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Abstract
In this paper, we reconsider the model in Bischi and Lamantia (J Econ Interact Coord 
17:3–27, 2022) and reformulate it in a two-population context. There, the Cournot 
duopoly market examined is in equilibrium (Cournot-Nash-equilibrium quantities 
are produced) conditionally to the players’ (heterogeneous) attitudes toward coop-
eration. To accommodate players’ attitudes, their objective functions partly include 
the opponent’s profit, resulting in greater (partial) cooperation or hostility toward 
the opponent than in the standard duopoly setting. An evolutionary selection mecha-
nism determines the survival of cooperative or competitive strategies in the duopoly. 
The game is symmetric and Bischi and Lamantia (J Econ Interact Coord 17:3–27, 
2022) assumes that the two players involved start the game by choosing the same 
strategic profile. In this way, the full-fledged two-population game simplifies in a 
one-dimensional map. In this paper, we relax this assumption. On one hand, this 
approach allows us to investigate entirely the dynamics of the model and the evolu-
tionary stability of the Nash equilibria of the static game that is implicit in the evo-
lutionary setup. In fact, the model with only one population partially represents the 
system dynamics occurring in an invariant subset of the phase space. As a remarka-
ble result, this extension shows that the steady state of the evolutionary model where 
all players are cooperative can be an attractor, although only in the weak sense, even 
when it is not a Nash equilibrium. This occurs when firms have a very high pro-
pensity to change strategies to the one that performs better. On the other hand, this 
approach allows us to accommodate players’ heterogeneity (non-symmetric version 
of the game), whose analysis confirms the main insights attained in the homogene-
ous setting.
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1  Introduction

An intriguing research question in game theory concerns the evolution of coopera-
tion in prisoner’s dilemmas. In this regard, one of the most widely considered top-
ics concerns the theory of oligopolies. Indeed, it is well known that in these con-
texts agents (firms) are trapped in sub-optimal outcomes relative to what they could 
potentially achieve with a higher level of cooperation. Cyert and DeGroot (1973) 
provide one of the earliest contributions analyzing oligopoly under partial coopera-
tion. Cyert and DeGroot (1973) assume that firms’ objective functions are increased 
to partially consider opponents’ objectives. The justification of partial cooperation 
in real cases can be provided by assuming cross holdings between firms as illus-
trated in Clayton and Jørgensen (2005). Chapter 4 in Bischi et al. (2010) provides a 
thorough dynamic analysis of oligopoly models with partial cooperation. Alongside 
more cooperative behavior, it is likely that firms adopt more aggressive behavior, for 
example, because the managers’ incentive scheme weighs the firm’s market share 
against that of the rival, as suggested in Fershtman and Judd (1987), one seminal 
contribution to the literature on managers’ incentives.

In the context of oligopolies, many works have employed the evolutionary 
approach (Weibull 1997; Friedman (1991)) by coupling population dynamics with 
market dynamics. This allows to classify Nash equilibria in evolutionary stable and 
evolutionary unstable ones and study the (non-)sustainability of cooperation from a 
Darwinian point of view. An interesting result in this direction shows that the Wal-
rasian equilibrium (where firms are price-takers) is an evolutionary stable equilib-
rium, while the more profitable Cournot-Nash equilibrium is not, see on this Vega-
Redondo (1997), Radi (2017) and Anufriev and Kopányi (2018).

By studying the evolutionary stability of Nash equilibrium, it is also possible to 
investigate forms of (non-)cooperation in emerging scenarios, such as the arising 
of heterogeneous strategies or the adoption of different informational or behavioral 
rules among players. Among many possible applications, we can mention those with 
firms endowed with different information sets as in Droste et al. (2002), Bischi et al. 
(2015), Hommes et al. (2018), Cerboni Baiardi et al. (2015), Baiardi and Naimzada 
(2019) and Mignot et al. (2023) or with firms choosing different market competition 
strategies as in Kopel et al. (2014) and Kopel and Lamantia (2018), different incen-
tive schemes to managers as in De Giovanni and Lamantia (2016), and available 
technologies as in Hommes and Zeppini (2014) and Lamantia and Radi (2018). For 
an overview of evolutionary modeling in oligopoly games, we refer the reader to 
Bischi et al. (2018).1

More recently, Bischi and Lamantia (2022) consider a model of oligopoly with 
partial cooperation or partial hostility in an evolutionary sense. The evolutionary 

1  All the mentioned contributions, as well as most evolutionary games in economics, assume interac-
tions among agents from infinite populations of players. A different approach to explaining the selection 
of cooperation in evolutionary games is based on strategic interaction from a finite population of players. 
Nowak and Sigmund (2005) report stronger forms of reciprocity that can lead to more cooperation with 
finite populations. In this work, however, we still consider infinite populations of agents.



1 3

Two‑Population Evolutionary Oligopoly with Partial…

mechanism is described by a modification of the replicator dynamics in discrete time 
suggested in Cabrales and Sobel (1992). Specifically, Bischi and Lamantia (2022) 
ask under what conditions a certain behavior can prevail by assuming that firms can 
choose between aggressive and cooperative strategies and can, over time, change 
their attitudes through a process of evolutionary adaptation. Firms thus choose their 
actions through the maximization of an extended objective function, which adds a 
(positive or negative) share of the competitor’s profit, whereas evolutionary pres-
sure follows average profits, in line with the so-called indirect evolutionary approach 
described in Königstein and Müller (2001). To complete the investigation, Bischi 
and Lamantia (2022) introduces a memory process to study whether it can sustain 
more cooperation in the long run.

The evolutionary model in Bischi and Lamantia (2022) is based on the implicit 
assumption that the two players involved in the game choose to be cooperative or 
hostile with the same probability. This assumption reduces the full-fledged two-pop-
ulation model into a one-population model. This is a common assumption to study 
the evolutionary stability of Nash equilibria in symmetric games that are prisoner’s 
dilemma, prisoner’s delight, or coordination games. The model proposed in Bis-
chi and Lamantia (2022) is indeed a symmetric game that can be either prisoner’s 
dilemma (all players are hostile) or prisoner’s delight (all players are cooperative). 
However, considering the two-population version of the game, we underline in this 
paper that the game can also be an anti-coordination game, with Nash equilibria 
in which one player is cooperative and the other one is hostile. Then, the two-pop-
ulation setup here proposed is required to investigate the evolutionary stability of 
these Nash equilibria that are overlooked in Bischi and Lamantia (2022). Analyzing 
the anti-coordination setup, the steady state of higher cooperation between firms is 
always unstable from a Lyapunov’s point of view, i.e. it is not a Nash equilibrium.2 
Turning, however, to a global analysis of the two-population model, we surprisingly 
discover that the same steady state turns out to attract a set of initial conditions of 
positive measure. This occurs when the players’ propensity to switch to the most 
profitable strategy is sufficiently high (large intensity of choice). In more techni-
cal terms, the equilibrium of higher cooperation can be an attractor in a weak (or 
Milnor) sense, see Ashwin et  al. (1996), for the two-population evolutionary sys-
tem if sufficiently high agents’ choice impulsivity is assumed. These results can be 
compared with what would occur with finite populations, i.e., a greater propensity 
toward cooperative outcomes, see, e.g., Nowak and Sigmund (2005). The advantage 
of our approach is that the selection of cooperation is obtained within an easily trac-
table deterministic dynamic model. It is remarkable that the steady state that is a 
Milnor attractor but not a Nash equilibrium is also an optimal solution, in the sense 
that the players gain more payoff by being both cooperative than being both hostile.3

2  It is well known that a stable steady state that is locally asymptotically stable (or stable from a Lya-
punov’s point of view) under a system of replicator dynamics is also a Nash equilibrium, see, e.g., Hof-
bauer and Weibull (1996), Hofbauer and Sigmund (1998) and Hofbauer and Sigmund (2003).
3  In this context, optimality is referred to from the industry perspective while the consumer standpoint 
is left out. An evolutionary model in the spirit of this paper with the incorporation of shares of the con-
sumer objective function into the firms’ objective has been proposed in Kopel et al. (2014). For an exam-
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To verify the robustness of our results, the two-population setup is further 
extended by considering heterogeneous populations. Specifically, we consider popu-
lations of firms with different impulsiveness in firms’ revision of choices (intensities 
of choice), different costs of production and different propensity to cooperate and 
to non-cooperate. The robustness check confirms the main insights. In particular, 
the Milnor attractor persists, representing an equilibrium of the replicator dynam-
ics that is not a Nash equilibrium but that is evolutionary stable although only in a 
Milnor sense. We say that the equilibrium is evolutionary Milnor stable. Therefore, 
we can conclude that any evolutionary stable equilibrium in a system of exponential 
replicator dynamics is a Nash equilibrium, see, e.g., Hofbauer and Weibull (1996), 
Hofbauer and Sigmund (1998), Hofbauer and Sigmund (2003), while we show here 
that a non-Nash equilibrium can be evolutionary Milnor stable.

The paper is organized as follows. Section 2 describes the setup of the full-fledged 
evolutionary game and provides some properties of the static bimatrix game that 
is implicit in it. Section 3 investigates the competition among firms by considering 
the one-population version of the game and reconsidering some results from Bischi 
and Lamantia (2022). The full-fledged evolutionary game, that is the two-population 
model, is then investigated in Sect. 4, which collects the main results of this work. 
The asymmetric setting of the full-fledged evolutionary model is investigated in 5 
and confirms the results obtained with the symmetric setup. Section 6 concludes.

2 � Model

As in Bischi and Lamantia (2022), we assume a Cournot duopoly market. Each 
player i ∈ {1, 2} produces the quantity qi of a commodity, while its competitor −i 
produces the quantity q−i of the same commodity. The total production is sold at a 
price determined according to the following linear inverse demand4:

while the linear function C(q) = cq , where c ∈ (0, a) , is the cost of producing q 
quantity of the commodity. Then, player i’s profit reads

and, by symmetry, the payoff of its competitor is

(1)p = a − b
(
q1 + q2

)

(2)�i
(
qi, q−i

)
=
(
a − b

(
qi + q−i

)
− c

)
qi

(3)�−i
(
qi, q−i

)
= �i

(
q−i, qi

)

4  Clearly a non-negativity constraint should be included in the price. However, we omit it because it is 
verified ex-post in the equilibrium quantities considered in the model.

Footnote 3 (continued)
ination of possible alternative objectives to profit (without levels of aggression/cooperation) we refer to 
Fanti et al. (2017).
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Therefore, when there is no risk of confusion we can drop the subscripts i and −i 
from � and denote by �

(
qi, q−i

)
 the payoff of player i and by �

(
q−i, qi

)
 the payoff of 

player −i.
Differently from a classical Cournot duopoly game where each player i produces 

the quantity that maximizes (2), here each player i produces the output that maxi-
mizes the following function

where � ∈ [−1, 1] . Clearly, a positive (negative) value of � corresponds to a coop-
erative (aggressive) attitude toward the opponent.

Heterogeneity among agents is then introduced through different possible val-
ues of � . Denoting by �i , resp. by �−i , the attitude of player i, resp. of its opponent 
(player −i ), by standard calculations we have that at Cournot-Nash equilibrium the 
quantity produced by player i and its profit are:

respectively, where by symmetric arguments q∗
(
�−i, �i

)
 is the level of production of 

the competitor, player −i , and �
(
q∗
(
�−i, �i

)
, q∗

(
�i, �−i

))
 is its payoff.

Remark 1  Note that q∗
(
�i, �−i

)
⋛ q∗

(
�−i, �i

)
 and �

(

q∗
(

�i, �−i
)

, q∗
(

�−i, �i
))

⋛
�
(

q∗
(

�−i, �i
)

, q∗
(

�i, �−i
))

 when �i ⋚ �−i . Moreover, note that �(q∗(�, �), q∗(�, �)) is 
increasing in �.

Regarding the value of � , in the following we assume that a player can choose 
between two values, say � ∈

{
�, �

}
 , where 𝜃 < 𝜃 . In this way, both agents could be 

of the same type, i.e., both including � or � of the opponent’s profit or they can be 
described with different levels of � . Note that in the latter case, duopolists could be 
both cooperators ( 0 < 𝜃 < 𝜃 ≤ 1 ), both aggressive ( −1 ≤ 𝜃 < 𝜃 < 0 ), or one coop-
erator against one aggressive player ( −1 ≤ 𝜃 < 0 ≤ 𝜃 ≤ 1).

We assume that the choice of the value of � is a strategic action by a player. Spe-
cifically, in a pre-commitment phase, each agent chooses ex-ante a certain attitude 
(cooperative or hostile) toward the opponent. Then the type of the competitor is 
observed and a quantity supplied to the market corresponds to a Cournot-Nash equi-
librium of the underlying duopoly game. Therefore, the choice of � can be repre-
sented by a game with the following payoff bimatrix: 

(4)Si
(
qi, q−i

)
= �

(
qi, q−i

)
+ ��

(
q−i, qi

)

(5)

q∗
(

�i, �−i
)

=
(a − c)

(

1 − �i
)

b
(

3 − �i�−i − �i − �−i
) ≥ 0 and �

(

q∗
(

�i, �−i
)

, q∗
(

�−i, �i
))

=
(

q∗
(

�i, �−i
))2b

1 − �i�−i
1 − �i
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Column player

Row Player Strategies � �

�
(
�∗

(
�, �

)
,�∗

(
�, �

)) (
�∗

(
�, �

)
,�∗

(
�, �

))

�
(
�∗

(
�, �

)
,�∗

(
�, �

)) (
�∗

(
�, �

)
,�∗

(
�, �

))

where, for the sake of notation simplicity, we have set 
�
(
q∗
(
�i, �−i

)
, q∗

(
�−i, �i

))
= �∗

(
�i, �−i

)
 where �

i
, �−i ∈

{
�, �

}
.

Note that this is a classical symmetric bimatrix game where the payoff of one 
strategy does not depend on the player playing it but only on the strategy played 
by the opponent. In these types of games, the payoff of the opponent is obtained by 
switching the order of the vector of strategies played. Moreover, the payoffs satisfy 
the following properties.

Property 1  In the game under consideration, the following relations hold: 

(i)	𝜋∗
(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)
;

(ii)	𝜋∗
(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)
;

(iii)	Γ = 𝜋

(
𝜃, 𝜃

)
+ 𝜋

(
𝜃, 𝜃

)
− 𝜋

(
𝜃, 𝜃

)
− 𝜋

(
𝜃, 𝜃

)
< 0;

(iv)	𝜋
(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
⇒ 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
;

(v)	𝜋
(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
⇒ 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
;

Proof of Property 1  Properties (i) and (ii) follow from Remark 1. Property (iii) can 
be shown with the same arguments considered in Bischi and Lamantia (2022) where 
however � and � had different signs. Properties (iv) and (v) follow from Property 
(iii). 	�  ◻

From Property 1, it follows the following result about the pure-strategy Nash 
equilibria of the game above and its classification.

Proposition 1  The bimatrix game under consideration has always a Nash equilib-
rium in pure strategies. Moreover, the bimatrix game above stated cannot be a coor-
dination game, that is 

(
�, �

)
 and 

(
�, �

)
 cannot be Nash equilibria in pure strategies 

at the same time. In addition: 

	 (I)	 The bimatrix game is a prisoner-dilemma and its unique Nash equilibrium in 
pure strategies is 

(
�, �

)
 , when 

(6)𝜋∗
(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)
and 𝜋∗

(
𝜃, 𝜃

)
< 𝜋∗

(
𝜃, 𝜃

)
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	 (II)	 The bimatrix game is an anti-coordination game and its Nash equilibria in 
pure strategies are 

(
�, �

)
 and 

(
�, �

)
 , when 

	(III)	 The bimatrix game is a prisoner-delight game and its unique Nash equilibrium 
in pure strategies is 

(
�, �

)
 , when 

Proof of Proposition 1  By definition, the bimatrix game under consideration is a 
2 × 2 symmetric game. Then, the existence of at least a pure Nash equilibrium fol-
lows from the results in Cheng et al. (2004). Moreover, the pure strategies 

(
�, �

)
 and (

�, �
)
 are both Nash equilibria if and only if

which contradict Property 1(iii). Therefore, according to the definition of a coordi-
nation game, the bimatrix game cannot belong to this category. Regarding (I), note 
that condition (6) and Property 1(ii) imply

from which it follows that, according to their definitions, 
(
�, �

)
 is the unique Nash 

equilibrium (prisoner-dilemma Nash equilibrium), and the bimatrix game is a pris-
oner-dilemma game. Regarding (II), note that condition (7) implies that 

(
�, �

)
 and (

�, �
)
 are the only pure-strategy Nash equilibria of the game. Therefore, according 

to its definition, the bimatrix game is an anti-coordination game. Regarding (III), 
note that condition (8) and Property 1(i) imply

from which it follows that, according to their definitions, 
(
�, �

)
 is the unique Nash 

equilibrium (prisoner-delight Nash equilibrium), and the bimatrix game is a pris-
oner-delight game. 	�  ◻

Introducing mixed strategies and indicating by m1 ∈ [0, 1] the probability that 
the row player chooses strategy � and by m2 ∈ [0, 1] the probability that the column 
player chooses strategy � , we have that 

(
m∗

1
,m∗

2

)
 , with m∗

1
,m∗

2
∈ (0, 1) , is a mixed 

strategy Nash equilibrium of the game when

(7)𝜋∗
(
𝜃, 𝜃

)
< 𝜋∗

(
𝜃, 𝜃

)
and 𝜋∗

(
𝜃, 𝜃

)
< 𝜋∗

(
𝜃, 𝜃

)

(8)𝜋∗
(
𝜃, 𝜃

)
< 𝜋∗

(
𝜃, 𝜃

)
and 𝜋∗

(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)

(9)�∗
(
�, �

)
≥ �∗

(
�, �

)
and �∗

(
�, �

)
≥ �∗

(
�, �

)

(10)𝜋∗
(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)

(11)𝜋∗
(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)
> 𝜋∗

(
𝜃, 𝜃

)
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where

and

Regarding the mixed-strategy Nash equilibria, the following result holds.

Proposition 2  The mixed strategy Nash equilibrium 
(
m∗

1
,m∗

2

)
 is such that 

m∗
1
= m∗

2
= m∗ , where

and it exists if and only if the bimatrix game is an anti-coordination game (case (II) 
of Proposition 1).

Proof of Proposition 2  Assume that there exists a mixed strategy Nash equilibrium (
m∗

1
,m∗

2

)
 such that m∗

1
≠ m∗

2
 with m∗

1
,m∗

2
∈ (0, 1) . Then, by definition of mixed strat-

egy Nash equilibrium, the following relations hold:

that is

Note that �
(
�, �

)
 , �

(
�, �

)
 , �

(
�, �

)
 and �

(
�, �

)
 are all positive. Therefore, the sys-

tem of inequality implies m∗
1
= m∗

2
 to be satisfied. This proves that if a mixed strat-

egy Nash equilibrium exists than it is symmetric, that is, is given by (m∗,m∗) . 
Finally, note that

(12)m∗
1
= BR

(
m∗

2

)
and m∗

2
= BR

(
m∗

1

)

(13)BR
(
m−i

)
= arg max

mi[0,1]
𝜋̄
(
mi,m−i

)

(14)
�̄
(

mi,m−i
)

= mim−i�
(

�, �
)

+ mi
(

1 − m−i
)

�
(

�, �
)

+
(

1 − mi
)

m−i�
(

�, �
)

+
(

1 − mi
)(

1 − m−i
)

�
(

�, �
)

.

(15)m∗ =
�
(
�, �

)
− �

(
�, �

)

�

(
�, �

)
+ �

(
�, �

)
− �

(
�, �

)
− �

(
�, �

)

(16)
𝜋̄
(
m∗

1
,m∗

2

)
≥ 𝜋̄

(
m∗

2
,m∗

2

)

𝜋̄
(
m∗

2
,m∗

1

)
≥ 𝜋̄

(
m∗

1
,m∗

1

)

(17)

(

m∗
1 − m∗

2
)

[

m∗
2�

(

�, �
)

+
(

1 − m∗
2
)

�
(

�, �
)

+ m∗
2�

(

�, �
)

+
(

1 − m∗
2
)

�
(

�, �
)

]

≥ 0

(

m∗
2 − m∗

1
)

[

m∗
1�

(

�, �
)

+
(

1 − m∗
1
)

�
(

�, �
)

+ m∗
1�

(

�, �
)

+
(

1 − m∗
1
)

�
(

�, �
)

]

≥ 0
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Therefore, m∗ must satisfy

from which we obtain

From Property 1(iii), the denominator of m∗ in (20) is negative, so that m∗ > 0 if and 
only if 𝜋

(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
 . Moreover, m∗ < 1 if and only if 𝜋

(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
 . By 

Proposition 1, it then follows that the inner equilibrium exists if and only if the 
bimatrix game is an anti-coordination game. 	� ◻

Summarizing, the action space of the game is given by 
(
m1,m2

)
∈ [0, 1] × [0, 1] . 

If we want to analyze the evolutionary stability of the Nash equilibria, we can intro-
duce an adjustment process such as the exponential replicator dynamics, see, e.g., 
Hofbauer and Sigmund (2003). This mechanism describes how the probabilities m1 
and m2 of the two players to adopt a more cooperative behavior evolve over time. 
Before introducing the exponential replicator dynamics, however, note that for the 
spread of different strategies with the evolutionary mechanism what matters is the 
profit obtained by playing them, which is given in (2), and not the value obtained 
with the extended objective functions (which add or subtract part of the competitor’s 
profit and is given in (4)). This assumption follows the so-called indirect evolution-
ary approach, see Königstein and Müller (2000), Königstein and Müller (2001) and 
Kopel et  al. (2014). Indirect evolution thus puts the actions of individual agents, 
which may be related to the maximization of certain objective functions, on a differ-
ent plane than the evolutionary success of the available strategies.

Then, as usual in evolutionary game theory, the system of difference equations 
that describes the evolution of the probabilities m1 and m2 is given by

where 𝛽 > 0 is the intensity of choice under the exponential replicator, 𝜋̄
(
1,m−i(t)

)
 

is the the average profit of a cooperative player i, while 𝜋̄
(
0,m−i(t)

)
 is the the aver-

age profit of an aggressive player i.

(18)BR
�
m−i

�
=

⎧
⎪⎨⎪⎩

1 if 𝜋̄
�
1,m−i

�
> 𝜋̄

�
0,m−i

�
[0, 1] if 𝜋̄

�
1,m−i

�
= 𝜋̄

�
0,m−i

�
0 if 𝜋̄

�
1,m−i

�
< 𝜋̄

�
0,m−i

�

(19)𝜋̄(1,m∗) = 𝜋̄(0,m∗)

(20)m∗ =
�
(
�, �

)
− �

(
�, �

)

�

(
�, �

)
+ �

(
�, �

)
− �

(
�, �

)
− �

(
�, �

)

(21)

m1(t + 1) =
m1(t)e

𝛽𝜋̄(1,m2(t))

m1(t)e
𝛽𝜋̄(1,m2(t))+(1−m1(t))e𝛽𝜋̄(0,m2(t))

m2(t + 1) =
m2(t)e

𝛽𝜋̄(1,m1(t))

m2(t)e
𝛽𝜋̄(1,m1(t))+(1−m2(t))e𝛽𝜋̄(0,m1(t))



	 F. Lamantia et al.

1 3

Denoting by E0,0 , E1,1 , E1,0 and E0,1 the points (0, 0) , (1, 1) , (1, 0) and (0, 1) , 
respectively, we have that E0,0 , E1,1 , E1,0 and E0,1 are always equilibria of the sys-
tem of exponential replicator dynamics (21). They correspond to the actions 

(
�, �

)
 

(the two players are aggressive), 
(
�, �

)
 (the two players are cooperators), 

(
�, �

)
 

(row player is a cooperator while column player is aggressive) and 
(
�, �

)
 (row 

players is aggressive while column player is a cooperator) of the bimatrix game, 
respectively. Moreover, consider m∗ as in Proposition 2, system (21) can have 
only an additional equilibrium, given by (m∗,m∗) , and denoted by Em∗,m∗ , that we 
will see that it is an equilibrium if and only if it is also a mixed-strategy Nash 
equilibrium of the game above. In particular, regarding the analogies between the 
equilibria of the system of exponential replicator dynamics (21) and the Nash 
equilibria of the game above, we point out the following.

Remark 2  By the Folk Theorem of Evolutionary Game Theory, see, e.g., Cressman 
and Tao (2014) or Hofbauer and Sigmund (1998), all Nash equilibria of the game 
above are also equilibria of the exponential replicator dynamics (21), while not all 
equilibria of the exponential replicator dynamics (21) are Nash equilibria of the 
original game. However, if an equilibrium of the exponential replicator dynamics 
(21) is locally asymptotically stable, then it is also a Nash equilibrium.

The setup so far analyzed corresponds to the one in Bischi and Laman-
tia (2022). However, instead of addressing the full-fledged model (21), Bischi 
and Lamantia (2022) further assume that m1(0) = m2(0) = m(0) , which implies 
m1(t) = m2(t) = m(t) for all t > 0 as the bimatrix game above is symmetric. There-
fore, Bischi and Lamantia (2022) analyzes the dynamics of model (21) only in an 
invariant subspace of the action space, that is on the diagonal where m1 = m2 of 
the state space [0, 1] × [0, 1] . This does not, however, provide information about 
the evolutionary stability of the Nash equilibria in the case of an anti-coordina-
tion game, which requires the analysis of the full-fledged model (21). Before ana-
lyzing the full-fledged model in (21), we recap in the next section the main results 
in Bischi and Lamantia (2022).

3 � Evolutionary Setting with One Population

Let us start investigating the dynamics of the evolutionary model (21) on the invari-
ant set m1 = m2 . To do so, let us assume m1(0) = m2(0) , which implies m1(t) = m2(t) 
for all t ∈ ℕ , and let us set m1(t) = m2(t) = m(t) . Then, we recover the one-pop-
ulation setup investigated in Bischi and Lamantia (2022), according to which the 
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updating of the probability m(t) follows an exponential replicator equation, that is 
the dynamics of m(t) is modeled by the uni-dimensional map5

where 𝛽 > 0 is again the intensity of choice under the exponential replicator, while 
F(m(t)) = 𝜋̄(1,m(t)) − 𝜋̄(0,m(t)) is the difference between average profits, that is the 
average competitive advantage of playing � over � given the probability m(t) that the 
competitor chooses � . In a more compact form, F(m(t)) can be rewritten as

where Γ = �

(
�, �

)
+ �

(
�, �

)
− �

(
�, �

)
− �

(
�, �

)
 , already defined in Property 

1(iii) becomes

and Ψ = �

(
�, �

)
− �

(
�, �

)
 becomes

Equation (23) evidences a linear and decreasing relationship, with slope Γ , between 
the average advantage of playing � over � and the share of players playing � . The 
sign of Γ is negative under all possible parameter configurations regardless of the 
sign of � and � . In other words, the greater the proportion of agents employing � , 
the smaller the expected payoff differential of the more cooperative strategy versus 
the more aggressive strategy. The constant Ψ in (23) indicates the constant propor-
tion of benefit (when Ψ > 0 ) or loss (when Ψ < 0 ) associated with playing � relative 
to playing � when the opponent plays �.

In the following we shall see that the sign of Ψ depends on the specific parameter 
configuration and impacts on the existence and stability of equilibria of the expo-
nential replicator (23). Specifically, E0 = 0 and E1 = 1 are always equilibria of the 
map and refer to the actions 

(
�, �

)
 (the two players are aggressive) and 

(
�, �

)
 (the 

two players are cooperators), respectively. Moreover, E0 and E1 correspond, respec-
tively, to the equilibria E0,0 and E1,1 of the map (21). It is possible to prove that E0 , 
resp. E1 , is locally asymptotically stable if and only if E0,0 , resp E1,1 , is locally 

(22)m(t + 1) =
m(t)

m(t) + (1 − m(t))e−�F(m(t))

(23)F(m(t)) = m(t)Γ + Ψ

(24)Γ =
(a − c)2

b

(
𝜃 + 1

(𝜃 + 3)2
+

𝜃 + 1

(𝜃 + 3)2
−

(2 − 𝜃 − 𝜃)(1 − 𝜃𝜃)

(3 − 𝜃𝜃 − 𝜃 − 𝜃)2

)
< 0

(25)Ψ =
(a − c)2

b

⎛⎜⎜⎜⎝

(1 − �)(1 − ��)
�
3 − �� − � − �

�2
−

� + 1

(� + 3)2

⎞⎟⎟⎟⎠

5  In Bischi and Lamantia (2022), to accommodate memory, the function F also accounts for past profits. 
Here, we neglect the role of memory and we instead focus on the two-population version of the evolu-
tionary game.
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asymptotically stable.6 Therefore, E0 , resp E1 , locally asymptotically stable implies 
that 

(
�, �

)
 , resp. 

(
�, �

)
 , is a Nash equilibrium of the game.

The same considerations do not hold true if we consider an inner equilibrium. 
The unique inner equilibrium under exponential replicator (23) is given by m∗ and 
will be denoted by Em∗ . This equilibrium represents the mixed strategy Nash equilib-
rium (m∗,m∗) of the game above and is related to the equilibrium Em∗,m∗ of the model 
(21). However, when Em∗ is locally asymptotically stable for (23), then Em∗,m∗ can be 
a stable equilibrium, but it can also be a saddle. In this latter case, the evolutionary 
stable Nash equilibria of the game will be different from (m∗,m∗) . Therefore, inves-
tigating (23) we have only partial information about the Nash equilibria of the game 
above and on their evolutionary stable.

Said that, the inner equilibrium Em∗ must satisfy the iso-profit condition 
𝜋̄(1,m∗) = 𝜋̄(0,m∗) , that is F(m∗) = 0 . From the latter condition we get

Note that, due to the symmetric setting of the game that we assume, m∗ is independ-
ent on the economic parameters a, b, c as well as on the intensity of choice � . In 
terms of aggregate parameters Ψ and Γ , m∗ is feasible when 0 < Ψ < −Γ (recall that 
Γ < 0 for all parameter values).

The following proposition summarizes the stability of the different equilibria for 
the map (22).

Proposition 3  (Stability of the equilibria of the one-population model and their 
bifurcations) Consider map (22) and define the following functions of �

•	 For Ψ < 0 (equivalently, 𝜋
(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that is 

when 

(26)m∗ = −Ψ
Γ

=
(� + 3)2(�(3�(� + 2) − 1) + (� − 6)� − 3)

(� − �)
(

27 + �
2
(3�(� + 2) − 1) + 2�(�(3� − 2) − 9) − �(� + 18)

)

(27)

G(𝜃) =
−𝜃2 + 6𝜃 + 3

3𝜃2 + 6𝜃 − 1
and H(𝜃) =

2

√
3
(
𝜃 − 1

)2
+ 4𝜃 − 3(𝜃 − 1)

3𝜃 + 1
> 0

6  Consider map (21). If E
0,0

 is locally asymptotically stable, it must attract all points that lie in a neigh-
borhood of it, which includes also points in the diagonal m

1

= m
2

 where the dynamics is conjugated to 
the one of (23), therefore E

0

 is also locally asymptotically stable. Assume that E
0

 is also locally asymp-
totically stable for (23). Since the dynamics of (21) is conjugated to the one of (23) on m

1

= m
2

 , all 
points in a neighborhood of E

0,0

 that lie in the diagonal are attracted to E
0,0

 . Then, E
0,0

 is either a saddle 
or a stable equilibrium. However, to be a saddle, it is required that m

1

= m
2

 is an eigenvector (stable 
manifold) of the equilibrium. However, the eigenvectors of E

0,0

 are the left and right borders of [0, 1]2 . It 
follows that E

0,0

 must be a stable equilibrium.
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 the boundary equilibrium E0 is locally asymptotically stable and E1 is unstable.
•	 At Ψ = 0 (equivalently, �

(
�, �

)
= �

(
�, �

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that is when 

a transcritical bifurcation occurs at which the inner equilibrium Em∗ is created, 
with an exchange of stability between Em∗ and E0.

•	 For 0 < Ψ < −Γ (equivalently, 𝜋
(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that 

is when 

 the interior equilibrium Em∗ is locally asymptotically stable provided that 

 and Em∗ loses stability through a flip bifurcation at � = �flip.
•	 At Ψ = −Γ (equivalently, 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and �

(
�, �

)
= �

(
�, �

)
 ), that is at 

 a transcritical bifurcation occurs at which the inner equilibrium Em∗ merges with 
E1.

•	 For Ψ > −Γ (equivalently, 𝜋
(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
 ), that is 

for, 

Em∗ leaves the unitary interval [0, 1] , the boundary equilibrium E1 is locally 
asymptotically stable and E0 is unstable.

Proof of Proposition 3  The eigenvalue at a generic m ∈ [0, 1] of the map (22) is:

where �F
�m

= Γ . It follows that the eigenvalue associated to equilibrium E0 is

(28)G
(
𝜃
)
< 𝜃 ≤ 1 or 𝜃 ≥ −

1

3

(29)𝜃 = G
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(30)H
(
𝜃
)
< 𝜃 < G

(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(31)𝛽 < 𝛽flip =
2Γ

Ψ(Γ + Ψ)

(32)𝜃 = H
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(33)𝜃 < H
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(34)�(m) =
(1 − m)e−�F(m) + me−�F(m) + m(1 − m)�

�F

�m
e−�F(m)

(
m + (1 − m)e−�F(m)

)2

(35)𝜆(0) = e𝛽F(0) > 0
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Since 𝛽 > 0 , this eigenvalue is smaller than one if and only if F(0) < 0 , that is, if 
and only if 𝜋̄(1, 0) < 𝜋̄(0, 0) , or equivalently Ψ = 𝜋

(
𝜃, 𝜃

)
− 𝜋

(
𝜃, 𝜃

)
< 0 which 

implies by Property 1(iv) that 𝜋
(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 . By straightforward algebra, Ψ < 0 

if and only if one of the conditions in (28) holds. Moreover, the eigenvalue associ-
ated to equilibrium E1 is

Since 𝛽 > 0 , this eigenvalue is smaller than one if and only if F(1) > 0 , that is, if 
and only if 𝜋̄(1, 1) > 𝜋̄(0, 1) , or equivalently Ψ + Γ = 𝜋

(
𝜃, 𝜃

)
− 𝜋

(
𝜃, 𝜃

)
> 0 which 

implies by Property 1(v) that Ψ > 0 . By straightforward algebra, Ψ > 0 and 
Ψ + Γ > 0 if and only if the condition in (33) holds. Since F(m∗) = 0 and 𝜕F(m)

𝜕m
< 0 , 

the eigenvalue associated to the equilibrium m∗ is

Therefore, the equilibrium is locally asymptotically stable when 𝜆(m∗) > −1 , that is, 
when

Finally, by Proposition 2 we know that m∗ ∈ (0, 1) if and only if 𝜋
(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 

and 𝜋
(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 , which is equivalently to −Γ > Ψ > 0 . By straightforward 

algebra, −Γ > Ψ > 0 if and only if the condition in (30) holds. This completes the 
proof. 	�  ◻

Summarizing, Proposition 3 states that: 1) E0 is a locally asymptotically stable 
equilibrium of the exponential replicator dynamics (22) while the other equilibrium 
E1 is unstable if and only if the bimatrix game is a prisoner-dilemma game; 2) Em∗ is 
locally asymptotically stable equilibrium of the exponential replicator dynamics (22) 
while the other equilibria of (22), given by E1 and E2 , are unstable, if and only if the 
bimatrix game above is an anti-coordination game; 3) E1 is a locally asymptotically 
stable equilibrium of the exponential replicator dynamics (22) while the other equi-
librium E0 is unstable if and only if the bimatrix game is a prisoner-delight game.

The results so far described are a direct extension of those in Bischi and Lamantia 
(2022). Indeed, in Bischi and Lamantia (2022) the admissible values of � and � are 
always of opposite sign, with −1 ≤ 𝜃 < 0 ≤ 𝜃 ≤ 1 . Here we relax this assumption 
and allow parameters � and � to have the same sign, that is both firms can be aggres-
sive or cooperative even with different degrees. This explains why the equilibrium 
E1 , with all agents choosing the higher level 𝜃 < 0 over 𝜃 < 𝜃 , can be here stable 
(case Ψ > −Γ ), in contrast to what is shown in Bischi and Lamantia (2022). Said 

(36)𝜆(1) = e−𝛽F(1) > 0

(37)�(m∗) = 1 + m∗(1 − m∗)�
�F

�m
≤ 1

(38)� < −2
m∗(1 − m∗) �F(m

∗)
�m

=

⎛

⎜

⎜

⎜

⎝

�
(

�, �
)

− �
(

�, �
)

2

⎞

⎟

⎟

⎟

⎠

−1

+

⎛

⎜

⎜

⎜

⎝

�
(

�, �
)

− �
(

�, �
)

2

⎞

⎟

⎟

⎟

⎠

−1

: = �flip
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differently, by imposing −1 ≤ 𝜃 < 0 ≤ 𝜃 ≤ 1 the case of a prisoner-delight game is 
overlooked.

Regarding the global dynamics of the model (22) in the cases described in Propo-
sition 3, the condition Ψ < 0 implies F(m(t)) < 0 , that is, the aggressive strategy 
dominates the cooperative strategy for each fraction m(t). Similarly, the condition 
Ψ > −Γ implies that the cooperative strategy dominates the aggressive strategy for 
each fraction m(t) . Then, in both these two cases, the evolution of strategies via the 
(exponential) replicator is characterized by a monotonic convergent dynamic toward 
the dominant strategy.

Moreover, Proposition 3 underlines that � ≥ −
1

3
 implies Ψ < 0 , so that only 

the equilibrium E0 is stable. Therefore in the following, we will assume 𝜃 < −
1

3
 

to rule out uninteresting cases. In particular, in terms of nonlinear dynamics the 
most interesting case (of Proposition 3) is when 0 < Ψ < −Γ . A unique internal 
equilibrium m∗ exists and there is no dominant strategy for any share m of more 
cooperative players, but the cooperative (hostile) strategy yields higher expected 
utility for a share m(t) < m∗ ( m(t) > m∗ ). If the intensity of choice � is low enough, 
the underlying dynamic mechanism ensures convergence at the equilibrium m∗ . 
However, because of the agents’ greater impulsivity toward better-performing 
strategies (higher � ), the exponential replicator dynamics does not guarantee con-
vergence because of overshooting around the equilibrium m∗ . From equation (38), 
it is straightforward to observe that 𝛽flip > 0 only in the case of an anti-coordinate 
game. In addition, (38) shows that the greater the difference in profits from play-
ing differently than the opponent, the lower the �flip required to have instability.

This dynamic behavior is typical of such discrete-time models and is widely 
discussed in the literature, see, e.g., Hofbauer and Sigmund (2003), Harting and 
Radi (2020), Bischi and Lamantia (2022) and references therein.

We show some typical examples of the previous proposition through stair-
case diagrams. Let us fix parameters as a = 4 , b = 0.15 , c = 0.5 , � = −0.7 and 
consider different values of � and � . Notice that G(−0.7) ≈ 0.453083 and 
H(−0.7) ≈ −0.231258 . Thus, when 𝜃 > G(−0.7) (case Ψ < 0 ), regardless of the 
value of � , all agents will be aggressive in the long run, that is they will augment 
their objective function by adding 𝜃 < 0 times the competitor’s profit (see Fig. 1a 
where � = 0.5 � = 1).

For H(−0.7) < 𝜃 < G(−0.7) (case 0 < Ψ < −Γ ), the inner equilibrium m∗ 
belongs to the interval (0, 1) and is locally asymptotically stable for a low value of 
� . For the sake of discussion, let us fix � = 0.25 . In this particular case, equilibrium 
m∗ ≈ 0.235179 is stable for � ∈

(
0, �flip

)
 , where �flip ≈ 3.09308 , see Fig. 1b obtained 

with � = 1 . Equilibrium m∗ loses stability through a flip bifurcation and chaotic 
dynamics arise through a cascade of flip bifurcations for higher values of the inten-
sity of choice, see Fig. 1c with � = 3.5 , Fig. 1d with � = 6 and Fig. 1e with � = 20.

Finally, for 𝜃 < H(−0.7) (case Ψ > −Γ ), the system admits only equilibria E0 
(unstable) and E1 (stable), see Fig. 1f with � = −0.25 and � = 1.
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The bifurcation diagrams in Fig. 2 show various scenarios obtainable as the val-
ues of � increase. In both cases, the intensity of choice is high enough so that the 
inner equilibrium m∗ flip bifurcates and chaotic dynamics occurs. In Fig.  2a the 
intensity of choice is at � = 6 , whereas a wider extension of the chaotic attractor is 
obtained in 2b, where � = 20.

Fig. 1   Staircase diagrams of map (22) with different initial conditions. Parameters: a = 4 , b = 0.15 , 
c = 0.5 , � = −0.7 . a Ψ < 0 with � = 0.5 and � = 1 . b 0 < Ψ < −Γ with � = 0.25 and � = 1 . c 
0 < Ψ < −Γ with � = 0.25 and � = 3.5 . d 0 < Ψ < −Γ with � = 0.25 and � = 6 . e 0 < Ψ < −Γ with 
� = 0.25 and � = 20 . f Ψ > −Γ with � = −0.25 and � = 1
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4 � Two‑Population Evolution

Let us now consider the full-fledged two-population framework given by the sys-
tems of exponential replicator dynamics (21). The square [0, 1] × [0, 1] is the domain 
of the two-population model, while the corner points E0,0 = (0, 0) , E0,1 = (0, 1) , 
E1,0 = (1, 0) and E1,1 = (1, 1) are the boundary equilibria. Under the condition speci-
fied in Proposition 2, the model admits a further inner equilibrium given by Em∗,m∗.

The following proposition characterizes the stability of the equilibria of the 
model (21). These results are strictly connected with the ones for the one-population 
model in Proposition 3, underlining, therefore, differences and analogies. In particu-
lar, we show that the inner equilibrium whenever exists is unstable (either repellor or 
saddle) instead of being stable as it is for the one-population model (22). Moreover, 

Fig. 2   Bifurcation diagrams of map (22) when 0 < Ψ < −Γ with varying � and different intensities of 
choice. Parameters: a = 4 , b = 0.15 , c = 0.5 , � = −0.7 , � ∈ (−0.7, 1] . a � = 6 . b � = 20
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the corner equilibria E0,1 and E1,0 are overlooked by model (22) despite they can be 
Nash equilibria of the bimatrix game above.

Proposition 4  (Stability of the equilibria of the two-population model and their 
bifurcations) Consider map (21) and the functions of G

(
�
)
 and H

(
�
)
 defined in 

Proposition 3.

•	 For Ψ < 0 (equivalently, 𝜋
(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that is 

when 

 the corner equilibrium E0,0 is locally asymptotically stable whereas E1,0 , E0,1 and 
E1,1 are unstable.

•	 At Ψ = 0 (equivalently, �
(
�, �

)
= �

(
�, �

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that is 

when 

Em∗,m∗ merges with E0,0 (transcritical bifurcation) and the corner equilibria E0,1 
and E1,0 undergo a bifurcation of eigenvalue 1.

•	 For 0 < Ψ < −Γ (equivalently, 𝜋
(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that is 

when 

Em∗,m∗ ∈ [0, 1] × [0, 1] is a saddle for 𝛽 < 𝛽f  , while it is a repellor for 𝛽 > 𝛽f  and 
undergoes a bifurcation of eigenvalue −1 (flip bifurcation) at � = �f  , where 

while E0,1 and E1,0 are locally asymptotically stable and E0,0 and E1,1 are unstable.
•	 At Ψ = −Γ (equivalently, 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and �

(
�, �

)
= �

(
�, �

)
 ), that is at 

Em∗,m∗ merges with E1,1 (transcritical bifurcation).
•	 For Ψ > −Γ (equivalently, 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
 ), that is for, 

(39)G
(
𝜃
)
< 𝜃 ≤ 1 or 𝜃 ≥ −

1

3

(40)𝜃 = G
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(41)H
(
𝜃
)
< 𝜃 < G

(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(42)�f ∶=
2Γ

Ψ(Γ + Ψ)

(43)𝜃 = H
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(44)𝜃 < H
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3
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E1,1 is locally asymptotically stable, Em∗,m∗ ∉ [0, 1] × [0, 1] , whereas E0,0 , E0,1 
and E1,0 are unstable.

Proof of Proposition 4  Let us denote the one-time advance operator by ′  . We have 
that:

where

The Jacobian matrix of system (21) is given by:

It follows that:

Therefore, the eigenvalue associated to E0,0 are 𝜆E0,0

1,2
= e𝛽Ψ > 0 and 𝜆E0,0

1,2
< 1 if and 

only if Ψ < 0 . Moreover, we have that

Therefore, the eigenvalue associated to E1,1 are 𝜆E1,1

1,2
= e𝛽(Γ+Ψ) > 0 and 𝜆E1,1

1,2
< 1 if 

and only if Γ + Ψ > 0 . Regarding E1,0 , we have that:

In this case, the eigenvalue associated to E1,0 are 𝜆
E1,0

1
= e−𝛽Ψ > 0 and 

𝜆
E1,0

2
= e𝛽(Γ+Ψ) > 0 and 𝜆E1,0

1,2
< 1 if and only if Ψ > 0 and Γ + Ψ < 0 . By symmetric 

arguments, we have that:

(45)

�m
�

i

�mi

=
e−�F(m−i)(

mi+(1−mi)e−�F(m−i)
)2

�m
�

i

�m−i

=
(1−mi)�

�F

�m−i
e−�F(m−i)

(
mi+(1−mi)e−�F(m−i)

)2

(46)F
(
m−i

)
= 𝜋̄

(
1,m−i

)
− 𝜋̄

(
0,m−i

)
and

𝜕F

𝜕m−i

= Γ.

(47)J
�
m1,m2

�
=

⎡
⎢⎢⎢⎢⎣

e−�F(m2)�
m1+(1−m1)e−�F(m2)

�2

(1−m1)�
�F

�m2
e−�F(m2)

�
m1+(1−m1)e−�F(m2)

�2

(1−m2)�
�F

�m1
e−�F(m1)

�
m2+(1−m2)e−�F(m1)

�2

e−�F(m1)�
m2+(1−m2)e−�F(m1)

�2

⎤⎥⎥⎥⎥⎦

(48)J
(
E0,0

)
=

[
e�F(0) 0

0 e�F(0)

]

(49)J
(
E1,1

)
=

[
e−�F(1) 0

0 e−�F(1)

]

(50)J
(
E1,0

)
=

[
e−�F(0) 0

J
E1,0

2,1
e�F(1)

]
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with eigenvalues �E0,1

1
= �

E1,0

2
 and �E0,1

2
= �

E1,0

1
 . It follows that E0,1 is locally asymp-

totically stable if and only if E1,0 is so. Furthermore, it is easy to verify that:

with eigenvalues

In particular, the eigenvalue 𝜆1 = 1 +
Ψ

Γ
𝛽|Γ + Ψ| < 1 , with eigenvector along the 

diagonal of [0, 1]2 of equation m2 = m1 , causes a bifurcation of eigenvalue −1 , which 
occurs for � = �f  . Numerical simulation confirms that this bifurcation of eigenvalue 
−1 is a flip one.7 The other eigenvalue is 𝜆2 > 1 , with the associated eigenvector 
along the diagonal of [0, 1]2 of equation m2 = −m1 . To complete the proof note that 
Ψ < 0 if and only if one of the conditions in (39) is satisfied, −Γ > Ψ > 0 if and only 
if the conditions in (41) are satisfied and, finally, Ψ > −Γ if and only if the condi-
tions in (44) are satisfied. 	�  ◻

To summarize, Proposition 4 underlines that: 1) E0,0 is a locally asymptotically 
stable equilibrium of the exponential replicator dynamics (21) while the other equi-
libria E1,1 , E0,1 and E1,0 are unstable if and only if the bimatrix game is a prisoner-
dilemma game; 2) E0,1 and E1,0 are locally asymptotically stable equilibria of the 
exponential replicator dynamics (21) while the other equilibria E0,0 , E1,1 and Em∗,m∗ 
are unstable, if and only if the bimatrix game above is an anti-coordination game; 
3) E1,1 is a locally asymptotically stable equilibrium of the exponential replicator 
dynamics (21) while the other equilibria E0,0 and E1,1 are unstable, if and only if the 
bimatrix game is a prisoner-delight game.

Interestingly and contrary to what happens for the one-dimensional map (22), the 
inner equilibrium is always unstable under the exponential replicator dynamics (21). 
In particular, for parameter configurations such that the bimatrix game is an anti-
coordination game, we need to study the full-fledged model to underline that the 
evolutionary stable equilibria are the pure-strategy Nash equilibria E0,1 and E1,0 and 
not the inner equilibrium Em∗,m∗.

Regarding the global dynamics of the exponential replicator dynamics (21), 
numerical experiments indicate that: (1) when E0,0 is the locally asymptotically sta-
ble equilibrium (prisoner-dilemma game), it is also globally stable, see Fig. 3a; (2) 

(51)J
(
E0,1

)
=

[
e�F(1) J

E0,1

1,2

0 e−�F(0)

]

(52)J(Em∗,m∗ ) =

⎛
⎜⎜⎝

1 − Ψ�
�
1 +

Ψ

Γ

�

−Ψ�
�
1 +

Ψ

Γ

�
1

⎞
⎟⎟⎠

(53)�
Em∗ ,m∗

1,2
= 1 ±

Ψ

Γ
�|Γ + Ψ|

7  To prove this analytically the sufficient conditions for the flip bifurcation need to be verified, see, e.g., 
Devaney (1989), Gardini et al. (2021) and references therein.
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Fig. 3   Basins of attraction: In red the basin of attraction of the locally asymptotically stable equilibrium E
1,0

 , in 
blue the basin of attraction of the locally asymptotically stable equilibrium E

0,1

 , in green the basin of attraction 
of the equilibrium E

1,1

 , in magenta the basin of attraction of the equilibrium E
0,0

 , in yellow the basin of attrac-
tion of the chaotic set in the diagonal. Parameters: a = 4 , b = 0.15 , c = 0.5 and � = −0.7 . Panel a � = 0.5 
and � = 1 . Panel b � = 0.25 and � = 1 . Panel c � = 0.25 and � = 51 . Panel d � = 0.25 and � = 100 . Panel 
e � = 0.25 and � = 200 . Panel f � = −0.25 and � = 1 . In Panels b–e the common inner equilibrium is E

m∗
,m∗ 

with m∗ ≈ 0.235179 and �
f
≈ 3.09308
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when E0,1 and E1,0 are locally asymptotically stable equilibria (anti-coordination 
game) and the intensity of choice is sufficiently low, we have that Em∗,m∗ is a saddle 
equilibrium, the basin of attraction of E0,1 is B

(
E0,1

)
=
{(

m1,m2

)|||m2 > m1

}
 , and 

the basin of attraction of E1,0 is B
(
E1,0

)
=
{(

m1,m2

)|||m1 > m2

}
 , see Fig. 3b, c; (3), 

when E0,1 and E1,0 are locally asymptotically stable equilibria (anti-coordination 
game) and the intensity of choice is sufficiently high, we have that E1,1 is a Milnor 
attractor, that is, its basin of attraction B

(
E1,1

)
 has a positive Lebesgue measure but 

it is not attracting in the Lyapunov sense, while the basin of attraction of E0,1 is 

B
(
E0,1

)
=
{(

m1,m2

)|||m2 > m1

}
∕B

(
E1,1

)
 , and the basin of attraction of E1,0 is 

B
(
E1,0

)
=
{(

m1,m2

)|||m1 > m2

}
∕B

(
E1,1

)
 , see Fig. 3d, e; (4) when E1,1 is the locally 

asymptotically stable equilibrium (prisoner-delight game), it is also globally stable, 
see Fig. 3f;

Surprisingly, in the case of an anti-coordination game, also an equilibrium rep-
resenting coordination among players, that is E1,1 , can be reached by evolutionary 
selection. That is, despite the anti-coordination nature of the game, players can learn 
to coordinate and play the strategy profile that allows them to have the same high-
est payoff among the coordination strategies. This is clearly related to a nonlinear 
phenomenon that deserves to be investigated in future works. Here we just remark 
that for the first time, we observe that an equilibrium that does not represent a Nash 
equilibrium can be reached through evolutionary pressure despite being evolution-
ary (locally) unstable. The robustness of this result is confirmed by a large variety 
of numerical experiments not reported here for the sake of space. Moreover, to see 
if this result is robust to heterogeneous populations, in the next section we general-
ized the model setup (21) by accommodating heterogeneous intensity of choices and 
heterogeneous attitudes towards cooperation, as well as heterogeneous production 
costs.

Before moving to the asymmetric case, let us put into perspective the result that 
E1,1 can be a Milnor attractor under exponential replicator dynamics when the static 
game is an anti-coordination game. To do so, let us point out that the symmetric 
property of the map (21) with respect to the diagonal m1 = m2 and the local stability 
of the equilibria E0,1 and E1,0 while all the other equilibria are stable, suggest that if 
at time t = 0 in one of the two populations there is a greater propensity to adopt a 
certain strategy than in the other population, then in each population, the initially 
prevailing strategy would also prevail eventually. From the dynamic point of view, 
the diagonal represents the boundary between the basins of attraction of attractors 
E0,1 and E1,0 . After all, this is perfectly in line with what is observed in continuous-
time two-population games, as described in Hofbauer and Sigmund (1998), where 
it is shown that under the continuous replicator with two populations, the internal 
equilibrium is either a center or a saddle, whose stable manifold delimits the basins 
of corner equilibria. In the case of an anti-coordination game, the stable corner equi-
libria are E0,1 and E1,0 only. Instead, we have observed for the first time that under 
discrete-time multi-population dynamics, when the internal equilibrium exists and 
the intensity of choice is sufficiently high, with a repelling (chaotic) saddle in the 
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diagonal, then the corner equilibrium E1,1 , while not stable in the Lyapunov sense 
turns out to be a Milnor attractor since E1,1 attracts a set of points of positive Leb-
esgue measure of the square [0, 1] × [0, 1] , see Ashwin et  al. (1996) and Buescu 
(1997) for details.

5 � Two‑Heterogeneous‑Population Evolution

To conduct a robustness check, let us now reconsider the previous setup in a two-
population framework, where populations are heterogeneous. In particular, let us 
introduce heterogeneities among competing firms, which are related to asymmetric 
costs, different propensities to cooperation, different levels of aggressiveness and 
different intensities of choice. For simplicity, let us imagine here that we have two 
populations and consider a duopoly in which the first firm belongs to Population 1 
while the second firm belongs to Population 2.

Considering a duopoly with a homogeneous product and heterogeneous linear 
costs of production, at a Nash-Cournot equilibrium we have that a firm in population 
i produces

Assuming, without loss of generality, that c1 ≥ c2 , quantities are non-negative pro-
vided that �1 ∈

[
−1,

a−2c1+c2

a−c2

]
 . The reduced-form profits at 

(
q̃∗
i

(
𝜃i, 𝜃−i

)
, q̃∗

−i

(
𝜃i, 𝜃−i

))
 

read

where firm in population i has marginal costs ci and sets a level of cooperativeness 
�i ∈ (−1, 1) , with the opponent in population −i having marginal costs c−i and sets a 
level of cooperativeness �−i ∈ (−1, 1).

In population i ( i = 1, 2 ), heterogeneity in the levels of cooperativeness is synthe-
sized by two values of the corresponding parameter 𝜃

i
< 𝜃i.

Let m1(t) be the probability at time t that a player from population 1 sets a level 
of cooperativeness �1 and let m2(t) be the probability that a player from population 2 
sets a level of cooperativeness �2 . Then, the expected profit of a player in population 
1 by setting �1 at time t is

whereas by setting �
1
 , expected profit at time t is

(54)q̃∗
i

(
𝜃i, 𝜃−i

)
=

a
(
1 − 𝜃i

)
− 2ci + c−i

(
1 + 𝜃i

)

b
(
3 − 𝜃i𝜃−i − 𝜃i − 𝜃−i

)

(55)�̃∗
i
(

�i, �−i
)

=
(a(1 − �i) − 2ci + c−i(�i + 1))(a − a�i�−i + ci(�i�−i + �i − 2) − c−i�i + c−i)

b(3 − �i�−i − �i − �−i)2
, i = 1, 2

(56)Π1
c

(
m2(t)

)
= m2(t)𝜋̃1

(
𝜃1, 𝜃2

)
+
(
1 − m2(t)

)
𝜋̃1

(
𝜃1, 𝜃2

)

(57)Π1
a

(
m2(t)

)
= m2(t)𝜋̃1

(
𝜃
1
, 𝜃2

)
+
(
1 − m2(t)

)
𝜋̃1
(
𝜃
1
, 𝜃

2

)
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Similarly, the expected payoff of a firm in population 2 at time t by setting �2 is

whereas by setting �
2
 , it is

In each population, the shares of adopters of the two behaviors change over time 
through double exponential replicator dynamics. This leads to the following two-
dimensional map:

where �i is the intensity of choice in population i.
Being a two-population model in the square [0, 1] × [0, 1] , the two-dimensional 

map (60) always admits as equilibria the corner points E0,0 , E0,1 , E1,0 and E1,1 . By 
the linearity in m−i of the difference Πi

c

(
m−i

)
− Πi

a

(
m−i

)
 , i = 1, 2 , it follows that at 

most one inner equilibrium exists, which reduces to (26) in the homogeneous case 
(also when �1 ≠ �2 ). Moreover, note that in a heterogeneous framework the diagonal 
m1 = m2 of the state space [0, 1] × [0, 1] is no longer an invariant set. This occurs 
when at least one of the following conditions holds �1 ≠ �2 , �1 ≠ �2 , �1 ≠ �

2
 or 

c1 ≠ c2.

5.1 � Heterogeneous Intensity of Choices

Let us set c1 = c2 = c , �
1
= �

2
= � and �1 = �2 = � . Then, the fitness gain by play-

ing � in population i for a given share m−i of agents playing � in population −i , 
that is Πi

a

(
m−i

)
− Πi

c

(
m−i

)
 , is clearly given by the same function F

(
m−i

)
 in (23), 

where m−i is the probability that � is played in the competing population. Clearly, 
the homogeneous model with �1 = �2 coincides with the model (21), and its dynam-
ics along the diagonal m1 = m2 coincides with the one of the homogeneous model 
studied in Bischi and Lamantia (2022) when memory is disregarded, i.e. map (22).

The following proposition characterizes the stability of the equilibria of the model 
in which we assume that agents in the two populations can differ in the intensity of 
choice. This proposition is obviously strictly connected with Proposition 4 regarding 
the stability of the same model but with a homogeneous intensity of choices.

Proposition 5  (Stability of the equilibria of the two-population model with het-
erogeneous intensity of choices and their bifurcations) Consider map (60) with 

(58)Π2
c

(
m1(t)

)
= m1(t)𝜋̃2

(
𝜃2, 𝜃1

)
+
(
1 − m1(t)

)
𝜋̃2

(
𝜃2, 𝜃1

)

(59)Π2
a

(
m1(t)

)
= m1(t)𝜋̃2

(
𝜃
2
, 𝜃1

)
+
(
1 − m1(t)

)
𝜋̃2
(
𝜃
2
, 𝜃

1

)

(60)

m1(t + 1) =
m1(t)

m1(t)+(1−m1(t))e
−�1(Π1c (m2(t))−Π1a(m2(t)))

m2(t + 1) =
m2(t)

m2(t)+(1−m2(t))e
−�2(Π2c (m1(t))−Π2a(m1(t)))
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c1 = c2 = c , �
1
= �

2
= � , �1 = �2 = � and the functions of G

(
�
)
 and H

(
�
)
 defined 

in the previous proposition.

•	 For Ψ < 0 (equivalently, 𝜋
(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that is 

when 

 the corner equilibrium E0,0 is locally asymptotically stable whereas E1,0 , E0,1 and 
E1,1 are unstable.

•	 At Ψ = 0 (equivalently, �
(
�, �

)
= �

(
�, �

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that is when 

Em∗,m∗ merges with E0,0 (transcritical bifurcation) and the corner equilibria E0,1 
and E1,0 undergo a bifurcation of eigenvalue 1.

•	 For 0 < Ψ < −Γ (equivalently, 𝜋
(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 ), that 

is when 

Em∗,m∗ ∈ [0, 1] × [0, 1] is a saddle for 𝛽1𝛽2 < 𝛽f  , while it is a repellor for 
𝛽1𝛽2 > 𝛽f  and undergoes a bifurcation of eigenvalue −1 (flip bifurcation) at 
𝛽1𝛽2 = 𝛽f  , where 

while E0,1 and E1,0 are locally asymptotically stable and E0,0 and E1,1 are (locally) 
unstable.

•	 At Ψ = −Γ (equivalently, 𝜋
(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and �

(
�, �

)
= �

(
�, �

)
 ), that is at 

Em∗,m∗ merges with E1,1 (transcritical bifurcation).
•	 For Ψ > −Γ (equivalently, 𝜋

(
𝜃, 𝜃

)
< 𝜋

(
𝜃, 𝜃

)
 and 𝜋

(
𝜃, 𝜃

)
> 𝜋

(
𝜃, 𝜃

)
 ), that is 

for, 

E1,1 is locally asymptotically stable, Em∗,m∗ ∉ [0, 1] × [0, 1] , whereas E0,0 , E0,1 
and E1,0 are unstable.

(61)G
(
𝜃
)
< 𝜃 ≤ 1 or 𝜃 ≥ −

1

3

(62)𝜃 = G
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(63)H
(
𝜃
)
< 𝜃 < G

(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(64)𝛽f =
4Γ2

Ψ2(Γ + Ψ)2

(65)𝜃 = H
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3

(66)𝜃 < H
(
𝜃
)

with − 1 ≤ 𝜃 < −
1

3
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Fig. 4   Basins of attraction of model (60) (asymmetric case). Parameter as in Fig. 3 but: a �
1

= 100 and 
�
2

= 1 ; b �
1

= 1 and �
2

= 2 ; c �
1

= 170 and �
2

= 3 ; d �
1

= 100 and �
2

= 50 ; e �
1

= 200 and �
2

= 50 ; f 
�
1

= 100 and �
2

= 1



1 3

Two‑Population Evolutionary Oligopoly with Partial…

Proof of Proposition 5  It follows from Proposition 5 by noting that all the results do 
not depend on the intensity of choice except for the inner equilibrium. In the case of 
inner equilibrium, it is easy to verify that the Jacobian matrix computed there takes 
the form

with eigenvalues

In particular, the eigenvalue 𝜆1 = 1 +
Ψ

Γ

√
𝛽1𝛽2(Γ + Ψ)2 < 1 causes a bifurcation of 

eigenvalue −1 (numerical simulations confirm that it is a flip bifurcation) when we 
have that �1 = −1 , that is for 𝛽1𝛽2 = 𝛽f  . The other eigenvalue is 𝜆2 > 1 . Therefore, 
the inner equilibrium is either a saddle or a repellor. 	�  ◻

Up to this point, the dynamic analysis carried out from a local point of view con-
firms the robustness of the results of the original model: Whenever a pure strategy 
dominates, equilibria E0,0 or E1,1 are global attractors of the dynamical system. This 
situation is depicted in Fig. 4, panels (a) and (f), in which, except for �1 = 100 and 
�2 = 1 , parameters are set as in Fig. 3, that is a = 4 , b = 0.15 , c = 0.5 , � = −0.7 and 
with � = 0.5 and � = −0.25 respectively.

In the case of stability of both equilibria E0,1 and E1,0 , the internal equilibrium 
is unstable and convergence to an asymmetric corner equilibrium is expected for 
any slight mismatch of initial choices of the players. See Fig. 4b, c, where the basin 
of attraction of E0,1 is the blue region while the basin of attraction of E1,0 is the red 
region. It is easy to observe that 𝛽2 > 𝛽1 increases the basin of attraction of the equi-
librium E1,0 , that is, increases the probability that player 2 is aggressive and player 1 
is a cooperator. Therefore, having a higher intensity of choice increases the possibil-
ity to be more profitable than your competitor. Except for this, we can draw the same 
conclusions as for the symmetric case.

Focusing on the case in which E0,1 and E1,0 are stable equilibria (condition 
0 < Ψ < −Γ holds), the most interesting aspect is the persistence of a basin of 
attraction of positive measure for the corner point E1,1 in case of high values of the 
intensities of choice, see the green region in Fig. 4d, where �1 = 100 and �2 = 50 . 
Increasing further the gap between the intensities of choice, we observe that the 
green region shrinks while the basin of attraction of a corner point (either E0,1 or E1,0 
depending on which one has a higher intensity of choice) increases.

5.2 � Heterogeneous Level of Aggressiveness

The equilibrium E1,1 is the one in which agents use a higher degree of cooperation 
(or a lower degree of hostility if both � and � are negative). This result is particularly 

(67)J(Em∗,m∗ ) =
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⎜⎜⎝

1 − Ψ�1

�
1 +

Ψ

Γ

�

−Ψ�2

�
1 +

Ψ

Γ

�
1

⎞
⎟⎟⎠

(68)�1,2 = 1 ±
Ψ

Γ

√
�1�2(Γ + Ψ)2
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interesting since higher cooperation in both populations can be selected even when it 
apparently should be ruled out by the instability of the equilibrium. This occurs only 
when agents are sufficiently impulsive in their selections of the objective functions 

Fig. 5   Basins of attraction (asymmetric case): In red the basin of attraction of the locally asymptoti-
cally stable equilibrium E

1,0

 , in blue the basin of attraction of the locally asymptotically stable equilib-
rium E

0,1

 , in green the basin of attraction of the equilibrium E
1,1

 . Panel a: Parameters as in Fig. 3b but 
�
1

= −0.1 and �
2

= 0.25 . Panel b: Parameters as in Fig. 3e but �
1

= −0.1 and �
2

= 0.25 . The common 
inner equilibrium is m∗

1

≈ 0.334136,m
∗
2

≈ 0.518768

Fig. 6   Basins of attraction (asymmetric case): In red the basin of attraction of the locally asymptotically 
stable equilibrium E

1,0

 , in blue the basin of attraction of the locally asymptotically stable equilibrium 
E
0,1

 , in green the basin of attraction of the equilibrium E
1,1

 . Panel a: Parameters as in Fig. 3d but c
1

= 0.5 
and c

2

= 0.4 . Panel b: Parameters as in Fig. 3e but c
1

= 0.5 and c
2

= 0.4 . The common inner equilibrium 
is (m∗

1

,m
∗
2

) = (0.220573, 0.250546)
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to maximize. If we break the symmetry of the intensity of choice, the diagonal of 
the square loses its role as an invariant set. Nevertheless, similar results in terms of 
dynamics are obtained, as observed in the previous subsection where �1 ≠ �2.

Here, we want to show that a similar phenomenon holds even if we break the 
symmetry in the level of aggressiveness. This occurrence is shown in the basins of 
attraction in Fig. 5, where a = 4 , b = 0.15 , c = 0.5 , �

1
= �

2
= −0.7 , �1 = −0.1 and 

�2 = 0.25 . In Panel (a), in which �1 = �2 = 1 , the example is analogous to Fig. 3b, 
c. Figure 5b, in which �1 = �2 = 100 , is analogous to Fig. 3d, e, with a disconnected 
basin of attraction of equilibrium E1,1.

5.3 � Heterogeneous Costs of Production

The same results hold by breaking the symmetry on the costs of production. See 
Fig.  6a, obtained with the same parameters as Fig.  3d but c1 = 0.5 and c2 = 0.4 , 
where we observe that the green region persists. Therefore, E1,1 is a Milnor attractor 
even in case of asymmetric costs of production. The same is observed in Fig. 6b, 
obtained with the same parameters as Fig. 3e but c1 = 0.5 and c2 = 0.4 . Summariz-
ing, the Milnor attractor E1,1 observed in a symmetric setting for certain parameter 
configurations, persists by parameter perturbations that introduce asymmetric costs 
of production.

6 � Conclusions

Evolutionary modeling contributes to shedding light on emergent behaviors as a 
result of strategic interaction, as well evidenced in Anufriev et  al. (2018). In this 
paper, we reconsidered the evolutionary oligopoly model proposed in Bischi and 
Lamantia (2022), in which firms face duopoly games with objective functions that 
may include instances of partial cooperation or partial hostility against the competi-
tor. First of all, we extended the investigation in Bischi and Lamantia (2022) by con-
sidering the full-fledged two-population version of the model. This setup allows us 
to formalize the model in a more general context and to introduce easily elements 
of heterogeneities among firms. From the dynamic point of view, while the one-
dimensional model remains illustrative of the dynamics for two types of firms that 
are perfectly homogeneous in both parameters and initial decisions of the game, the 
two-population model also permits taking into account asymmetries in the initial 
decisions of the players. Such asymmetries can lead, if accompanied by sufficiently 
high agents’ intensity of choice, to convergence to the more cooperative equilibrium, 
as evidenced by the analysis of basins of attraction for the two-dimensional map. 
We believe that such aspects are a starting point for further investigation of multi-
population models in economics.
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