 %

CO2 with either 3 or 20 % oxygen. After 3 days the

wells were washed four times with DPBS CTSTM to

remove non-adherent cells and the medium was

changed. The medium was changed twice weekly until

the cells reached 90 % confluency. At each passage the

vessels were washed with DPBS CTSTM and the cells

were detached with TrypLETM Express (Life Tech-

nologies) and later on in the study with TrypLETM

Select CTSTM (Life Technologies) and reseeded at

1,000 cells/cm2. The cell number and viability of the

cells was determined using a Bürker-chamber or

NucleoCounter NC-100TM (ChemoMetec, Allerod,

Denmark). Aliquots of cells in interim phases of culture

(p0, p1) were frozen in liquid nitrogen and thawed and

cultured for analysis if needed. Freezing of the cells was

done in the initial phase of the study in 50 % of the

appropriate proliferation medium, 40 % FBS and 10 %

DMSO Hybri-MaxTM (Sigma-Aldrich, Ayrshire UK),

but later on in the study in 90 % human albumin

(Albunorm 200 g/l, Octapharma) and 10 % Cryoserv�

DMSO (Bioniche Pharma, Lake Forest, IL, USA). All

proliferation kinetic and long-term culture studies were

done with cells without interim freezing.

The PL1-supplemented culture protocol at 20 %

oxygen concentration was chosen for further process

development work and was developed towards a

clinically and GMP-compliant method. Large-scale

MSC culture was developed using 1-, 2- and 5-STACK

culture vessels (CellStacks�, Corning Inc., Corning,

NY, USA). During the large-scale process develop-

ment phase, all the materials were clinically- and

GMP-compliant. In the final process development

stage of the study, also the filtering of the medium and

the antibiotics were omitted from the culture medium

as the cell production was performed in class A

cleanroom environment.

Proliferation kinetics

To determine the colony forming unit-fibroblasts

(CFU-F) content of the starting BM-MNC material,

the BM-MNCs were plated in six-well plates (Corning

Inc.) at 400,000 cells/cm2 and cultured for 5–10 days

at ?37 �C, 5 % CO2, 20 % oxygen. The cells were

then fixed with methanol and stained with Giemsa

solution (Merck KGaA, Darmstadt, Germany).

The number of population doublings (PD) was

calculated using the formulaNH = 2PD 9 N1 inwhich

NH is the number of harvested cells/cm2 and N1 is the

number of seeded cells/cm2. PD is then determined as

PD = log2 (NH/N1). At passage zero the CFU-F

number in the original BM aspirate was the initial

N1. The PD time was calculated as length of passage

(days)/number of PDs reached during passage.

Genetic stability

Cells at passage two were plated in cell culture flasks

(Corning) at 1,000 cells/cm2 and grown to 70–80 %

confluency for karyotyping. At least 20 mitotic cells

were analysed from each sample by conventional

G-band analysis by an accredited laboratory (Medix

Laboratories,Espoo, Finland).Resultswere informedas

either normal karyotype (46,XXor46,XY)or abnormal

(with corresponding chromosomal abnormality).

Differentiation assays

To assess the adipogenic and osteogenic potential of the

BM-MSCs, cells from passage two were seeded onto

12-well plates (Nunc) at 3,000 cells/cm2 and the cells

were grown to confluency. For adipogenic differen-

tiation the cells were changed into an adipogenic

induction medium for 2–3 days after which the cells

were incubated in terminal adipogenic medium for

Cytotechnology (2016) 68:891–906 895
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1–2 weeks. The induction medium and terminal differ-

entiation medium consisted of the same adipogenic

basal medium containing alpha-MEMGlutamax, 10 %

FBS, 20 mM HEPES, 100 U/ml penicillin, 100 lg/ml

streptomycin (all from Life Technologies), 0.5 lg/ml

insulin (Promocell, Heidelberg, Germany) and 0.1 mM

indomethacin (Sigma-Aldrich, St Louis, MO, USA). In

addition the induction medium contained 0.2 mM

3-isobutyl-1-methylxanthine (IBMX), and 0.4 lg/ml

dexamethasone (both fromPromoCell) and the terminal

differentiation medium contained 3 lg/ml Ciglitazone

(PromoCell) (Suila et al. 2011). After differentiation the

cells were fixed with 4 % paraformaldehyde (PFA) for

Sudan III (Sigma-Aldrich) staining.

For osteogenic differentiation the cells were cultured

in osteogenic medium for 3–4 weeks. The osteogenic

medium consisted of a-MEM supplemented with 10 %

FBS, 20 mMHEPES, 2 mM L-glutamine (all fromLife

Technologies), 0.1 lM dexamethasone, 10 mM b-
glycerophosphate, 0.05 mM L-ascorbic acid-2-phos-

phate (all from Sigma-Aldrich) and penicillin–strepto-

mycin (Life Technologies). Animal serum-free

osteogenic differentiation medium consisted of

D-MEM Glutamax (low glucose, Life Technologies),

10 % PL1 and 40 IU/ml heparin (LeoPharma), 0.1 lM
dexamethasone, 10 mM b-glycerophosphate, 0.05 mM

L-ascorbic acid-2-phosphate. After differentiation the

cells were fixed with 4 % PFA for von Kossa staining.

For chondrogenic differentiation 200,000 cells

from passage two were pelleted into a micromass by

centrifugation at 4009g for 5 min in 15 ml conical

polypropylene tubes. The pellets were cultured for

2 weeks in chondrogenic medium that consisted of

D-MEM (high glucose, containing 0.1 mM pyruvate,

Life Technologies), supplemented with 10 ng/ml

transforming growth factor beta (TGF-b), 0.1 lM
dexamethasone, 0.1 mM L-ascorbic acid-2-phosphate,

40 lg/ml L-proline (all four from Sigma-Aldrich),

1 9 ITS ? premix (BD Biosciences, Bedford, MA,

USA) and penicillin–streptomycin (Life Technolo-

gies). The cell pellets were fixed with 10 % formalin,

embedded in paraffin, cut into sections and stained

with Alcian blue (Sigma-Aldrich) and Nuclear fast red

(Merck).

Flow cytometry analysis

For analysis of immunophenotype the cells were

detached with TrypLETM-express (Life Technologies)

and washed with FACS buffer solution (0.3 % BSA

(Sigma-Aldrich) in PBS-2 mM EDTA). Fluorescein

isothiocyanate (FITC), phycoerythrin (PE) or allo-

phycocyanin (APC)-conjugated antibodies against

CD13, CD14, CD19, CD29, CD44, CD45, CD49e,

CD73, HLA-DR, HLA-ABC (all from BD Pharmin-

gen, San Diego, CA, USA), CD34 (Miltenyi Biotec

GmbH, Gladbach, Germany), CD90 (StemCell Tech-

nologies Inc., Vancouver, BC, Canada) and CD105

(Abcam, Cambridge, UK) were used for direct

labelling of the cells. Appropriate FITC-, PE- and

APC-conjugated isotype controls (all from BD Bio-

sciences) were used. N-Glycolylneuraminic acid

(Neu5Gc, Gc-Free, Biolegend, San Diego, CA,

USA) staining was performed according to manufac-

turer’s instructions followed by AlexaFluor 488

labelled goat anti-chicken secondary antibodies

(Molecular Probes, Invitrogen, Eugene, OR, USA).

1 lM Sytox Blue (Molecular Probes) was used to

exclude dead cells. The cells were analysed with

FACSAria flow cytometer and FACSDiva 5.0.3 (BD,

San Jose, CA, USA) and FlowJo 7.6.1 softwares

(TreeStar, Ashland, OR, USA).

Immunosuppression assay

To interrogate the capacity of MSCs to suppress T-cell

proliferation the cells were co-cultured with peripheral

blood mononuclear cells (PB-MNC). 1.5 9 105,

0.75 9 105 or 0.3 9 105 MSCs were suspended in

RPMI 1640 medium supplemented with 5 % FBS and

penicillin–streptomycin (all from Life Technologies)

and plated in 48-well plates. The MSCs were allowed

to adhere onto the plates in an incubator before the PB-

MNCs were added.

PB-MNCs were isolated from buffy coats by Ficoll-

Paque Plus (GE Healthcare, Helsinki, Finland) gradi-

ent centrifugation and labelled with 2.5 lM CFSE

[5(6)-carboxyfluorescein diacetate N-succinimidyl

ester, Molecular Probes] in 0.1 % HSA-PBS (human

serum albumin, Sanquin, Espoo, Finland) for 5 min at

room temperature. 1.5 9 106 labelled PB-MNCs were

then added to the co-culture. For T-cell activation

0.1 lg/ml of CD3 antibody (clone Hit3a, BioLegend,

San Diego, CA, USA) was added to the wells. T-cell

proliferation was recorded after 4 days of co-culture

as dilution of fluorescent dye by flow cytometry. The

division index (Flow Jo software v.7.6.1) was used to

represent the extent of cell division.
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Statistical analysis

All data are presented as the mean ± standard

deviation (SD) unless mentioned otherwise. The

differences in mean values were tested by one-way

analysis of variance (ANOVA) and the Tukey’s post

hoc test. The data were analyzed with GraphPad Prism

software version 5.04 (GraphPad Software, La Jolla,

CA, USA) and statistical programming software R

(version 2.14.0). The differences were considered

significant when p\ 0.05.

Results

BM processing

The BM samples were initially aspirated into hep-

arinized syringes, but since some of the BM samples

contained clots the standard operating procedures

were modified to also include 2,500 IU of heparin per

10 ml syringe. The MNC yield after gradient cen-

trifugation was 2.98 9 106 ± 1.3106/ml of BM.

Small pools of PL1 are as efficient as larger pools

Each pool of PL1 was tested using 2–4 individual

MSC batches as responder cells. Tested pools consis-

tently supported the expansion of MSCs through

3.0–6.2 PDs in a 5–7 day proliferation assay

(Table 2). Pools produced from two PRP units were

as efficient as ones from 13 units. For practical

reasons, large pools (e.g. pools of 8–10 PRP units) are

preferable.

PL1 provides a good support for MSC growth

We compared the ability of three different culture

medium supplements, PL1, PL2 and FBS, to support

MSC growth up to passage two in 20 and 3 % oxygen.

There was no statistical difference in total cell yield or

cumulative PD between different culture conditions

(p = 0.42 and 0.99, respectively, Fig. 1a, b). Howev-

er, cells cultured in PL1-medium reached the highest

cell yields (extrapolated cell numbers from 20 ml of

BM were 6.31 9 109 ± 9.82 9 109 in 20 % oxygen

and 4.81 9 109 ± 6.78 9 109 in 3 % oxygen) and the

highest PDs (22.4 ± 2.9 PDs in 20 % oxygen and

23.0 ± 2.5 PDs in 3 % oxygen) within the shortest PD

times (2.1 ± 0.5 days in 20 % oxygen and 1.7 ±

0.3 days in 3 %oxygen at passage 2), see Fig. 1.When

PL1 cultured cells were compared with PL2 the PD

time was significantly shorter regardless of oxygen

conditions (p = 0.015 by one-way ANOVA, Fig. 1c).

There was no statistical difference in the PD time

Fig. 1 Proliferation kinetics of cells cultured in six different

culture conditions. a Extrapolated cell yield from 20 ml of BM

up to passage two. b Cumulative PDs and c PD time at different

passages from BM-MNC to passage 2. b, c The CFU-F numbers

were used as the starting number of the cells at passage 0. Data

are represented as mean ± SD (n = 4), except for FBS cultures

where only mean values are shown (n = 2)
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between PL1 and FBS cultured cells. The use of 3 %

oxygen led to a trend of shorter PD times with each

medium reaching statistical significance only between

cells cultured in PL1-medium in 3 % oxygen versus

PL2-medium in 20 % oxygen (p = 0.04, Fig. 1c).

After these initial experiments, we chose to test the

suitability of the PL1-medium and 20 % oxygen for

large-scale expansion using suitable large cell culture

vessels of MSCs with 11 subsequent bone marrow

samples. The mean CFU-F number/ml of BM was

17.30 ± 10.83, representing 0.0001–0.0009 % of

BM-MNCs. We set 109 cells at passage 2 as the goal

for the cell culture process, thus sufficient for 6 cell

doses for a patient of 80 kg. As can be seen in Fig. 2,

the goal of 109 cells was reached at passage two in

73 % of the BM-MSC batches (8/11) and within 21–26

PDs (mean cell number 6.6 9 109 ± 4.74 9 109).

Clotted BM aspirates performed poorly and was

identified as the primary reason behind a lower cell

yield as passage 2. Passage two was reached within

21–35 days (Fig. 2). All tested large cell culture

vessels performed equally well and with consistent

cell yield/cm2 (p = 0.79) indicating a robust and even

cell expansion in the chosen large cell culture vessels

and independent of the number of layers in the vessel

(Fig. 3). The karyotype of passage two cells was

normal (46, XX or 46, XY) in all 11 BM-MSC batches.

Long-term cultures revealed that the proliferation

of cells cultured in PL1-medium was arrested after 46

PDs and was superior to the cells cultured in PL2-

medium and FBS-medium, which ended proliferation

after 27 PDs and 38 PDs, respectively (Fig. 4). Total

culturing time for cells in PL1-medium was 125 days

until growth arrested, whereas cultures in PL2 and

FBS took 121 and 185 days, respectively (Fig. 4).

MSC characterization

The morphology of the cells was typical for MSCs

with slight size difference between PL1- and PL2-

medium cultured cells with PL1 cells appearing

smaller (Fig. 5a, b).

All BM-MSC batches tested displayed typical MSC

differentiation capacity along the adipogenic, os-

teogenic and chondrogenic lineages at passage two

(Fig. 5c–f). Von Kossa staining of osteogenic cultures

revealed a more intense calcium deposition in PL1

containing differentiation medium compared to those

differentiated in FBS containing differentiation medi-

um (Fig. 5c, d).

The immunophenotype of the cells from all culture

conditions was typical for MSC (Dominici et al. 2006)

with the exception of the expression of HLA-DR

(Fig. 6). The cells were negative for hematopoietic

markers and they expressed typical MSC markers on

their surface [CD13, CD29, CD44, CD49e, CD73,

CD90, CD105 and HLA-ABC (Table 3)]. The BM-

MSCs cultured in PL1 supplemented culture media

were consistently HLA-DR positive (7.5–66.1 %,

Table 3). FBS cultured BM-MSCs were HLA-DR

Fig. 2 Extrapolated MSC

yield of 11 BM-MSC

batches cultured in PL1-

medium at normal

atmospheric oxygen

conditions. The mean PDs

and culture time are shown

under each passage and the

cumulative mean PD

number and the mean value

of total culture time are

shown on the right-hand

side of the table. The range

is shown in parenthesis
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negative (Fig. 6). The xenoantigen Neu5Gc was

detected on the cell surface of cells cultured in the

presence of FBS but not on cells cultured in PL1- and

PL2-medium (Fig. 6).

Differently cultured MSCs have similar capacity

to suppress T-cell proliferation

The capacity of MSCs to suppress T-cell proliferation

was tested in co-culture with PB-MNCs that were

stimulated with an anti-CD3 antibody. The MSCs

cultured in different conditions were all able to

suppress T-cell proliferation at a 1:10–1:50 suppres-

sor:effector ratio. Dose dependence of the suppression

was demonstrated with MSCs cultured with PL1

(Fig. 7).

Discussion

Various animal serum-free culture methods utilizing

platelet extracts to support MSC expansion have been

published (Bernardo et al. 2007; Bieback et al. 2009;

Capelli et al. 2007; Doucet et al. 2005; Mojica-

Henshaw et al. 2013; Schallmoser et al. 2007). We

wanted to explore if a PL-based protocol to culture

BM-MSCs could be further developed to a manufac-

turing method that (1) would yield high numbers

([109 cells) of high quality cells after a low amount of

passaging and from only 20 ml of BM and (2) could be

easily and cost-effectively adapted to clinical- and

GMP-grade cell manufacturing.

We compared two different platelet-derived supple-

ments, platelet lysate PL1 versus PL2, produced by two

different methods and lysed with different amounts of

freeze–thaw cycles. Our study also explored the effect

of a low oxygen concentration on BM-MSCs. FBS-

supplementedBM-MSCculture servedas control. Since

PL2wasmore concentrated (Table 1), we used 10 % of

PL1 and 0.5 % of PL2 in the basal medium to receive a

comparable concentration of lysed platelets in the final

medium, 1 9 108 platelets/ml in PL1 and 0.8 9 108

platelets/ml in PL2 containing medium, which is in

accordancewith other studies (Lange et al. 2007;Muller

et al. 2006). Lange et al. (2007) showed that the

proliferation is reduced if the platelet concentration of

the starting material is less than 0.8 9 108 platelets/ml

in the final medium. The PL1-medium had the best

capacity for promoting MSC proliferation. This is in

agreement with reports comparing PL supplemented

media with FBS and thrombin-activated platelet release

(Ben Azouna et al. 2012; Bernardo et al. 2007; Bieback

et al. 2009; Capelli et al. 2007; Carrancio et al. 2008;

Doucet et al. 2005;Griffiths et al. 2013;Horn et al. 2010;

Lange et al. 2007; Salvade et al. 2010; Schallmoser et al.

2007). The PL1-supplemented BM-MSC cultures con-

sistently reached clinically relevant numbers of cells

within two passages. If BM aspirates contained clots,

however, the cultureswere less successful, emphasizing

the importance of heparin during the BMharvest. 0.5 %

PL2 asmediumsupplementwas less efficient than 10 %

Fig. 3 Cell yields of PL1-cultured BM-MSCs in large-scale

vessels (1-, 2- and 5-STACK) in passage 2. Cells were seeded

1,000 cells/cm2 and cultured for one passage. Data show the cell

yield/cm2 ± SD (p = 0.79, n = 5)

a bFig. 4 Growth kinetics of

MSCs in long term culture

until growth arrest. Cells

were cultured a in PL1-

(n = 3), b in PL2- and in

FBS- (same donors for both,

n = 16) supplemented

media from primary cultures

to senescence. Data show

mean values ± SD

Cytotechnology (2016) 68:891–906 899

123



FBS supplementedmedium,which is in agreement with

Bernardo et al. (2007).

The main differences between the two PL supple-

ments tested were (1) the higher plasma concentration

in PL1 and that (2) PL2 was subjected to several

freeze–thaw cycles (5 vs 2, Table 1). Our results imply

that a higher plasma concentration in the MSC culture

media might be beneficial. The importance of the

plasma fraction for the initial outgrowth of MSC

colonies has also been demonstrated by Horn et al.

Horn et al. (2010) who showed that PL alone could not

support CFU-F formation. We could, however, not see

any benefits of a high number (5) of freeze–thaw

cycles. Repeated freezing and thawing might actually

negatively affect the growth factor content of platelet-

derived supplements (Mojica-Henshaw et al. 2013),

and the high amount of freeze–thaw cycles during the

manufacture of PL2 may have inactivated some

critical components of the supplement used in our

study. Although the cell yields did not significantly

differ between the PL1 and PL2 supplemented proto-

cols, PL1 was superior in that PD time was shorter

(p = 0.015). It is also worth considering that residues

from the virus-inactivated pooled plasma in the PL2-

Fig. 5 Representative photographs of cell morphology and

differentiation. Morphology of passage 2 cells was normal

spindle shaped for both a PL1- and b PL2-medium cultured BM-

MSCs, but the PL2-cultured cells appeared to have a slightly

larger morphology. Von Kossa staining of osteogenic

differentiated BM-MSCs in c PL1-supplemented differentiation

medium and in d FBS-supplemented differentiation medium.

e Sudan III staining indicated the adipogenic differentiation

potential of the samples and f Alcian blue staining indicated the
chondrogenic potential of the cells grown in PL1-medium
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supplemented protocol might affect the proliferation

of the BM-MSCs.

Although autologous PL may be preferable in

specific situations to minimize immunologic side-

effects and viral infections, large pools are preferable

for large scale expansion due to their consistent

performance and easier logistics. Individual human

PLs (hPLs) differ in their cytokine profile as well as

their ability to support MSC proliferation (Horn et al.

2010). Mojica-Henshaw et al. (2013) showed that

different PL lots produced from at least 5–6 PRP units

do not differ much in growth factor content and this

variability is expected to decline with even larger

pools. In our study the PL1 pools were produced from

2 to 13 platelet units, i.e. platelets from 8 to 52

individuals, and all pools performed consistently in

supporting MSC expansion (more than 3 PDs in a

5–7 day assay). We could also conclude in the final

stages of the study that filtering of the PL-supple-

mented media is not needed if the platelet units and

pools are produced with high quality standards and

according to strict GMP.

Divergent results have been published about the

influence of different culture supplements on the

number of CFU-Fs in the primary cultures. Some

studies have shown that the different culture supple-

ments do not influence the number of proliferating

multipotent stem cells, but rather their expansion

efficiency. (Ben Azouna et al. 2012; Doucet et al.

2005; Horn et al. 2010; Schallmoser et al. 2007). Our

results are in accordance with these data. Some have

reported that PL containing media might also increase

the number of CFU-Fs (Lange et al. 2007; Salvade

et al. 2010). There are also conflicting results regard-

ing the effect of oxygen concentration on the CFU-F

number (Fehrer et al. 2007; Lennon et al. 2001).

Oxygen concentration is often an ignored component

of the culture conditions and cells are kept in normal

atmospheric oxygen, the only controlled gas being

CO2. The atmospheric 20 % oxygen concentration is

Fig. 6 Xenoantigenic Neu5Gc contamination and expression

of HLA-DR on MSCs. BM-MSCs cultured in a FBS-containing
medium stained positively with anti-Neu5Gc whereas cells

cultured in b PL1- and in c PL2-media did not have Neu5Gc on

their surface. HLA-DR was not expressed on BM-MSCs

cultured in d FBS-containing medium but was found on cells

cultured in e PL1- and f PL2-medium. Filled histograms

represent the unspecific/isotype controls and the solid line the

specific staining
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considerably higher than the 2–9 % oxygen concen-

tration in the natural niche of MSCs (Haque et al.

2013; Mohyeldin et al. 2010). It has been shown in

some reports that low oxygen shortens the expansion

time of MSCs (Carrancio et al. 2008; Estrada et al.

2012; Grayson et al. 2007) and it has been claimed that

the MSC yield could be maximized in low oxygen and

the culture time reduced when expanding MSCs at

clinical scale (Dos Santos et al. 2010). In these studies

the beneficial effect of low oxygen is shown with cells

that are from passage 2 or more. Albeit we saw a trend

of shorter PD time at p2 at 3 % oxygen, the effect of

low oxygen on BM-MSC proliferation was not

significant. Others have also found that oxygen

concentration does not influence the proliferation of

low passage cells (Fehrer et al. 2007; Karlsen et al.

2011), but PD time is clearly shortened at later

passages (Tsai et al. 2011). Low oxygen may have

other benefits however, as it may reduce oxidative

stress and genetic instability (Chen et al. 1995; Estrada

et al. 2012). However, the practicality and economic

concerns of the culture protocol are decisive factors in

large scale MSC manufacturing. The possible advan-

tage of culturing the cells in low oxygen concentration

may be neutralized by its added work and cost. Our

results suggest that as long as the cells are expanded

only for a few passages the harmful effects of 20 %

oxygen are minimal.

The PL1-supplemented culture protocol at 20 %

oxygen concentration was chosen for further process

development work and was developed towards a

clinically and GMP-compliant method. We found that

Table 3 Immunophenotype of BM-MSCs cultured in PL1-

medium

Surface antigen Mean % Max % Min % n

CD44 98.9 100.0 95.6 11

CD49e 99.0 100.0 95.5 11

CD13 99.0 100.0 95.6 11

CD90 99.9 100.0 99.3 11

CD73 99.9 100.0 99.2 11

CD29 99.7 100.0 98.5 11

CD105 99.0 100.0 96.5 11

HLA-ABC 99.6 100.0 98.6 11

CD14 \1 \1 \1 5

CD19 \1 \1 \1 5

CD34 \1 1.8 \1 5

CD45 \1 \1 \1 5

HLA-DR 26.8 66.1 7.5 11

Mean percentage and maximum and minimum values of

positive cells for each antigen are shown

Fig. 7 Immunosuppressive capacity of BM-MSCs cultured in

different culture conditions and the dose dependent capacity of

the cells to suppress T-cell proliferation. a The results of

immunosuppressive capacity of the cells cultured in six different

culture conditions at a ratio of MSC:MNC 1:10. Differences

between cells from different culturing conditions were statisti-

cally non-significant (0.14 by one-way ANOVA). b The

suppressive capacity of MSCs cultured in PL1-medium was

dose dependent. Division index of three independent ex-

periments (mean ? SD) is shown indicating the average

number of cell divisions. Statistical significance is tested using

one-way ANOVA and Tukey’s post hoc test *p\ 0.05,

**p\ 0.01, ***p\ 0.001
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MSCs can be cultured with this protocol at large scale

using CellStacks� and the method consistently yields

MSCs of uniform quality. The cells also essentially

fulfilled the MSC minimal criteria set by Mesenchy-

mal and Tissue Stem Cell Committee of International

Society of Cell Therapy (ISCT) (Dominici et al. 2006)

with one exception, the HLA-DR expression. The cell

surface expression of the class II HLAmolecule HLA-

DR was consistently positive after culturing in PL, but

was absent in cells cultured in FBS (Fig. 6). An

induction of HLA-DR expression has been previously

reported on MSCs cultured in FBS after cytokine

stimulation (Bocelli-Tyndall et al. 2010; Le Blanc

et al. 2007; Romieu-Mourez et al. 2007; Turnovcova

et al. 2009), and some recent reports have suggested a

low expression of HLA-DR on MSCs cultured in PL

(Fekete et al. 2012b; Tarte et al. 2010). The expression

of HLA-DR has, however, been omitted from numer-

ous papers describing MSC culture in PL (e.g. Doucet

et al. 2005; Horn et al. 2010) and we speculate that the

HLA-DR expression data have been omitted since it

does not fulfill the ISCT minimal criteria for MSCs.

The ISCT criteria are formulated using cells cultured

in presence of FBS and may not reflect MSCs cultured

in differently supplemented media. We found, as also

reported by others, that MSCs expressing HLA-DR

molecules also possess immunosuppressive capacity,

possibly because they lack expression of co-stimula-

tory molecules (CD80 and CD86) and thus do not

elicit an immune reaction (Le Blanc et al. 2007;

Menard et al. 2013; Sotiropoulou et al. 2006; Tarte

et al. 2010; Tse et al. 2003). Tarte et al. (2010) reported

that MSCs that express HLA-DR are poorly immuno-

genic and efficiently suppress T-cell proliferation in

mixed lymphocyte reaction (MLR) and the expression

of HLA-DR should not be considered a critical release

criterion for MSCs. Duijvestein et al. (2011) hy-

pothesized that pre-activation of MSCs with INF-c
that also induces the expression of HLA-DR could

lead to more rapid clinical response and hence a lower

dose of cells is needed. MSCs may thus receive

beneficial activation signals from PL. The functional

consequences of the cell surface expression of HLA-

DR is still unknown and would need further investi-

gations, but the ISCTminimal criteria for MSCs might

benefit from a re-evaluation for this particular detail.

Neu5Gc is an immunogenic xeno-carbohydrate that

is not produced by humans due to the loss of

hydroxylase activity of the human CMAH protein

(Irie et al. 1998). MSCs cultured in presence of

animal-derived material express this carbohydrate on

their surface and intracellular proteins and it mediates

immune responses against the cells (Heiskanen et al.

2007; Komoda et al. 2010). We demonstrate that PL1

and PL2 cultured cells are free of this animal-derived

contaminant and thus not susceptible to antibodies

against Neu5GC which are found in high titers in

human serum.

The differentiation assays showed that MSCs

cultured in PL1-medium are capable of tri-lineage

differentiation. Although the tri-lineage differen-

tiation is used as a criterion for MSCs in the research

setting, it may not be relevant if the cells are utilized

for immunosuppressive therapy in the clinic. The

functional quality control tests for clinical products

should be selected with a view to their intended use. In

our study we tested the cells’ capacity to suppress

T-cell proliferation and found effective suppression

irrespective of culture condition.

The safety of the MSCs used for clinical purposes

should be carefully assessed before administrating the

cells to patients. Karyotype testing or other tests

measuring genetic stability are often used. However,

these tests may not be adequate to find small but

deleterious abnormalities (Tarte et al. 2010). In our

studies the karyotype was analysed using G-band

staining and all tested batches had normal karyotype.

Karyotype abnormalities have been noticed by others

but usually at late passages and the cells enter into

senescence without transformation irrespective of

chromosomal alterations (Roselli et al. 2013; Tarte

et al. 2010). The risk of tumor formation by MSCs

harvested before senescence is, however, considered

low (Capelli et al. 2011; Prockop et al. 2010; Tsai et al.

2011) and our protocol is based on a low amount of

passaging when the cells are in a proliferative stage.

Safety is further increased in our culture protocol by

the omission of culture media antibiotics, and an

unnecessary patient exposure to beta-lactam and

aminoglycoside antibiotics can be avoided. Further-

more, in the absence of antibiotics, the risk of

undetected bacterial contamination is reduced.

Conclusions

We present a robust and reproducible clinically-

compliant culture method for BM-MSCs based on
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PL, which enables high quantities of HLA-DR

positive MSCs at a low passage number (p2) and with

uniform quality. The cells were consistently HLA-DR

positive when cultured in PL, but fulfill all other MSC

criteria and suppress T-cell proliferation. The func-

tional consequences of MSC HLA-DR expression

need to be clarified in further studies. The animal

serum-free, antibiotic-free, large-scale culture proto-

col can be directly transferred to a cleanroom

environment for clinical-grade MSC manufacturing

intended for allogeneic clinical use.
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