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Abstract
The interest of this paper is stabilized finite element approximations for pricing 
European- and American-type options under Heston’s stochastic volatility model, 
a generalization of the eminent Black–Scholes–Merton (BSM) framework in which 
volatility is treated as a constant. For spatial discretizations, the streamline-upwind/
Petrov–Galerkin (SUPG) stabilized finite element method is used. The stabilized for-
mulation is also supplemented with a shock-capturing mechanism, the so-called YZ� 
technique, in order to resolve localized sharp layers. The semi-discrete problems, 
i.e., the systems of time-dependent ordinary differential equations, are discretized 
in time with the Crank–Nicolson (CN) time-integration scheme. The resulting non-
linear algebraic equation systems are solved with the Newton–Raphson (NR) itera-
tive process. The stabilized bi-conjugate gradient method, preconditioned with the 
incomplete lower–upper factorization technique, is employed for solving linearized 
systems. The linear complementarity problems arising in simulating American-type 
options are handled with an efficient and practical penalty approach, which comes 
at the cost of introducing a nonlinear source term to the fully discretized formula-
tion. The in-house-developed solvers are verified first for the Heston model with a 
manufactured solution. Following that, the performances of the proposed method 
and techniques are evaluated on various test problems, including the digital options, 
through comparisons with other reported results. In addition to those studied previ-
ously, we also introduce new “challenging” parameter sets through which Heston’s 
model becomes much more convection-dominated and demonstrate the robustness 
of the proposed formulation and techniques for such cases. Furthermore, for each 
test case, the results obtained with the classical Galerkin finite element method and 
SUPG alone without shock-capturing are also presented, revealing that the SUPG-
YZ� does not degrade the accuracy by introducing excessive numerical dissipation.
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1  Introduction

It would be pretty surprising not to come across mathematical formulations involv-
ing convection, diffusion, or reaction processes (or any combination of these)—
which are essential constituents used for modeling numerous phenomena arising in 
the natural and engineering sciences, as well as in economics, finance, and other 
social and behavioral sciences. One such model arising in financial mathematics 
is the Heston model  (Heston, 1993), which was introduced by Steve Heston as an 
extension of the famous Black–Scholes–Merton (BSM) equations (Black & Scholes, 
1973; Merton, 1976). Its deterministic nature, which assumes constant volatility, 
was one of the main drawbacks of the BSM model, even though it was one of the 
most useful models to that date for analyzing financial dynamics in option pricing. 
The constant volatility assumption is not appropriate for the actual market environ-
ment since various factors, such as price and maturity, tend to affect the volatility of 
options. Heston’s model, in contrast to the BSM model, treats volatility as an out-
come of a stochastic process, which is much more realistic.

Since the backgrounds of potential readers may vary from decision sciences to 
numerical analysis and from finance to computer sciences, for both completeness 
and to facilitate the readability of the manuscript, we feel the need to present a brief 
review of the terminology used throughout the manuscript in the following lines. 
The term “option,” which is a financial instrument, refers to a right but not the obli-
gation to buy/sell an asset at a prescribed price within a specified period. A “call 
option” holder has the right but not the obligation to buy the underlying asset at a 
predetermined (also known as the “exercise” or “strike”) price on or before the expi-
ration date. On the other hand, a “put option” gives the holder the option but not the 
obligation to sell the underlying asset. Another classification of options can also be 
done according to their exercise time: European-style options and American-style 
options. European-style options are those that can only be exercised on the expira-
tion date, while American-style options have a flexible exercise window that extends 
through the expiration date. For a European-type call option, if U denotes the cur-
rent price of the underlying asset and the exercise price is K, then the payoff func-
tion is given by

where UT represents the price of the asset at the expiration time. If UT > K , the 
option holder exercises the option with a gain of UT − K . On the other hand, in 
American options, the holder has the right to exercise the option anytime during the 
predetermined period if the price of the underlying asset is above the exercise price 
K. An option having a different (generally more complex) structure than the one 
given by Eq. (1), such as the digital and barrier options, is called “exotic.” Further 
details on financial derivatives and the computational tools to deal with them can be 
found in Achdou and Pironneau (2005), Uğur (2008), Seydel (2012) and in ’t Hout 
(2017).

Since obtaining explicit (analytical) formulas is typically not possible except for 
simplified cases, one usually relies on numerical methods for simulating financial 

(1)max
(
UT − K, 0

)
=
(
UT − K

)+
,
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models. The following lines attempt to present a brief review of the literature on 
the computational approaches employed for computing Heston’s model. For more 
details, the reader can refer to the references listed within them. Zvan et al. (1998) 
described several approaches for enforcing American-style early exercise con-
straints by adding a penalty source term. They employed a finite element method 
(FEM) to discretize the diffusive terms and a finite volume method for the advec-
tive terms. Clarke and Parrott (1999) developed a multigrid method for solving the 
discrete linear complementarity problems (LCPs) that arise when pricing American-
style options. They employed an implicit finite difference scheme with an adaptive 
time-stepping technique. The work of d’Halluin et al. (2004) developed an implicit 
time-stepping scheme and used the penalty technique proposed in Zvan et al. (1998) 
to enforce American-style option constraints. Ikonen and Toivanen (2007) ana-
lyzed and compared various computational methods for pricing American-type put 
options under Heston’s model, reporting that the accuracies of the methods in ques-
tion appear to be similar.

Persson and von Sydow (2010) considered American-style options for both con-
stant and stochastic volatilities with a space- and time-adaptive finite difference 
method (FDM). Kunoth et  al. (2012) derived a variational inequality for Ameri-
can-type option pricing and then discretized it with linear finite elements in space. 
They solved the linear inequality systems with a projective Gauss–Seidel technique, 
along with some studies on various multiscale methods to accelerate the solution 
process, with a particular emphasis on the monotone multigrid method. In Ballestra 
and Pacelli (2013), a radial basis function (RBF) method was developed for option 
pricing under the BSM and Heston models. The authors evaluated their scheme on a 
broad set of test problems, including vanilla, digital, and barrier call options. Düring 
et al. (2014) proposed a high-order compact finite differences scheme for European-
style option pricing subject to Heston’s model on non-uniform meshes.

A variation of the RBF method was proposed for pricing a multi-asset American-
type put option problem in the framework of unsteady convection–diffusion equa-
tions (Safdari-Vaighani et al., 2014). In Haentjens and in ’t Hout (2015), the authors 
dealt with pricing American-type options under Heston’s model with the Alternat-
ing Direction Implicit (ADI) time discretization schemes. Düring and Miles (2017) 
proposed a high-order ADI scheme, for which they reported second-order accuracy 
in time and fourth-order in space, for option pricing in stochastic volatility mod-
els. Mollapourasl et al. (2017) employed a RBF approach with the partition of unity 
method (PUM) applied to a linear complementary formulation for American options 
under Heston’s model. They proposed a Crank–Nicolson (CN) scheme combined 
with an operator splitting method for discretization of the problem. The researchers 
proposed several splitting methods based on linear multistep methods and stabiliz-
ing corrections, presenting applications to European-type call options subject to the 
Heston model in Hundsdorfer and in ’t Hout (2018). Teng and Clevenhaus (2019) 
studied an ADI scheme for solving the Heston model extended with a stochastic cor-
relation, which resulted in 3D computation.

In recent years, Kozpınar et al. (2020) proposed a discontinuous Galerkin finite 
element formulation (dGFEM) for computing European- and American-type option 
pricing with Rannacher smoothing  (Rannacher, 1984) as a time integrator. The 
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symmetric interior penalty Galerkin (SIPG) method  (Arnold, 1982), which is a 
popular and powerful discontinuous Galerkin scheme used for handling discontinui-
ties across element boundaries by adding an interior penalty term, was used for the 
convective part of the Heston model. Lin and Zhu (2020) considered the pricing 
problem for American-style convertible bonds under the Heston model. They pro-
posed a predictor-corrector scheme complemented with an ADI scheme for the cor-
rection step to solve the model. In Mehrdoust et al. (2021), pricing of an American 
put option in the double Heston model was studied, and an analytical solution to the 
model was derived through the affine form of the model and the Fourier transform 
method. In Zhang et al. (2022), the authors considered American put options using 
a penalty approach and then employed a semi-implicit FEM. And most recently, 
in order to maximize the expected return of the trader by managing inventories, 
Aydoğan et al. (2022) addressed optimal trading strategies via price impact models 
using Heston’s model. They considered quadratic and exponential utility functions, 
and employed a finite difference scheme for solving the model.

As can be seen from the brief overview provided above, the computational lit-
erature for option pricing is overwhelmingly dominated by numerical tools based 
on the FDM, and the use of finite element methods is much less common. The fact 
that the FDM is simple to comprehend, straightforward to use, and simple to code 
are a few of the factors contributing to its popularity. It also has a long history and a 
well-developed theory. Beyond these, the FDM has gained more traction than other 
conventional methods (finite element/volume) because financial models are usually 
defined on simple, rectangular computational domains, for which the FDM typi-
cally performs pretty well. Two other common computational approaches employed 
for option pricing are the binomial tree method (Cox et al., 1979) and Monte Carlo 
(MC) simulations (Boyle, 1977). Compared to the binomial tree method, the FDM 
is more efficient and accurate when dealing with a large number of option prices. 
Despite being a flexible alternative for high-dimensional option pricing problems 
and its suitability for risk management and simulations, the MC approach may lose 
this benefit due to its high computational cost and challenges with handling early 
exercises. Regarding the finite element methods, they provide accuracy and adaptiv-
ity and are useful for solving problems with complex geometries and/or when PDEs 
control the underlying dynamics. On the other hand, conventional numerical discre-
tization methods, including the FDM and FEM, suffer from numerical instabilities 
in convection dominance, necessitating special treatments, such as adaptive mesh 
strategies and stabilized formulations, to resolve discontinuities and strong gradients 
accurately. Therefore, stabilized finite element methods enhanced with discontinu-
ity-capturing mechanisms can be a good alternative for financial computations.

In this current study, we are interested in obtaining stabilized and accurate finite 
element approximations of the Heston model for pricing European- and American-
type options. To that end, the streamline-upwind/Petrov–Galerkin (SUPG) (Hughes 
& Brooks, 1979; Brooks & Hughes, 1982) stabilized finite element formulation 
enhanced with YZ� shock-capturing (Tezduyar, 2004a, b, 2007), called the SUPG-
YZ� formulation, is employed. The linear complementarity problems for simulat-
ing the American-style options are handled with an efficient and practical penalty 
approach introduced in  Nielsen et  al. (2008). Some of the distinguishing features 
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of this current paper from many of the studies reported in the literature are that it 
deals with both European- and American-type options that require the use of differ-
ent formulations and techniques, that it is the first study that employs a SUPG-based 
stabilized formulation for simulating such problems, and that it deals with option 
pricing models that contain much stronger convection terms. As we deal with con-
vection-dominated option pricing simulations, we also contribute to the literature 
by introducing new “challenging” parameter sets that can be used as benchmarks. 
For each test problem and parameter set, the numerical results obtained with the 
classical finite element formulation, also called the Galerkin FEM (GFEM), and the 
SUPG formulation without using any shock-capturing technique are also compared 
with those obtained with the SUPG-YZ� formulation. Furthermore, in contrast to 
the overwhelming number of studies in the literature, we achieve quite good solution 
profiles despite very strong gradients due to the convection dominance by employ-
ing only linear elements on uniform meshes, without any need for staggered meshes, 
adaptive mesh strategies, or high-order polynomials. In other words, computational 
cost is significantly lower than those in the FDM and MC simulations.

The rest of the manuscript is organized as follows. The next section introduces 
the Heston model. Section 3 presents the SUPG-stabilized formulation and the YZ� 
discontinuity-capturing mechanism for computing the Heston model. In Sect. 4, sev-
eral computational details are discussed, such as temporal discretization, iterative 
solution processes for solving systems of equations, and the details of the penalty 
approach employed for solving LCPs are given. In Sect.  5, through comparisons 
with other reported methods and results, the proposed formulation and techniques 
are tested on a wide range of test problems, including pricing digital options. 
Finally, in Sect. 6, concluding remarks are made, along with some suggestions for 
future work.

2 � Heston’s Model

Heston’s model (Heston, 1993), which treats the volatility as a result of stochastic 
process, can be expressed as a parabolic partial differential equation (PDE) for Euro-
pean-style put options as follows Heston (1993) and Kozpınar et al. (2020):

where U(�, v, x) denotes the European-style option price, � ∈ (0, T] indicates the 
time to maturity T at time t, i.e., � = T − t , v ≥ 0 is the variance described by a 
Cox–Ingersoll–Ross (CIR) process (Cox et al., 1985), and x = log(S∕K) ∈ (−∞,∞) 
represents the underlying price. The mean reversion rate and level are shown by the 
parameters � and � , respectively. The parameters rd and rf  denote the domestic and 
foreign interest rates, respectively. The parameter � ∈ ℝ

+ represents the volatility 
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of volatility, and � ∈ [−1, 1] is the correlation associated with the Wiener process, 
which is also called Brownian motion and is a kind of Markov stochastic process.

The function �(�, v, x) denotes the market price of volatility risk, and is 
assumed to be zero throughout this study, as also done in Kozpınar et  al. (2020). 
For completeness, we assume that Eq.  (2) is equipped with the initial condition 
U(0, v, x) = U0(v, x) and appropriately determined boundary conditions for the 
moment. For a detailed discussion and the derivation of the PDE given by Eq. (2), 
we refer the interested reader to Zvan et al. (1998) and Kunoth et al. (2012) and ref-
erences therein.

It is obvious that spatial domain associated with Eq. (2), which spans from minus 
infinity to infinity in the x-direction, should be truncated due to computational rea-
sons, and the resulting computational domain should be a good representative of 
the original one. For the moment, we consider the spatial computational domain as 
Ω =

(
vmin, vmax

)
×
(
xmin, xmax

)
.

In light of the above discussions, for European-type options, Heston’s model 
given by Eq. (2) can be described in a more compact and mathematically complete 
form as follows (Kozpınar et al., 2020):

where the functions UD and UN are given Dirichlet- and Neumann-type boundary 
conditions, and ΓD and ΓN represent the boundary parts where these conditions are 
prescribed, respectively. Note that �Ω = Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = � hold. The 
time interval I  is defined as I = (0, T] , n is the outward-oriented unit normal vector, 
and U0 is the given initial data, which is also called the “payoff function.” The dif-
fusivity matrix A and convection vector b read (Kozpınar et al., 2020)

When pricing American-type options, the early exercise feature should also be taken 
into consideration due to the flexibility American options provide to their hold-
ers. The Heston model thus has the following form for pricing American-type put 
options (Kozpınar et al., 2020):

(3)
�U

��
− ∇ ⋅ (A∇U) + b ⋅ ∇U + rdU = 0, in I × Ω,

(4)U(�, v, x) = UD(�, v, x), on I × ΓD,

(5)A∇U(�, v, x) ⋅ n = UN(�, v, x), on I × ΓN ,

(6)U(0, v, x) = U0(v, x), in {0} × Ω,

(7)A =
v
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(8)
�U

��
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where the terms can be deduced from those given for Eqs. (3)–(6). Besides, the sys-
tem is also assumed to be equipped with the initial and boundary conditions similar 
to that of its European counterpart. The problem given by Eqs. (8)–(10) is called a 
“linear complementarity problem.”

Since inequality-type variational formulations associated with American-style 
option pricing problems in the form of Eqs. (8)–(10) are transformed into equality-
type formulations as in their European counterparts, we present the SUPG-based 
stabilized formulation for only European-style option pricing problems in the form 
of Eqs. (3)–(6). The details are provided in Sect. 4.

3 � Streamline‑Upwind/Petrov–Galerkin Formulation

Although the finite element methods are famous for their robustness, solid theoreti-
cal foundations, and many other distinguishing features, the classical FEM fails to 
compute convection-dominated problems accurately, yielding node-to-node non-
physical oscillations. To overcome such numerical instabilities, extremely fine spa-
tial discretizations can be used, adaptive mesh strategies can be adopted, or the clas-
sical formulations can be stabilized. However, employing finer or adaptive meshes 
might be restrictive or inapplicable in many cases. Therefore, various stabilized for-
mulations have been developed and proposed since the early 1970s, and the stream-
line-upwind/Petrov–Galerkin is among the most robust and prominent ones in the 
FEM framework.

The SUPG formulation was originally developed for incompressible flow com-
putations by Hughes and Brooks (1979) and Brooks and Hughes (1982). The for-
mulation was extended for simulating compressible flows by Tezduyar and Hughes 
(1982), Tezduyar and Hughes (1983), and Hughes and Tezduyar (1984). Although 
the SUPG-stabilized formulations were successful in eliminating globally propa-
gated spurious oscillations, the test computations demonstrated that some additional 
treatments were required to accurately resolve steep gradients around shocks and 
near discontinuities. To that end, the SUPG was reformulated and augmented with 
a shock-capturing term in Hughes et al. (1987), resulting in better shock representa-
tions. Although the stabilization parameter, which was introduced in the (SUPG)82 
framework in Hughes and Brooks (1979) and Brooks and Hughes (1982), underwent 
some minor changes, the stabilized formulation was supplemented with the same 
shock-capturing parameter �91  (Le Beau & Tezduyar, 1991) until 2004. In 2004, 
Tezduyar introduced new ways of determining the stabilization and shock-captur-
ing parameters, including the YZ� shock-capturing technique (Tezduyar, 2004a, b, 
2007). Today, such stabilized formulations and shock-capturing technologies are 
used in numerical simulations of many real-world phenomena, from hypersonic flow 
computations to dam-break problems and natural convection heat transfer to arterial 

(9)
(
�U

��
− ∇ ⋅ (A∇U) + b ⋅ ∇U + rdU

)(
U − U0

)
= 0,

(10)U − U0 ≥ 0,
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drug delivery applications. For more on the historical development of stabilized for-
mulations in the SUPG framework, we refer the interested reader to Takizawa et al. 
(2017).

The YZ� technique comes with some advantages over those previously intro-
duced (Tezduyar & Senga, 2006, 2007; Tezduyar et al., 2006): it is simpler to calcu-
late the YZ� shock-capturing parameter, the parameter � , which is called the “sharp-
ness parameter,” offers flexibility for weak/moderate and sharper shocks, and it 
achieves better shock representations. In this work, we adopt the SUPG formulation 
by augmenting it with the YZ� shock-capturing mechanism. We call this combina-
tion the “SUPG-YZ� formulation,” as in  Cengizci et  al. (2022) and Cengizci and 
Uğur (2023).

In light of the introductory material and brief discussion given above, the GFEM 
formulation of Heston’s model for European-type options can be obtained by mul-
tiplying both sides of Eq. (3) by a test function W: find U ∈ SU such that for all test 
functions W ∈ VU,

In this formulation, the solution and test function spaces are defined as

Here, the Sobolev space H1 is defined as follows:

where D1U represents the first-order weak derivative of U, and L2(Ω) is the space of 
square-integrable functions defined in Ω.

By using Green’s formula for integrating the diffusion term ∇ ⋅ (A∇U) in Eq. (11) 
by parts, a weak formulation of the Heston model for European-type option pricing 
can be expressed as follow: find U ∈ SU such that for all test functions W ∈ VU,

In this way, Neumann-type boundary conditions can also be incorporated into the 
discretized formulation. Then, the spatially discretized GFEM formulation can be 
given as follows: find Uh ∈ S

h
U

 such that for all test functions Wh ∈ V
h
U

,

(11)∫Ω

W
(
�U

��
− ∇ ⋅ (A∇U) + b ⋅ ∇U + rdU

)
dΩ = 0.

(12)SU = {U | U ∈ H1(Ω), U = UD on ΓD},

(13)VU = {W | W ∈ H1(Ω), W = 0 on ΓD}.

(14)H1(Ω) = {U | U ∈ L2(Ω), D1U ∈ L2(Ω)},

(15)
∫Ω

∇W ⋅ A∇U dΩ + ∫Ω

W
(
�U

��
+ b ⋅ ∇U + rdU

)
dΩ − ∫ΓN

UNW dΓ = 0.

(16)
∫Ω

∇Wh
⋅ A∇Uh dΩ + ∫Ω

Wh

(
�Uh

��
+ b ⋅ ∇Uh + rdU

h

)
dΩ − ∫ΓN

(
UN

)h
Wh dΓ = 0,
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where the superscript “h” indicates that the associated function is from a finite-
dimensional subspace. The finite-dimensional solution and test function spaces are 
defined as follows:

where the finite element space Hh1 is defined as follows:

Here, P1(Ω
e) represents the set of linear polynomials over Ωe , Th denotes the trian-

gulation of the computational domain Ω , C0(Ω) is the space of continuous functions 
on Ω , and Ω =

⋃
Ωe∈Th Ω

e.
As discussed before, stabilization is needed to overcome the inadequacy of the 

standard GFEM formulation for solving convection-dominated problems. Towards 
that end, a SUPG-stabilized version of formulation (16) can be given as follows: find 
Uh ∈ S

h
U

 such that for all test functions Wh ∈ V
h
U

,

where “ nel ” denotes the number of elements, “e” is element counter, and �SUPG is the 
SUPG stabilization parameter.

As can be found in many studies reported in the literature, we employ a stabilization 
parameter that takes into account the time-step size as well. In this regards, the first 
component of the stabilization parameter, �SUPG1 , is defined as follows (Bazilevs et al., 
2007):

where Pe represents the element Péclet number. It is an indicator of the relative 
dominance of advection over diffusion within individual elements and is defined as 
follows:

The second component, �SUPG2 , is

(17)S
h
U
= {Uh | Uh ∈ Hh1(Ω), Uh = UD on ΓD},

(18)V
h
U
= {Wh | Wh ∈ Hh1(Ω), Wh = 0 on ΓD},

(19)Hh1(Ω) = {Φh | Φh ∈ C
0(Ω), Φh|Ωe ∈ P1(Ω

e), ∀Ωe ∈ T
h}.

(20)

∫Ω

∇Wh
⋅ A∇Uh dΩ + ∫Ω

Wh

(
�Uh

��
+ b ⋅ ∇Uh + rdU

h

)
dΩ − ∫ΓN

(
UN

)h
Wh dΓ

+

nel∑
e=1

∫Ωe

�SUPG b ⋅ ∇Wh

(
�Uh

��
− ∇ ⋅ (A∇Uh) + b ⋅ ∇Uh + rdU

h

)
dΩ = 0,

(21)�SUPG1 =
he

2‖b‖ min

�
1,

Pe

3p2

�
,

(22)Pe =
‖b‖he
2‖A‖ .

(23)�SUPG2 =
Δ�

2
.
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Then, the stabilization parameter, �SUPG , in a similar fashion to that used in Shakib 
(1988), can be given as follows:

Here, we take the term he as the minimum edge length associated with element 
Ωe , and p represents the polynomial order of the interpolation functions, which is 
adopted as p = 1 throughout this work.

The SUPG formulation supplemented with YZ� shock-capturing mechanism, 
i.e., the SUPG-YZ� formulation, can be given as follows: find Uh ∈ S

h
U

 such that 
for all test functions Wh ∈ V

h
U

,

where the term �SHOC represents the shock-capturing parameter and is defined as fol-
lows (Tezduyar, 2004a, b, 2007):

In Eq. (26), for both compactness and ensuring the consistency with the literature, 
we denote the spatial variables with xk’s, where k = 1, 2,… nsd . It is clear that, in 
the present discussion, x1 = v and x2 = x . The quantity Y is an appropriately deter-
mined positive scaling parameter or a reference value for U(�, x, v) , i.e.,

For instance, it can be determined as the difference between the maximum and mini-
mum values of the option price, that is, Umax(�, x, v) − Umin(�, x, v).

For steady problems, the term Z can be defined in its convective form as pro-
posed in Tezduyar and Senga (2006), Tezduyar and Senga (2007), and Tezduyar 
et al. (2006)

and for time-dependent problems, it can be given as

(24)�SUPG =

[(
1

�SUPG1

)2

+
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1
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)2
]−

1

2

.
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e=1

∫Ωe

�SHOC
(
∇Wh

⋅ ∇Uh
)
dΩ = 0,

(26)�SHOC = |Y−1Z|
(

nsd∑
k=1

|||Y
−1 �U

h

�xk

|||
2

) �

2
−1(

hSHOC

2

)�

.

(27)Y = Uref.

(28)Z = b ⋅ ∇Uh,

(29)Z =
�Uh

��
+ b ⋅ ∇Uh.
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As a variation, Z can be defined in the residual form as follows  (Bazilevs et  al., 
2007):

For defining Z, we adopt Eq. (30) in our computations.
The shock element length scale, hSHOC , and the unit vector j are given as follows:

where “ nen ” and Na denote the number of element nodes and the shape function 
associated with element node “a,” respectively. In this work, we take the sharpness 
parameter as � = 2 . The studies  (Tezduyar & Senga, 2006, 2007; Tezduyar et  al., 
2006) by Tezduyar et al. are recommended reading for more information and some 
other variants of the YZ� formulation.

4 � Some Computational Details

This section introduces the computational details, such as temporal discretization, 
iterative solution processes, the implementation of the penalty approach for solving 
LCPs, the computing ecosystem, and the computation of Greeks.

4.1 � Temporal Discretization

The semi-discrete formulations [see Eqs. (16), (20), and (25)] introduced in the pre-
vious section are discretized in time with the Crank–Nicolson method, that is, as 
advancing from time-step n to n + 1:

where �CN is set as �CN = 1∕2 , and the terms Jh
n
 and Jh

n+1
 represent the rest of the 

terms in the variational formulation computed at time steps n and n + 1 , respectively.

4.2 � Penalty Approach for Linear Complementarity Problem

For solving the complementarity problem arising in pricing American-style options, 
we adopt the penalty approach, which was originally introduced for solving the 
BSM model by Nielsen et al. (2008): we add the penalty term

(30)Z =
�Uh

��
− ∇ ⋅ (A∇Uh) + b ⋅ ∇Uh + rdU

h.

(31)hSHOC = 2

�
nen�
a=1

�j ⋅ ∇Na�
�−1

, j =
∇Uh

‖∇Uh‖ ,

(32)�Uh

��
=

Uh
n+1

− Uh
n

Δ�
= �CNJ

h
n+1

+
(
1 − �CN

)
J
h
n
,
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to the variational formulation associated with the American option pricing problem, 
where 0 < 𝜖pen ≪ 1 is an appropriately determined positive small penalty parameter, 
Cpen is a positive constant satisfying Cpen ≥ rdK and Δt ≤ �pen

rdK
 , and the function 

qpen(v, x) is defined as

Note that the nonlinear nature of the penalty term Qpen defined by Eq.  (33) intro-
duces additional nonlinearity in the variational formulation associated with Ameri-
can-type option pricing problems.

In the variational form discretized in space and time, we add the penalty term 
implicitly, i.e., we add Qn+1

pen
 to the system of equations at time-step n. Therefore, the 

discussion and methodology given in Sect.  3 for European-style options can be 
employed for American-style option pricing problems as well, since the variational 
formulation is transformed into an equality using the penalty approach. For more on 
the penalty methods, we refer interested readers to Nielsen et al. (2008) and Zvan 
et al. (1998).

4.3 � Solution of Resulting System of Equations

The space (SUPG-YZ� ) and time (CN) discretizations of the governing equations 
associated with the Heston model result in systems of nonlinear equations to be 
solved at each time step. Although the Heston model is a linear PDE, the result-
ing algebraic systems are nonlinear due to the nature of the stabilized formulation. 
Therefore, the nonlinear systems are linearized with the Newton–Raphson method 
at each time step and are solved with an ILU-preconditioned stabilized bi-conjugate 
gradient method (BiCG-STAB) at each nonlinear iteration.

For both linear and nonlinear solution processes, the relative and absolute toler-
ances are set as �tol = 10−12 for European options. Because of the additional nonlin-
earity introduced to the system by the penalty term (see Sect. 4.2), we set the tol-
erances in the nonlinear solver as �tol = 10−10 for American-style options, whereas 
they are the same as in European-style computations in the linear solver.

4.4 � Solver Environment

All computations are performed in FEniCS, an open-source scientific computing 
environment. Many pre-defined finite element spaces, such as Taylor–Hood ele-
ments and bubble shape functions, are included in FEniCS. However, there is no 
built-in stabilized finite element formulation in the FEniCS framework. Thus, we 
take advantage of FEniCS’s flexibility to build our own stabilized finite element 
solvers using Lagrange elements. Further details can be found on the FEniCS page: 

(33)Qpen = −
�penCpen

U(�, v, x) + �pen − qpen(v, x)

(34)qpen(v, x) = K − K exp(x).
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https://​fenic​sproj​ect.​org/, and the material in Logg et al. (2012), Abali (2016) and 
Langtangen and Mardal (2019) can be referred to.

4.5 � Computation of Greeks

Having computed the option price U, it is generally desired to measure the sensitiv-
ity (Greeks) of the computed solution with respect to a certain variable or parameter. 
Among others, we restrict our attention to delta ( �U ) and gamma ( �U ) sensitivities, 
which are mathematically defined as follows:

In words, �U and �U represent the sensitivities of the option price U and �U , respec-
tively, to the underlying asset price x.

In order to compute these sensitivities in FEniCS, we first project the computed 
solution U onto a Lagrange finite element space of degree 2. After computing �U , it 
is then projected onto a Lagrange finite element space of degree 1 and derived with 
respect to x. The same process is followed for computing �U as well, i.e., the com-
puted �U is projected onto a Lagrange finite element space of degree 1 and derived 
with respect to x.

5 � Numerical Experiments

This section presents and compares the results obtained with the proposed meth-
ods and techniques introduced in the previous sections. To this end, three main 
test computations are provided: European-style call options, digital call options, 
and American-style put options. In addition to these classical benchmark problems 
studied previously, we also introduce new parameter sets for each test computation, 
through which Heston’s model becomes much more convection-dominated. Thus, 
we also demonstrate the efficiency of the proposed formulation and techniques for 
much more challenging computational cases. However, we first start by verifying the 
solver codes developed in FEniCS through a manufactured solution.

5.1 � Code Verification Study

We assume that the Heston model described by Eq.  (2) [or, equivalently, by 
Eqs. (3)–(6)] has the exact solution given as follows (Kozpınar et al., 2020):

where the boundary and initial conditions are determined so that the exact solution 
holds. Note that one should add the terms arising from the implementation of the 
exact solution as a source term, fsource , to the right-hand side of the model:

(35)�U =
�U

�x
and �U =

�2U

�x2
.

(36)Utrue = cos(�v) cos(�x) exp(−�),

https://fenicsproject.org/
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We consider the parameter set presented in Table 1.
The spatial problem domain is Ω = (0, 4) × (−2, 2) and it is discretized with 7396 

crossed elements and 3785 nodes. Such a discretization results in the minimum 
element length of h = 0.1 , and the highest value of the Péclet number is found to 
be around 1.1 (see Eq.  (22)). The time-step size is taken as Δ� = 0.01 . The scal-
ing parameter Y of YZ� is set to one. The errors in L2-norm and maximum-norm 
( L∞ ) are found as ‖Utrue − Ucomp‖L2 = 0.009412 and ‖Utrue − Ucomp‖L∞ = 0.005534 , 
respectively, where Ucomp represents the computed solution.

In Fig. 1, the SUPG-YZ� approximation and absolute error associated with it are 
shown. As desired, it is observed that the shock-capturing and stabilization mecha-
nisms do not introduce excessive artificial diffusion, thereby indicating that the pro-
posed stabilized formulation can also be safely applied to problems where convec-
tion does not dominate the governing equations. We compare the performance of the 
proposed methods in terms of the maximum pointwise absolute errors with degrees 

(37)

fsource =��(� − v)e−� sin (�v) cos (�x) + rde
−� cos (�v) cos (�x)

− �2��ve−� sin (�v) sin (�x) +
�2�2ve−� cos (�v) cos (�x)

2

+
�2ve−� cos (�v) cos (�x)

2
+ �

(
rd − rf −

v

2

)
e−� sin (�x) cos (�v)

− e−� cos (�v) cos (�x).

Table 1   The first set of parameters used for code verification and European call option (Kozpınar et al., 
2020)

� � � � rd rf T

1.0 0.09 0.4 − 0.7 0.05 0.01 1.0

Fig. 1   Results for the manufactured solution with parameters given in Table  1: (a) Elevation plot for 
SUPG-YZ� approximation and (b) absolute error in SUPG-YZ� approximation
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of freedom in Fig. 2a. We also compare the errors in Fig. 2b in L2(L2)-norm (i.e., L2-
norm in both space and time; for definition, see Kozpınar et al., 2020). It is observed 
that all three formulations proposed yield better approximations as the number of 
elements increases. Finally, it is also noticed that the numerical orders of conver-
gence exhibit similar behavior with those reported in Kozpınar et al. (2020), where 
the authors employed a SIPG formulation with the CN time-integration using linear 
interpolation polynomials.

5.2 � European‑Style Call Option

For European-type call option pricing, we assume that the payoff function is given 
by

and the spatial computational domain is Ω = (0, 4) × (−2, 2) , as in Kozpınar et al. 
(2020). It is discretized in space as in the code verification study presented in the 
preceding subsection. The time-step size is taken as Δ� = 0.005 and advanced until 
� = 1.0 . The Dirichlet boundary data is given as follows (Kozpınar et al., 2020):

For comparison purposes only, we first consider the parameter set shown in Table 1, 
which was also taken into consideration in Kozpınar et al. (2020), for European call 
computations. This is because the set does not produce a case that is computation-
ally challenging enough to assess the performance of the proposed formulation and 
techniques. To this end, we also consider a much more challenging parameter set 
given in Table  2. Note that by “challenging,” we mean “convection-dominance.” 

(38)U0(v, x) = max (K exp(x) − K, 0),

(39)

⎧⎪⎨⎪⎩

U(�, vmin, x) = max (K − K exp(x), 0),

U(�, vmax, x) = K exp(x − rf �),

U(�, v, xmin) = 0,

U(�, v, xmax) = max
�
K exp(xmax − rf �) − K exp(−rd�), 0

�
.

Fig. 2   Comparison of errors in GFEM, SUPG, and SUPG-YZ� approximations with degrees of freedom 
for the parameter set given in Table 1: (a) pointwise absolute errors and (b) errors in L2(L2)-norm
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Recalling the diffusivity matrix A and convection vector b defined by Eq. (7) for the 
Heston model, we select the parameters so that the convection process dominates 
the diffusion process. Note that the parameters associated with the reversion level 
( � ), volatility of volatility ( � ), and correlation ( � ) presented in Table 2 show signifi-
cant decrease in magnitude compared to those given in Table 2.

We observe in Fig.  3a that the SUPG-YZ� formulation yields oscillation-free 
solution profiles for the parameter set given in Table 1. This situation is what we 
expect since the associated parameter set is not of the type that would lead to con-
vection dominance. We are therefore interested in whether the proposed formulation 
introduces excessive dissipation into the system. Also, as can be seen from Fig. 3b, 
the SUPG-YZ� formulation does not result in excessive numerical diffusion when 
compared to the results obtained with the GFEM and SUPG. In other words, the 
SUPG-YZ� formulation is almost exclusively activated only when necessary and 
provides the required amount of artificial numerical diffusion. In other words, the 
proposed formulation can also be used safely when solving problems that are not 
dominated by convection phenomena.

Figure 4 compares the approximations obtained with the GFEM, SUPG, and 
SUPG-YZ� formulations for K = 150 with the parameter set provided in Table 2, 
which results in the highest local Péclet number around 350 and is quite chal-
lenging compared to what Table 1 yields and to those available in the literature. 
This value is around 1.62 for the parameter set given in Table  1. We clearly 
observe from Fig. 4a that the GFEM solution contains spurious oscillations glob-
ally spread across the computational domain and from Fig.  4b that the SUPG 

Fig. 3   European-type option pricing with parameters given in Table 1; K = 100 : (a) Elevation plot for 
SUPG-YZ� approximation and (b) comparison of GFEM, SUPG, and SUPG-YZ� approximations along 
x = 1.6

Table 2   The second set of 
parameters used for European 
call option

� � � � rd rf T

1.2 0.01 0.05 − 0.01 0.05 0.09 1.0
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formulation cannot capture sharp gradients around the corner (v, x) = (4.0, 2.0) 
alone, while the YZ� technique performs quite well without any spurious oscilla-
tion (see Fig. 4c). The situation is also illustrated through line plots for K = 100 
and K = 150 in Fig. 5, where x = 1.6 . We observe that although the SUPG-stabi-
lized formulation yields slightly better solution profiles than the GFEM without 
any globally-spread spurious oscillation, additional stabilization is required near 
the boundary, where localized oscillations occur. On the other hand, the SUPG-
YZ� formulation gives a smoother solution profile with sufficient crosswind dis-
sipation. We also present the delta ( �U ) and gamma ( �U ) Greeks in Fig. 6. The 
normalized solution, Unormalized , is obtained by simply dividing the computed 
solution U by K exp (x).

5.3 � Digital (Binary) Call Option

Binary options, as their name suggests, are (exotic) options where the payoff is 
either a predetermined amount or nothing at all. Therefore, as in  Lazar (2003) 
and Kozpınar et al. (2020), we adopt the following discontinuous initial condition 
(payoff function):

Fig. 4   Comparison of approximations for European-type option pricing with parameters given in 
Table 2; K = 150 : (a) GFEM, (b) SUPG, and (c) SUPG-YZ�

Fig. 5   Comparison of GFEM, SUPG, and SUPG-YZ� approximations along x = 1.6 for European-type 
option pricing with parameters given in Table 2: (a) K = 100 and (b) K = 150
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In order to compare the results with those reported in Kozpınar et  al. (2020), we 
take the spatial computational domain as Ω = (0.0025, 0.559951) × (−5, 5) . We dis-
cretize Ω with 8192 triangular elements and 4257 nodes. The time-step size is set 
as Δ� = 0.005 , and the computations are performed until � = 0.25 . The Dirichlet 
boundary conditions are given in a similar fashion of  Kozpınar et  al. (2020) as 
follows:

On the remaining part, homogeneous Neumann boundary conditions apply, i.e.,

For comparison, we first consider the parameter set given in Table 3, which was also 
used in Kozpınar et al. (2020) and causes the highest value of the Péclet number, 
which is defined by Eq. (22), to be around 4. We also perform our computations for 
the parameter set introduced in Table 4, which yields the highest value of the Péclet 
number around 5200, i.e., much more challenging to handle in terms of achieving 
numerical stability due to convection dominance. This is achieved by raising the 
mean reversion rate ( � ) while reducing both the mean reversion level ( � ) and the 
volatility of volatility ( � ) specified in Table 3.

(40)U0(v, x) =

{
1, if K exp(x) − K < 0,

0, if K exp(x) − K > 0.

(41)U(�, v, xmin) = 0, U(�, v, xmax) = K.

(42)
�U

�v
(�, vmin, x) = 0,

�U

�v
(�, vmax, x) = 0.

Fig. 6   European-type call option gamma and delta Greeks obtained with the SUPG-YZ� formulation for 
parameter set given in: (a) Table 1 and (b) Table 2; K = 150 and v = 0.35

Table 3   The first set of 
parameters used for digital call 
option (Kozpınar et al., 2020)

� � � � rd rf T

2.5 0.06 0.5 − 0.1 log(1.052) log(1.048) 0.25
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The initial state of the digital option pricing problem is presented in Fig. 7a. The 
SUPG-YZ� solution to ‘s shown in Fig. 7b. In these two figures, the parameter set 
given in Table 3 is adopted.

Figure 8 compares the digital option pricing approximations obtained by employ-
ing the GFEM and SUPG-YZ� for the parameter set introduced in Table 4. While 
the classical FEM approximation is contaminated by widely dispersed unwanted 
oscillations, the SUPG-YZ� formulation performs quite well, yielding smooth solu-
tion profiles even near very sharp gradients. We also observe from the line plots 

Fig. 7   Digital option pricing with parameters given in Table 3; K = 1 : (a) Initial state and (b) SUPG-
YZ� approximation at � = 0.25

Table 4   The second set of 
parameters used for digital call 
option

� � � � rd rf T

325.0 0.01 0.05 − 0.1 0.05 0.05 0.25

Fig. 8   Comparison of approximations obtained for digital option pricing with parameters given in 
Table 4; K = 1 : (a) GFEM and (b) SUPG-YZ�
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shown in Fig.  9a that the SUPG and SUPG-YZ� formulations do not introduce 
excessive diffusion when it is not necessary. Finally, Fig. 9b reveals that the GFEM 
approximation exhibits spurious oscillations, whereas the SUPG and SUPG-YZ� do 
not. The delta and gamma sensitivities of the computed solutions associated with the 
parameter sets presented in Tables 3 and 4 are shown in Fig. 10.

5.4 � American‑Style Put Option

Here, we deal with the American-type put option pricing problem defined by 
Eqs. (8)–(10) in Sect. 2. The early exercise feature of American-type requires spe-
cial treatment since it results in LCPs. As in Kunoth et al. (2012), the spatial compu-
tational domain is Ω = (0.0025, 0.4975) × (−5, 5) . We discretize the computational 
domain with 8, 192 elements and 4, 257 element nodes. The time-step size is set as 
Δ� = 0.001 . The computations are performed until the final time � = 0.25 . We set 
the penalty parameter, described in Sect. 4.2, as �pen = 5.0 × 10−3 and the penalty 
constant as Cpen = rdK + 1.

Fig. 9   Comparison of GFEM, SUPG, and SUPG-YZ� approximations obtained for digital option pricing 
along the line v = 0.35 ; K = 1 : obtained with parameter set given in (a) Table 3 and (b) Table 4

Fig. 10   European-type call option gamma and delta Greeks obtained with the SUPG-YZ� formulation 
for parameter set given in: (a) Table 3 and (b) Table 4; K = 1 and v = 0.25
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The payoff function is defined as follows:

The problem is equipped with boundary conditions that are similar to those 
in Kunoth et al. (2012) and Zhu and Kopriva (2009), as follows:

On the remaining part of the boundary, homogeneous Neumann-type boundary con-
ditions apply:

For comparison, we consider the parameter set given in Table 5, which was intro-
duced in Clarke and Parrott (1999) and results in Péclet numbers [for definition, see 
Eq. (22)], with a maximum value of about 6. We also introduce a new set of param-
eters in Table 6, which causes the maximum value of the Péclet number to be around 
820, to test the performance of the proposed formulation under more challenging 
computational conditions.

Figure  11 shows the initial data as well as the SUPG-YZ� approximation to 
the American-type put option pricing problem at time � = 0.25 for the parameter 
set presented in Table 5. Figure 12a demonstrates that the solution profiles along 
the line v = 0.4975 obtained with the proposed methods agree very well, indicat-
ing that the stabilized formulations do not introduce more artificial diffusion than 
necessary, and the evolution of SUPG-YZ� approximations are compared at vari-
ous time steps in Fig. 12b along the line v = 0.25.

We also compare our numerical results with those reported in  Zvan 
et  al. (1998), Oosterlee (2003), Kunoth et  al. (2012) and Kozpınar et  al. 
(2020) for 

(
v0, x0

)
= (0.25, 0.0) at � = 0.25 . At this point, our results are: 

U(v0, x0) = 0.794957 with the GFEM and U(v0, x0) = 0.795854 with the SUPG-
YZ� formulation, whereas it is reported as U(v0, x0) = 0.7960 in Oosterlee (2003), 
as U(v0, x0) = 0.7961 in  Zvan et  al. (1998), as 0.794969 with the Gauss–Seidel 
method and 0.795687 with monotone multigrid methods in Kunoth et al. (2012), 
and as U(v0, x0) = 0.8042 with left/right preconditioner in Kozpınar et al. (2020). 
As a result, it is seen that our results are in good agreement with those reported in 
the literature.

(43)U0(v, x) = max (K − K exp(x), 0).

(44)

⎧
⎪⎨⎪⎩

U(�, vmin, x) = max (K − K exp(x), 0),

U(�, v, xmin) = 0,

U(�, v, xmax) = K.

(45)
�U

�v
(�, vmax, x) = 0.

Table 5   The first set of parameters used for American-type put option (Kozpınar et al., 2020)

� � � � rd rf T

5.0 0.16 0.9 0.1 0.1 0.0 0.25
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Figure  13 illustrates the effect of the penalty term introduced by Eq.  (33) 
through elevation plots for the function U(�, x) − U0(v, x) at � = 0.25 . We clearly 
observe in Fig. 13b that the penalty approach we adopted works well and keeps 
U(�, x) ≥ U0(v, x) as desired [see Eqs. (8)–(10)]. We also present Fig. 13a obtained 
without using the penalty term for comparison.

We evaluate the proposed formulation with the parameter set given in Table 6, 
which is the result of modifications corresponding to a decrease in the domestic 
interest rate and increases in the mean reversion rate and level, as well as the for-
eign interest rate shown in Table 5. We see from Fig. 14a that, as in the previous 
challenging cases, the standard Galerkin approach results in spurious oscillations; 
on the other hand, we observe from Fig.  14b that the approximation obtained 
with the proposed formulation does not exhibit any significant oscillatory behav-
ior. Eventually, in Fig. 15, we present and compare the computed solutions and 

Fig. 11   American-type option pricing with parameters given in Table 5; K = 10 : (a) Initial state and (b) 
SUPG-YZ� approximation at � = 0.25

Fig. 12   American-type option pricing with parameters given in Table 5; K = 10 and v = 0.25 : (a) Com-
parison of proposed formulations and (b) time evolution of the SUPG-YZ� solution
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Fig. 13   Effect of the penalty term Qpen on function U(�, v, x) − U0(v, x) for American-type option pricing 
with parameters given in Table 5; K = 10 and � = 0.25 : (a) without penalty term and (b) with penalty 
term

Table 6   The second set of 
parameters used for American-
type put option

� � � � rd rf T

55.0 0.16 0.2 0.1 0.01 0.5 0.25

Fig. 14   Comparison of approximations obtained for American-type option pricing with parameters given 
in Table 6; K = 10 : (a) GFEM and (b) SUPG-YZ�
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associated Greeks for the parameter sets given in Tables 5 and 6. The computed 
solution U has been divided by K to create the normalized solution in this case.

6 � Conclusions

We have dealt with the pricing of European- and American-type options under Hes-
ton’s stochastic volatility model. We have also considered digital options, which 
fall into the category of exotic options. To this end, we have proposed a SUPG-
based stabilized finite element formulation enhanced with a discontinuity-captur-
ing mechanism, called the YZ� technique, for spatial discretization and employed 
Crank–Nicolson time integration for temporal discretization. Following that, we 
have evaluated and compared the performances of the proposed method on several 
benchmark problems existing in the literature, confirming the validity and reliability 
of the approximations obtained. The results are also compared with those obtained 
with the GFEM and SUPG formulations, revealing that the SUPG-YZ� does not 
introduce excessive numerical dissipation. After each benchmark computation, we 
have assessed the robustness and efficiency of the proposed formulations for param-
eter sets created for much more challenging computational conditions as well.

Compared to the GFEM and SUPG, which produced several numerical insta-
bilities, our numerical results show that the SUPG-YZ� formulation produces very 
good solution profiles with no noticeable oscillations. In addition, we have also 
demonstrated the effectiveness of the penalty approach we employed for simulat-
ing American-type options, both visually and by comparing our results with those 
reported in the literature.

The accurate and oscillation-free solution profiles obtained with the proposed 
methods and techniques motivate us to extend this current study to multi-asset sto-
chastic models, which result in higher-dimensional computations.
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Fig. 15   European-type call option gamma and delta Greeks obtained with the SUPG-YZ� formulation 
for parameter set given in: (a) Table 5 and (b) Table 6; K = 10 and v = 0.1
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