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Abstract
We use an artificial neural network for finance in two directions: to estimate prices 
and Greeks based on the geometric Brownian motion and the constant elasticity of 
variance model for European options, and to construct a local volatility surface. To 
show the efficiency and successful usage of the network, we compare prices and 
Greeks obtained by a solution formula and by the artificial neural network when 
there is a solution formula is known. Then, we calculate Dupire’s equations to con-
struct a local volatility surface by the network.
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1 Introduction

The Black–Scholes equation (BSE) Black and Scholes (1973) is the most widely 
used option pricing model. The assumption that the price of the underlying asset 
follows a log-normal process with a constant volatility, is useful for practition-
ers because there are closed-form solutions for European options. However, the 
constant volatility assumption is not realistic in the real world. In such a sense, 
several approaches to the volatility have been developed as four categroies: his-
torical, local, implied and stochastic volatilities, for example in Ref. Ahn et  al. 
(2013), Derman and Kani (1994), Dupire (1994), Heston (1993), Hull (2003), 
Mayhew (1995), Poon and Granger (2005). Dupire’s local volatility model is use-
ful in practice and important to calculate prices and Greeks.

In practice, estimating the volatility surface is important for pricing exotic 
options or hedging derivatives. Since different implied volatilities are observed 
depending on maturity and strike price in the market, after works by Derman and 
Kani (1994), Dupire (1994) many studies have been conducted to estimate the 
volatility surface via the local volatility model (Carr & Lee, 2009; Coleman et al., 
2001; Gatheral, 2011; Larguinho et al., 2013; Lim & Bae, 2019).

For option pricing based on a local volatilty model, people use the Monte-
Carlo method and the finite difference method most popularly. However, these 
have some disadvantages. Typically, price and Greeks cannot be obtained at the 
same time. In Ref. Kim et al. (2014), the mesh-free point collocation method is 
used to calculate option price and their Greeks simultaneously. Artificial neural 
networks can be used in a sense similar to the mesh-free method. It also solves 
parametric partial differential equations (PDEs), and approximates even differen-
tiations (see Sect. 4). Furthermore, one of the advantages of the artificial neural 
network is that people first train the network in advance for a problem, then when 
predicting and/or pricing are needed, people can use the trained network quickly.

Research on solving PDE using artificial neural networks has been in progress 
for several decades (Lee & Kang, 1990; Lagaris et al., 1998; Meade & Fernandez, 
1994; Yentis & Zaghloul, 1996), and many studies (Sirignano & Spiliopoulos, 
2018; Raissi et  al., 2019; Glau & Wunderlich, 2022; Berner et  al., 2020) have 
shown the deep learning as an interesting tool. PDEs usually come from physical 
or social phenomena and laws. In Ref. Raissi et al. (2019), a deep learning frame-
work for solving nonlinear PDEs is proposed, called the physics-informed neural 
network (PINN). In a usual deep learning, providing data is so important to pre-
dict, and the automatic differentiation technique is used to only the back propaga-
tion process. Owing to the fact that a physical modeling is given in advance as a 
form of PDE instead of providing data, it is different from usual machine learning 
algorithms treated as black box tools. PINN also use the automatic differentiation 
to calculate partial derivatives included in a PDE where a physical information is 
described. In the financial market, data is rarely observed, to overcome this we 
take PINN to solve financial problems. As a result, in finance we can calculate 
prices, Greeks and Dupire’s equation simultaneously.
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In Ref. Gogas and Papadimitriou (2021) there is a survey on machine learning 
to finance. In Ref. Liu et  al. (2022) deep learning techniques are used to better 
predict the risks of the Internet. For usual deep learnings, to get a better predic-
tion, many data are needed. Even though PINN does not require data, if there are 
data, the prediction is better. In Ref. Wang et al. (2022) to estimate various option 
prices, PINN is used. In Ref. Kim et al. (2022) introducing physics-informed con-
volutional transformer, a volatility surface is estimated. In Ref. Bae et al. (2023) 
based on a few observed volatility data, and moneyness and maturity data in the 
market, we construct the implied volatility surface and option price surface using 
PINN.

In this article, using PINN as a neural network approach, we calculate solu-
tions of BSE, Constant Elasticity of Variance (CEV), Dupire’s PDE, related vola-
tilities and prices for European options. We also calculate price and Greeks.

The contributions of this article are the following: 

1. We adopt PINN algorithm to solve a family of extended BSEs, for example, CEV 
and Dupire’s local volatility model. Like a usual neural network, there is a training 
process and a predictin process. We first train the network for a sufficient time by 
using PDE, initial and boundary conditions, and then the trained network predicts 
solutions (prices, Greeks, volatilties, and so on) for different parameter values 
immediately.

2. To show the performance of the method, we estimate errors in the option price, 
and solve Dupire’s equation to construct a local volatility model, of which solu-
tion is not known.

2  Black–Scholes Equation with Local Volatility

2.1  Local Volatility Model

Implied volatilities in market depend on the strike price and the time to maturity. 
Implied volatility tends to be higher in deep OTM options and deep ITM options 
than ATM options. It is explained by a phenomenon called volatility smile or skew 
(refer to Derman and Kani (1994), Dupire (1994)). In the local volatility model, in a 
risk-neutral world, the volatility is assumed as a deterministic function of time and 
stock price in the spreading period of the stock price process as follows:

where St is a stock price at time t, r is a constant risk-free rate, and dWt is the stand-
ard Wiener process in the risk-neutral world. The local volatility �(St, t) is a function 
of the underlying asset price St and the time t.

In Ref. Cox and Ross (1976) is denoted by V(St, t) a price function of a deriva-
tive with underlying asset St . The extended BSE under the no arbitrage condition 
is as follows:

(1)dSt∕St = rdt + �(St, t)dWt,
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Assuming that the price of the underlying asset follows (1), the price of a European 
call option is given by

where K is the strike price of the option, T is the maturity and � is the expecta-
tion. In Ref. Dupire (1994), a volatility function is obtained by solving the following 
Dupire’s equation:

where p is the correspoding put option price. If the local volatility is constant, then 
(1) is reduced to the geometric Brownian motion (or called the Black–Scholes model 
in practice). A model leading to the skew of implied volatility is the CEV model 
(Cox, 1975; Cox & Ross, 1976).

2.2  Geometric Brownian Motion

The geometric Brownian motion (GBM) follows log-normal, and has the advantage 
that the existence of closed-form solutions for various options is well known. It can 
be seen as the simplest model of the local volatility model as flat surface. The sto-
chastic differential equation for GBM is the following:

where � is a constant volatility. The solutions for European options are known as the 
Black–Scholes formula:

where d1 ∶=
log(St∕K)+(r+�

2∕2)(T−t)

�
√
T−t

 , d2 ∶= d1 − �
√
T − t and N(x) is the cumulative 

normal distribution. The advantage of a model with a closed solution is that Greeks 
can be found analytically. Greeks’ analytic formula are used for model evaluation. 
For Greeks, we refer to Larguinho et al. (2013) which contains many formula.

2.3  Constant Elasticity of Variance Model

The constant elasticity of variance (CEV) model (Cox, 1975) with the local volatil-
ity �(St, t) = �S

(�−2)∕2
t  , � ∈ ℝ , explains the negative skew on the underlying asset’s 

price, and there are closed-form solutions for European vanilla options. CEV model 
is the same as GBM when � = 2 , and the square-root diffusion model in Ref. Cox 

�V

�t
+

1
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,

dSt∕St = rdt + �dWt,

c(St, t,K, r, �) = StN(d1) − Ke−r(T−t)N(d2),

p(St, t,K, r, �) = Ke−r(T−t)N(−d1) − StN(−d2),
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and Ross (1976) when � = 1 . In Ref. Emanuel and MacBeth (1982) the closed-form 
solution is provided for European call option of 𝛽 > 2 . In Ref. Cox and Ross (1976) 
denoted by V(St, t) a price function of a derivative with underlying asset St . Equa-
tions for CEV model are as follows: for short, with notations �tV ∶=

�V

�t
 , �StV ∶=

�V

�St

,

where � is constant. The solution for European put option p(St, t,K, r, �) is

where Q(w;v, �) is the complementary distribution function of a non-central chi-
square law, v is the degree of freedom, � is a non-centrality parameter, and

These values are given in Ref. Lagaris et al. (1998).

3  Artificial Neural Network for PDE solver

Artificial neural networks are essentially functions that map from input variables to 
output values. The layers in the neural network consist of composite functions of 
affine mapping (weighted sum) and nonlinear mapping (activation function). Usual 
artificial neural networks require many data, and are used in various areas, for exam-
ples, pattern classification, clustering, function approximation, prediction, optimiza-
tion, and many others. Refer to Jain et al. (1996) for a tutorial.

Among artificial neural networks, deep neural networks (DNNs) are popularly 
used, which contains many hidden layers between input and output layers. Between 
layers, there are parameters (or weights) used for weighted sum, activation func-
tions and optimizers. In our case, we use �∶=T−t, s, k as inputs, u� as an output 
option price. We also denoted by � parameters between input and a hidden layer, 
between hidden layers, and between a hidden layer and output. We describe these 
more details in Sect. 3.1.

The universal approximation theorem has been demonstrated in Cybenko (1989) 
that a neural network with one hidden layer can approximate an arbitrary continu-
ous function. This shows the neural network is a kind of function approximation, 
and as a result, it can be used as a method to solve PDEs. Recently, neural network 
techniques to solve PDEs has been developed actively. The automatic differentiation 
technique, which contributes greatly to the efficient learning of network weights and 

(3)
dSt = rStdt + �S

�∕2
t dWt,

�tV +
1

2
�2S

�

t �
2
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biases, provides partial derivatives of the neural network analytically. Therefore, this 
plays an important role in constructing a PDE for an objective function.

In Ref. Raissi et al. (2019), PINN is proposed to solve PDEs as a DNN, which 
does not require data, differently from usual DNNs.

3.1  PINN for BSE with Local Volatility

Consider parametric BSE for V(�, s, k) under the local volatility model:

where � ∶= T − t is time to maturity, ΩS,ΩK ⊂ [0,∞) are closed sets of stock price 
S, of strike price K, respectively. The boundary of ΩS is denoted by �ΩS , and V0, g 
are given initial and boundary conditions, respectively.

We denote by u�(�, s, k) ∈ ℝ a functional form of artificial neural network for 
option price with respect to � , stock price s, and strike price k. The artificial neural 
network u�(�, s, k) approximates V(�, s, k) , where � is the neural network’s parameter.

Construct the objective function for BSE under the local volatility model as a 
summation of mean square error losses for the equation, initial and boundary 
conditions:

where Ltotal(u
�) is the objective or total loss function. The notation ‖ ⋅ ‖ means 

the mean square error with respect to the discretizations of � , s and k in (5)1 , of 
s and k in (5)2 , and of � and k in (5)3 . Using the neural network technique we try 
to find a minimizer of Ltotal , which approximates a solution V of the equation. If 
Ltotal(u

�) = 0 , then u�(�, s, k) is a solution of BSE.
In Ref. Cybenko (1989); Sirignano and Spiliopoulos (2018), define by ℂn the 

class of neural networks with a single hidden layer and n hidden units. Let un be 
a neural network with n hidden units which minimizes Ltotal(u

n) . It is proved that, 
under certain conditions,

The goal of training neural network is to find a set of parameter � such that the 
function u�(�, s, k) minimizes the total loss function Ltotal(u

�) . The algorithm is 
following:

��V − �2(�, s)s2�2
s
V∕2 − rs�sV + rV = 0 in [0, T] × ΩS × ΩK ,

V(0, s, k) = V0(s, k), (s, k) ∈ ΩS × ΩK ,

V(�, s, k) = g(�, s, k), (�, s, k) ∈ [0, T] × �ΩS × ΩK ,

(5)

Lpde(u
�) ∶= ����u

� − �2(�, s)s��2
s
u�∕2 − rs�2u

� + ru���
2
, � = 2,

Lic(u
�) ∶= ‖u�(0, ⋅, ⋅) − V0(⋅, ⋅)‖2,

Lbc(u
�) ∶= ‖u�(⋅, s, ⋅) − g(⋅, s, ⋅)‖2 for s ∈ �ΩS,

Ltotal(u
�) ∶= Lpde(u

�) + Lic(u
�) + Lbc(u

�),

(6)
there exists un ∈ ℂ

nsuch that Ltotal(u
n) → 0, as n → ∞, and

un → V as n → ∞.
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Algorithm 1  Algorithm of PINN for local volatility BSE

4  Numerical results

We implement the neural networks of local volatility models (1), and (3) in Tensor-
Flow2 on a GeForce RTX 3070. We describe our result in two ways: the cases that a 
solution formula is known, and not. 

 (1). For the case that a local volatility model allows a closed form solution of Euro-
pean put option, we evaluate the option’s price and Greeks (Delta, Gamma, 
Theta) via a neural network. We compare the values obtained by the solution 
formula and by PINN to show the PINN technique is good.

 (2). For the case that there does not exist a closed form solution of European put 
option, we evaluate Dupire’s equation (2) via the neural network in the follow-
ing way: 

where u� is obtained via PINN.
If the neural network u�(�, s, k) is well trained with the object function (5) for 

European put options, then (7) should be equal to the local volatility function. 
Instead of the price of the underlying asset, moneyness is used and the maturity is 
fixed at one year T = 1 . Risk-free interest rate is r = 0.01 , volatility is � = 0.3 , strike 
price fixed k = 1 , and for CEV model we consider � = 1, 3.

In this section, for a volatility surface model, we use the market European option 
data consisting of several maturities and strike prices of which underlying asset 

(7)�2
NN

= 2
(
�Tu

� + rK�Ku
�
)
∕
(
K2�2

K
u�
)
,
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is EUROSTOXX50 in January 15, 2016. In Ref. Woo et  al. (2016), by using the 
parameters obtained by calibration and the implied volatility formula under SABR 
model, the authors provide several quantitative properties of volatility by drawing 
volatility surface. We adopt (Woo et al., 2016) to derive volatility surface from mar-
ket data (see Fig. 12a). Based on the volatility surface in Fig. 12a as a local volatility 
�(St, t) in (1), we calculate all prices and Greeks.

According to (6), the larger the number of hidden units, the better the approxima-
tion. We have adopted the number of hidden units 20,000. We have used the softplus 
function as an activation function.

4.1  GBM

Here, we test the efficiency of PINN computation by comparing wth Black–Scholes 
solution formula. For PINN we use the objective function (5) with � = 2.

For GBM, we fix � = 0.3 as a plane volatility surface. Figure 1 show prices, Del-
tas, Gammas and Thetas of European put option with GBM. Figure 1a is obtained 
from the solution formula, and Fig. 1b by PINN. In Fig. 2, we evaluate pointwise 
absolute errors of price, Delta, Gamma and Theta. For example, for each s, � , we 
consider the absolute value of the difference between two solutions obtained by the 

Table 1  GBM Neural network’s pointwise absolute errors between solutions obtained by formula and by 
PINN for prices and Greeks

GBM Price Delta Gamma Theta

Maximum absolute error 0.00048 0.00201 0.02858 0.00103

Fig. 1  European put option price and Greeks with GBM, and their PINN approximations: price(left top), 
Delta(right top), Gamma(left bottom), Theta(right bottom)
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Fig. 2  Pointwise absolute errors of GBM via PINN: price(left top), Delta(right top), Gamma(left bot-
tom), Theta(right bottom). Maximum errors are given in Table 1

Fig. 3  Two dimensional comarision of results by solution formula and by PINN: Obtained by formula 
(blue) and by PINN(red)
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formula and PINN. Table 1 shows errors of price and Greeks, which show the com-
putational errors are sufficiently small.

We also provide two dimensional comparisions of the results in Fig. 3, which are 
cross sections of the 3 dimensional surface in Fig. 1. The blue graphs are cross sec-
tions of Fig. 1a and the red graphs are those of Fig. 1b. As we can see, the computa-
tional results obtained by the solution formula and by the neural network are almost 
the same.

Figure  4 shows the volatility surfaces: Fig.  4a is the given constant volatil-
ity � = 0.3 , and Fig. 4b is the local volatility surface directly obtained by solving 
Dupire’s equation (7) via PINN without the information � = 0.3 . This local volatil-
ity surface approximates the constant volatility with an error.

Based on the above computational results, we infer that PINN computations pro-
vide good accuracies in prices and Greeks, even in a volatility.

4.2  CEV

We compute CEV model for � = 1 and � = 3 and Dupire’s equation via PINN. The 
objective function for CEV is similar to (5) with � = 1, 3 . From our results, we show 

Fig. 4  (Left) Constant volatility � = 0.3 , and (Right) volatility surface obtained by PINN (7) which 
approximates the constant volatility surface

Fig. 5  Volatility surfaces of CEV model: �(S
t
, t) = �S

(�−2)∕2
t

 with � = 0.3 , � = 1 and � = 3
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that the neural network approximates the parametric PDE as well as its derivatives 
simultaneously, and efficiently.

With fixed � = 0.3 , (4) is used to evaluate. Volatility surfaces of CEV model with 
� = 1, 3 are shown in Fig. 5. Figure 6 shows neural network Dupire’s equation (7) 
of both CEV models. Dupire’s equations of the CEV neural networks in Fig. 6 have 

Fig. 6  Volatility surfaces of CEV (�=1, 3) obtained via PINN

Table 2  CEV PINN’s pointwise absolute errors of price and Greeks

CEV (� = 1) Price Delta Gamma Theta

Maximum pointwise absolute error 0.00048 0.00201 0.02858 0.00103
CEV (� = 3) Price Delta Gamma Theta
Maximum pointwise absolute error 0.00055 0.00230 0.03415 0.00171

Fig. 7  European put option price and Greeks with CEV for � = 1, 3 : price(left top), Delta(right top), 
Gamma(left bottom), Theta(right bottom)



 H.-O. Bae et al.

1 3

a similar shape to the local volatility functions of CEV in Fig. 5, indicating that the 
approximation of the parametric PDE is well done.

Prices, Deltas, Gammas, Thetas of European put option with CEV obtained 
from the solution formula are provided in Fig.  7, in Fig.  7a for � = 1 , and in 
Fig.  7b for � = 3 . In.  8, prices, Deltas, Gammas and Thetas of European put 
option with CEV model approximated by PINN are shown, in Fig.  8a for �=1 , 
and in Fig. 8b for �=3 . In Fig. 9, we evaluate pointwise absolute errors of prices, 
Deltas, Gammas and Thetas for CEV model.

Fig. 8  PINN approximation of European put option price and Greeks with CEV model: price(left top), 
Delta(right top), Gamma(left bottom), Theta(right bottom)

Fig. 9  Pointwise absolute errors of PINN approximations to CEV for � = 1, 3 : price(left top), Delta(right 
top), Gamma(left bottom), Theta(right bottom). Maximum errors are given in Table 2



1 3

Option Pricing and Local Volatility Surface by Physics‑Informed…

Table 2 provides absolute errors of prices and Greeks obtained by solution for-
mula and by PINN, which shows PINN approximates prices and Greeks with high 
accuracy.

Two dimesional comparisions of the results obtained by the formula and 
by PINN are provided in Fig.  10. The blue graphs are cross sections of Fig.  7, 

Fig. 10  Two dimensinal comparison of results obtained by CEV solution formula(blue) and by 
PINN(red): price(left top), Delta(right top), Gamma(left bottom), Theta(right bottom)

Fig. 11  Volatility surface PINN approximation of European put option price and Greeks: price(left top), 
Delta(right top), Gamma(left bottom) and Theta(right bottom)
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and the red graphs are those of Fig. 8. As we can see, the computational results 
obtained by the solution formula and by the neural network are almost the same.

4.3  Local Volatility Model

SABR local volatility model using volatility data in the market does not have a 
closed form solution. Using PINN we calcualte BSE under the local volatility 
model, which does not have a closed form solution. We have used the volatil-
ity surface in Fig.  12a as the local volatility function. Figure  11 shows prices, 
Deltas, Gammas and Thetas of European put options with the volatility surface 

Fig. 12  Local volatility surfaces are obtained by SABR local volatility (Left), and by PINN (Right)

Fig. 13  Comparision of volatilities obtained by SABR local volatility(Blue), and by PINN local 
volatility(Red). Figures are drawn at each time to maturity: � = 0.0 (top left), � = 0.3(top right), � = 0.6

(bottom left), and � = 0.9(bottom right)
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approximated by the neural network. Figure 12b shows the local volatility surface 
obtained by the neural network, PINN (7).

Two dimensional comparision of volatilities is provided in Fig.  13. SABR 
local volatility is in blue, and PINN local volatility is in red. Figures are cross 
sections of the surfaces in Fig. 12a and b. Each figure is drawn at each time to 
maturity: � = 0.0 (top left), � = 0.3(top right), � = 0.6(bottom left), and � = 0.9

(bottom right). As we can see, at � = 0 the error is biggest even though small. 
One of the reason is that PINN may not catch the initial conditon efficiently, and 
the other reason is that at � = 0 volatility is skewed more seriously.

5  Conclusion

We focus on the power of artificial neural networks as function approximations. We 
have implemented neural networks to solve parametric BSEs under local volatility 
models.

We use algorithms to improve the performance of BSE approximation. Data 
random generation scheme is used for the approximation performance. As a result 
in Sect.  4, the approximation performance of local volatility models is evaluated 
through closed-form solutions and Dupire’s equation. Prices and Greeks are approx-
imated well in measurement. It is verified by Dupire’s equation that the parametric 
BSE is well approximated.

It is expected that this study can contribute to practitioners as a tool for the local 
volatility model. Based on the comparion of the computional results, we conclude 
that the neural network, PINN, provides high efficiency, as a result, we can use 
PINN to compute prices and Greeks when the solution formulae is not known. And 
our ongoing projects are twofolds: (1) to compute more complicated exotic options 
like the equity-linked securities (ELS), and their Greeks, and (2) to construct a vola-
tility surface based on a few volatility data. For the second problem, we have con-
structed a volatility surface by the thin plate spline function (Lim & Bae, 2019). We 
have also constructed a volatility surface by using PINN based on a few observed 
data in the market in Ref. Bae et al. (2023).
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