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Abstract
This study examines the upward and downward multifractality, long-memory pro-
cess, and efficiency of the Shanghai stock exchange composite index of mainland 
China and the Hang Seng index (HSI) of Hong Kong using the symmetric multifrac-
tal detrended fluctuation analysis (MF-DFA), asymmetric MF-DFA (A-MF-DFA), 
and the Hurst exponent. The results reveal significant differences in upward and 
downward multifractality, indicating asymmetric multifractality regardless of the 
frequencies. Moreover, we find evidence of excess asymmetry in multifractality for 
both markets and for all frequencies, which is more pronounced during downward 
stock price movements for Hang Seng Index (HSI) markets. The Hong Kong mar-
ket is less inefficient than Chinese markets. Additionally, Bitcoin (BTC) volumes 
and BTC trading capitalizations affect the efficiency level across quantiles. Finally, 
robustness tests confirm our results are robust.
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1  Introduction

The application of fractal geometry theory solves the problem that the effective mar-
ket theory cannot, and it can be used to examine the nonlinear behavior of stock 
markets (Zhicao et al., 2017). The multifractality and long-ranges memory are two 
important concepts in portfolio theory. Multifractal method is flexible to assess the 
scaling properties of temporal and spatial data in terms of a set of exponents (Sosa-
Herrera & Rodríguez-Romo, 2019). The presence of multifractal scaling behavior 
indicates a dependence between two successive price dates, indicating long-range 
autocorrelations and evidence against random walk hypothesis (Cajueiro & Tabak, 
2004). The presence of multifractality in a market indicates that the volatility of 
prices is clustering and reveals predictability, providing opportunity for investors 
to beat the market. Accounting for these two variables are important for optimal 
portfolio design and hedging purposes. However, a single fractal is restrictive and 
fails to describe the exact price dynamics. The multifractal theory is more flexible 
as it accounts for different fluctuations of stock prices on various time scales. In 
addition, it offers more analysis for unpredictable financial markets (Jingjing et al., 
2012). More interestingly, an accurate modeling of market efficiency, multifractal-
ity, and long memory persistency improve the decision making process for investors 
and portfolio investors and enhances policy makers’ understanding of market mech-
anisms and instability. A stock exchange market is defined as efficient in its weak 
form if the current share price instantaneously and rapidly reflects all its historical 
price information (including price, volume and short sale amount, etc.), suggesting 
evidence against multifractality, long-range dependency, and price predictability 
(Wei & Wang, 2008). The stock market experiences phases of recursive upward and 
downward trends explained by the law of demand and supply and more importantly, 
by the external shocks that may be explained by bad and good news. These news 
releases lead to both upward and downward trends that impact investment strategies. 
Thus, the multifractality and efficiency can vary not only over time but also under 
downward and upward market price trends. The risk appetite and reactions of inves-
tors are time varying and sensitive to the direction of market conditions.

A vast body of literature has documented the multifractality, long memory, and 
efficiency of stock markets. Andreadis and Serletis (2002) show evidence of random 
multifractality in the Dow Jones Industrial Average index. Zunino et al. (2009) show 
that the multifractality in developed stock markets is lower than that in emerging 
markets. Using a symmetric MF-DFA and Hurst exponent, Zhu and Zhang (2018) 
analyze the price dynamics and efficiency of the Chinese CSI 800 stock index and 
find evidence of multifractality. In addition, the results of the Hurst exponent reveal 
the presence of a larger market crash in summer 2015 than the one in 2008. Gu 
and Huang (2019) analyze the multifractality of the Shenzhen stock market using 
the MF-DFA and 5-min high frequency data and find evidence of multifractality. In 
addition, the values of the Hurst exponent vary across the order of the fluctuation 
function. Using the same methodology, Yan et al. (2020) examine the liquidity in 
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china’s new OTC market. The authors show that liquidity has a non-linear and mul-
tifractal characterization. In addition, the multifractal degree of liquidity is lower 
than that of the large-cap stock market. Zhang and Li (2018) explore the multifrac-
tality in both the Shanghai and Hong Kong stock markets by accounting for the 2014 
reform (connect program) and find that the degree of multifractality increased more 
after the reform than before. In addition, the sources of multifractality are fat-tailed 
distribution and long-range correlation. However, the MF-DFA assumes that the 
multifractality behavior is symmetric during upward and downward trends. Alva-
rez-Ramirez et al. (2009) indicate the presence of asymmetric correlations between 
stock returns. The authors developed the asymmetric MF-DFA method to analyze 
the multifractality of downtrends and uptrends in Chinese stock markets. The results 
reveal that the multifractality level with uptrends is higher than with downtrends. 
Moreover, the authors show that long-range correlations and fat-tailed distributions 
are the principal sources of asymmetric scaling. They attribute the asymmetry to 
the long-range memory for the Shanghai stock market and the fat-tailed distribu-
tion for the Shenzhen stock markets. As for Ruan et  al. (2018), they use the MF-
DFA and MF-DCCA (multifractal detrended cross-correlation analysis) methods to 
investigate the multifractality of the Shanghai and Hong Kong stock markets and the 
effect of financial liberalization on the correlations between them. The authors find 
evidence of multifractality in both markets. In addition, the efficiency of the Shang-
hai stock market was enhanced after the implementation of financial liberalization 
(the Shanghai-Hong Kong Stock Connect in China). The correlations increased after 
this financial liberalization. China is the second largest economy in the world. Cao 
and Zhou (2019) revise the methodology adopted by Ruan et  al. (2018) by using 
both MF-ADCCA and DMF-ADCCA methods. The authors support evidence of 
long memory in downward and upward trends in A + H shares in China. Cao et al. 
(2013) overcome the limit of the symmetric MF-DFA by disentangling the upward 
and downward trend and considering the asymmetry in the MF-DFA approach. The 
authors show that the multifractality degree of Chinese stock markets with uptrends 
is stronger than that of Chinese stock markets with downtrends. Gajardo and Krist-
janpoller (2017) investigate the asymmetric multifractal cross-correlations between 
oil and Latin-American stock markets. They find the presence of multifractality in 
the cross-correlations between considered markets. Mensi et al. (2021) analyze the 
asymmetric asymmetry of the stock markets in major oil-producer and oil-consumer 
economies (Brazil, Canada, China, India, Japan, KSA, Russia, and USA) using the 
asymmetric MF-DFA approach. The authors find higher upside multifractality for 
all markets except China. Moreover, the degree of efficiency of the stock markets of 
oil producers is lower than that of oil consumers. Oil price uncertainty is a predictor 
factor for stock prices during the oil crisis and the COVID-19 pandemic outbreak.

Since its creation in 2008, BTC has been weakly correlated with stock mark-
ers. This low correlation degree pushed retail and institutional investors to consider 
BTC as a diversifier, hedger, and safe haven asset against extreme negative market 
stock prices in the wake of the bankruptcy of Lehman Brothers investment bank 
(Dimitriou et al., 2020; Mariana et al., 2021; Wen et al., 2022). Given their prop-
erties, the BTC’s demand has increased which as a result increased its correlation 
with stock markets. The strong dependence and spillovers between BTC and stock 
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markets represent a main factor in selecting BTC assets to explain the stock market 
efficiency. The literature shows a strong spillover between BTC and stock markets 
(Jiang et al., 2022; Khalfaoui et al., 2022). In contrast, Nguyen (2022) shows uni-
directional return transmission from the US stock market to the BTC market. This 
result is confirmed by Li (2022) who finds a unidirectional spillover from Meme 
stocks to BTC. Li (2022) also shows that Meme stocks are much riskier than BTC 
in terms of more extreme returns, greater volatility. These mixed results require fur-
ther analysis on the relationships between BTC and stock markets and as a result 
motivated as to explore the impact of BTC prices on the stock market efficiency. 
Therefore, shocks occurring in BTC market is transmitted to stock market, creat-
ing more instability and volatility of stock prices. We notice that BTC price reacts 
positively to negative shocks to stock prices (Dyhrberg, 2016). On the other hand, 
common factors (supply, demand, investor sentiment, economic conditions, and geo-
politics) affect stock and BTC markets; therefore, traders treat both BTC and stocks 
in the same way. The efficiency of stock markets is therefore sensitive to BTC price 
instabilities.

To the best of our knowledge, this study is the first to examine the downtrends 
and uptrends of multifractality, long memory, and asymmetric efficiency of the 
Hong Kong and Chinese stock markets and to investigate the drivers of market effi-
ciency across quantiles. To achieve these objectives, we apply Cao et  al.’s (2013) 
symmetric multifractal fluctuation detrended analysis (MF-DFA) and the asymmet-
ric multi-fractal fluctuation detrended analysis (A-MF-DFA) to account for down-
ward and upward market conditions. A high frequency intraday data at four different 
frequencies is applied for robustness purposes. In contrast to the DFA and MF-DFA 
approaches, which consider respectively the monofractality and the symmetric mul-
tifractality during episodes of bear and bull markets, this study considers asymmetry 
as in an important stylized fact that affects the funds allocation and financial risk 
management, and results in optimizing the decision making process.1 The quantile 
regression approach (QRA) is applied to examine the drivers of market efficiency 
across different statuses of efficiency level (from the lowest to highest level).

Using the MF-DFA method (Sect. 3.1), the results provide evidence of a cross-
over time scale for both markets and for all frequencies, which does not support 
the monofractal behavior hypothesis. Moreover, the multifractality of Hong Kong 
stock markets has a much larger width than China stock markets for all frequen-
cies. For both markets, we find that the Hurst exponent is time varying and above 
0.5 along the sample period regardless of the frequencies. In addition, the ineffi-
ciency is higher under small fluctuations than large fluctuations. Using the A-MF-
DFA method (Sect. 3.2), the results reveal significant distinctions between uptrend 
and downtrend values throughout various time scales. The behaviors of the A-MF-
DFA functions for different frequencies are quite similar. The Hurst exponent values 
decrease with scale increases for overall, downward, and upward trends. In addition, 
we find that the upward Hurst exponent values for Shanghai stock index (SSEC) 
markets are superior to downward Hurst exponent values for all scales. In contrast, 

1  For more information on multifractality and long-range memory, see Kantelhardt et  al. (2002), Lo 
(1991), and Lo and Mackinlay (1996).
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the reverse is true for Hang Seng index (HSI) markets. We note that the deviation 
between upward and downward Hurst exponents is more significant for negative 
scales than for positive scales. Using the market deficiency measure (MDM), we 
find that the Chinese and Hong Kong stock markets are highly inefficient under 
downward trends compared to upward trends. In addition, the Hong Kong market is 
less inefficient than the Chinese market for all frequencies. The Chinese and Hong 
Kong markets are more inefficient under 60-min data than 5-min data. Using a QRA 
(Sect. 3.3), we find that BTC price returns have no impact on efficiency in both Chi-
nese and Hong Kong markets for all quantiles. In contrast, BTC volumes negatively 
and significantly influence the efficiency level of Chinese stock markets in the low-
est, normal, and highest quantiles and only in the lower quantiles for Hong Kong 
stock markets. The Bitcoin USD trading capitalizations contribute significantly to 
the efficiency level of Chinese stock markets under different quantiles. Finally, we 
find asymmetric relationships between BTC USD trading capitalizations and effi-
ciency level for Hong Kong stock market.

This study makes four contributions to the existing literature. First, it examines 
the upward and downward multifractality in two important stock markets in the 
Asian region, namely the Shanghai stock index (SSEC) and the Hang Seng index 
(HSI) as the proxies of mainland China and Hong Kong stock markets, respectively. 
The selection of these stock markets is attributable to their significant cross-corre-
lations (Cao & Zhou, 2019; Ruan et  al., 2018). Launched in November 17, 2014, 
the Chinese government has implemented a new financial reform with Hong Kong, 
the Shanghai–Hong Kong Stock Connect Program (SHSCP), which allows investors 
from both markets to trade in both markets. This reform stimulates the development 
of Hong Kong stock markets and increases the trade volume of the Shanghai stock 
market. It provides global funds far easier access to shares in mainland China by 
removing the requirement for an investment license (Ruan et al., 2018). Zhang and 
Li (2018) document that this reform offers an expandable, controllable, and feasible 
channel for mutual market access between mainland China (Shanghai) and Hong 
Kong for a broad range of investors.

Second, we test and compare the degree of weak-form efficiency for the overall 
trend as well as for upward and downward trends. This decomposition provides use-
ful information for investors in terms of investment strategies and asset allocations.

Third, this study relies on various high frequencies (i.e., 5-min, 10-min, 30-min, 
and 60-min) to help investors and portfolio managers obtain accurate information on 
the evolving Chinese and Hang Seng stock markets. High frequency data is a signifi-
cant source of information in portfolio risk management and asset pricing. In addi-
tion, high frequency information is used to enhance our understanding of the market 
price behaviors and price dynamics. It allows a better measurement of market sur-
prises and reactions due to specific news. Merton (1980) highlights the importance 
of high frequency in estimating market returns and volatility. Engle (2000) suggests 
that high frequency is important to measure the realized volatility by using the avail-
able information set with the added advantage of not having to estimate parametrical 
models commonly used generalized autoregressive conditional heteroscedasticity 
(GARCH) models. More importantly, high frequency information is also important 
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for policy makers to understand the monetary policy transmission and shocks caused 
by each news announcement.

Finally, we augment our analysis by examining the determinants of the dynamic 
Hurst exponent. To do so, we examine the effect of Bitcoin (BTC) 5-min prices, 
BTC volume, and BTC trading capitalizations. The choice of these determinants’ 
variables is due to the growing importance of BTC trading in China and Hong Kong. 
Since its creation, BTC, which has changed the way the world looks at money, has 
attracted the attention of investors, the media, and policymakers. This innovative 
virtual product gained massive exposure when China entered in the cryptocurrency 
markets in May 2013 (Gloudeman, 2014). China surpassed all other countries in 
terms of the number of downloads of desktop BTC clients, or computer programs, 
that offer users the option to trade and store BTCs in digital “wallets.” BTC prom-
ised to be the world’s first decentralized, peer-to-peer cryptocurrency, and 65 per-
cent of the total hash power resides in China.2 In July 2018, the Chinese authorities 
identified 88 virtual currency trading platforms and 85 initial coin offering (ICO) 
platforms.3 Hong Kong is the largest BTC mine. It is positioned to become a global 
hub for BTC entrepreneurs and businesses (Gloudeman, 2014). We have selected 
the QRA to examine the drivers of Hurst exponents to consider the nonlinearity of 
relationships across different quantiles. It provides new insights on the relationships 
between Hurst exponents and the determinant variables (BTC prices, changes in 
BTC volumes, and BTC trading capitalizations). Since the efficiency is time-varying 
and shows periods of upward and downward trends, it is important to consider the 
relationship between Hurst exponents and the driver variables under different effi-
ciency conditions (from lowest inefficiency to highest inefficiency).

We follow the methodology of Lee et al. (2018) to compute the generalized Hurst 
exponent by simultaneously disentangling the overall long-range dependence for 
overall, downtrend, and uptrend. This asymmetric multifractal fluctuation detrended 
analysis (A-MF-DFA) technique explores the asymmetric efficient market hypoth-
esis (EMH) by investigating the differences among the various trends in the move-
ment of the asymmetric generalized Hurst exponent. The MF-DFA model quanti-
fies the multiple scaling exponents within a nonstationary financial time series. The 
asymmetric multifractality is flexible to identify the long-range autocorrelations 
during upwards and downwards trends. It also detects the multifractality in equity 
markets for nonstationary time series (Eldrige et al., 1993). The literature documents 
the presence of asymmetric correlations in stock markets because investors respond 
asymmetrically to news releases (Bae et al., 2003; Longin & Solnick, 2001). To the 
best of our knowledge, this study is the first empirical work to employ the A-MF-
DFA method to explore the stock price dynamics for overall, uptrend, and down-
trend trends in both Shanghai Stock Exchange Composite Index and Hang Sheng 
Index.

The rest of this paper is organized as follows. Section  2 discusses the materi-
als. Section 3 discusses the empirical results. Concluding remarks are presented in 
Sect. 4.

2  https://​www.​coind​esk.​com/​highe​st-​in-2-​years-​65-​of-​bitco​in-​hash-​power-​is-​in-​china-​report-​finds.
3  https://​www.​loc.​gov/​law/​help/​crypt​ocurr​ency/​china.​php.

https://www.coindesk.com/highest-in-2-years-65-of-bitcoin-hash-power-is-in-china-report-finds.
https://www.loc.gov/law/help/cryptocurrency/china.php.
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2 � Materials

2.1 � MF‑DFA Analysis

Multifractal detrended fluctuation analysis (MF-DFA) was developed by Kantelhardt 
et al. (2002) and is an extension of detrended fluctuation analysis. Let us assume that {
xt, t = 1,… ,N

}
 is a time series of length N.

We define the profile yk:

where x is the average over the entire return series. We divide the profile Y(k) into 
Nn ≡ int(N∕n) non-overlapping segments of equal length n . Since the length N of the 
series is often not a multiple of the considered time scale n , we repeat the same proce-
dure starting from the opposite end to prevent being lost and obtain 2Nn sub-intervals.

The local trend for each Y of the 2Nn segments is calculated using the least squares 
fit of the series. Then the variance is determined as:

for v = 1, 2,⋯ ,Ns and

for v = Nn + 1,⋯ , 2Nn.
The qth order fluctuation function Fq(n) is computed by averaging over all segments 

(sub-intervals):

The q-order Hurst exponent can now be defined as the slopes H(q) of regression 
lines for each q-order root-mean-square (RMS) Fq(n) (Ihlen, 2012). The parameter q 
enhances the small fluctuations when q < 0 , otherwise, the large ones when q > 0 . 
Therefore, different q describes the effect of varying degrees of fluctuation on Fq(n).

We determine the scaling behavior of fluctuation functions by examining log–log 
plots of Fq(n) versus n for each value of q . If series xi are correlated in the long-range 
correlation, Fq(n) rises for wider values of n , as the power law:

(1)Y(k) =

k∑
t=1

[
xi − x

]
, k = 1,… ,N,

(2)F2(n, v) =
1

n

n∑
i=1

{
Y[(v − 1)n + i] − yv(i)

}2

(3)F2(n, v) =
1

n

n∑
i=1

{
Y
[
N −

(
v − Nn

)
n + i

]
− yv(i)

}2

(4)Fq(n) =

{
1

2Nn

2Nn∑
v=1

[
F2(n, v)

]q∕2
}1∕q

(5)Fq(n) ∼ nH(q).
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where H(q) is the qth-order generalized Hurst exponents. For H(2) = 0.5 , time 
series is a random process, whereas for 0.5 > H(2) and 0.5 < H(2) , the time series is 
anti-persistent and persistent (long memory), respectively.

The MF-DFA is applied to calculate the H(q) , which have a direct link with the clas-
sical multifractal scaling exponent by:

Using the spectrum of generalized Hurst exponents H(q) , the singularity strength 
and spectrum denoted by α and f(�) can be defined as:

In multifractal methods, different values of the singularity strength � are used to 
characterize different parts of the structure, which lead to the existence of the spec-
trum f (�) . The above statistical and analysis work was carried out by using the soft-
ware MATLAB2014.

2.2 � A‑MF‑DFA Analysis

We extend the traditional MF-DFA method with the asymmetric multifractal scaling 
behavior among different trends using the A-MF-DFA method of Cao et  al. (2013). 
Similar to the traditional MF-DFA method in Eq. (1), based on the recommendations 
of Peng et al. (1994), we then divide the time series X and its profile Y into nonoverlap-
ping sub-time series of length n that are selected from 5 to N∕4 . Since N may not be a 
multiple of n , the length of the last segment may be shorter than n . Thus, we obtain a 
2Nn

�
Nn = ⌊N∕n⌋� sub-time series {Xj}

2Nn

j=1
 for X . The sub-time series {Yj}

2Nn

j=1
 for Y can 

be obtained in the same manner. The jth sub-time series of X is denoted by 
Xj = {xj,k}

n

k=1
 , where xj,k indicates the kth element of Xj.

For each sub-time series Xj and Yj , we estimate the linear fit Xj(k) = axj + bxj k and 
Yj(k) = ayj + byj k , which represents the linear trends for the jth sub-time series. The liner fit 
Xj(k) is discriminated by using the sign of the slope bxj ; that is, bxj > 0

(
bxj < 0

)
 indi-

cates that the time series x(t) has a positive (negative) trend in the sub-time series xj . 
The liner fit Yj(k) is used to detrended the integrated time series Xj.

The fluctuation functions can be defined as follows:

The directional q-order average fluctuation functions are calculated by:

(6)τ(q) = qH(q) − 1

(7)� = H(q) + qH�(q) and f (�) = q
[
� − h(q)

]
+ 1

(8)Fj(n) =
1

n

n∑
k=1

(yj,k − Yj(k))
2
for j = 1, 2,… , 2Nn

(9)F+
q
(n) =

⎛⎜⎜⎜⎝

1

M+

2Nn�
j=1

sign
�
bxj

�
+ 1

2

�
Fj(n)

�q∕2
⎞⎟⎟⎟⎠

1∕q

,M+ =

2Nn�
j=1

sign(bxj ) + 1

2
,
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where F+
q
(n) and F−

q
(n) denote the upward and downward q-order average fluctua-

tion functions, respectively. Assuming that bxj ≠ 0 for all j = 1,⋯ , 2Nn , then 
M+ +M− = 2Nn.

From the fluctuation functions of Eqs. (8–10), we calculate the scaling or power-
law relationship, which is defined as:

where H(q) , H+(q) , and H−(q) denote the overall, upward, and downward scaling 
exponents, respectively. The scaling behavior of the fluctuations in Eq. (11) is cal-
culated by analyzing the log–log plots of Fq(n) , F+

q (n) , and F−
q
(n) versus n for each 

value q . Using the ordinary least squares method, H(q) , H+(q) , and H−(q) can be 
estimated based on the logarithmic form. Furthermore, for H+(q) = H−(q) and 
H+(q) ≠ H−(q) , the correlation in time series is symmetric and asymmetric (Cao 
et al., 2013), respectively. The asymmetric scaling behavior indicates that the cor-
relations in the time series are different positive and negative trends.

Following Cao et al (2013) to measure the degree of asymmetry in correlation, 
the variable ΔH(q) is defined as:

where the larger the ΔH(q) , the asymmetric degree of correlation is stronger. If 
ΔH(q) > 0 , then the persistence of the correlation is stronger when the series is in 
upward trend than when it is in downward trend. By contrast, if ΔH(q) < 0 , then the 
persistence of the correlation is stronger when the series is in downward trend than 
when it is in upward trend.

2.3 � Data

This study considers two stock indices, the Shanghai stock exchange composite 
index (SSEC) of mainland China and the Hang Seng index (HSI) of Hong Kong. We 
utilize the closing price of high frequency intraday trading at four different frequen-
cies (i.e., 5-min, 10-min, 30-min, and 60-min). This sample data covers the period 
from December 4, 2013 to December 29, 2017. The sample period covers Chinese 
stock market turbulence. More precisely, the crash period began on June 2015 until 
February 2016. According to the Guardian, the Shanghai stock markets are tumbling 
by 30% in June 2015. Hundreds of Chinese companies have suspended dealings in 
their shares in a bid to arrest a frenzy of selling. Despite efforts by the government 
to reduce the fall, this continues until August 2015 when the market falls by 8.48%. 
Another important fall in the Shanghai stock market occurs in January 2016 by 
8%. Therefore, the oversupply of stocks (herding behavior) has direct implications 

(10)F−
q (n) =

⎛

⎜

⎜

⎜

⎝

1
M−

2Nn
∑

j=1

−[sign
(

bxj
)

− 1]

2
[

Fj(n)
]q∕2

⎞

⎟

⎟

⎟

⎠

1∕q

,M− =
2Nn
∑

j=1

−[sign
(

bxj
)

− 1]

2
,

(11)Fq(n) ∼ nH(q);F+
q
(n) ∼ nH

+(q);F−
q
(n) ∼ nH

−(q),

(12)ΔH(q) = H+(q) − H−(q)
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for stock price dynamics and as a result for stock market efficiency.4 The literature 
provides evidence of different degrees of efficiency before and during crisis peri-
ods. For example, Lim et al. (2008) show that the global financial crisis affects the 
efficiency of Asian stock markets. This result is confirmed later by Jin (2016) who 
find that the 2008 global financial crisis adversely affected the Hurst exponent of 
Asian stock markets, indicating a rise in inefficiency. It is also consistent with Mensi 
et al. (2017) who analyze the multifractality and efficiency of Islamic sector stock 
markets and show that the Islamic stock markets become more inefficient after the 
2008 global financial crisis. The Chinese government took a sequence of measures 
to stem the tide of the turbulence like stopping the initial public offerings and pro-
viding cash to brokers to buy shares. High frequency data has the advantage of pro-
viding extra and accurate information rather than daily or weekly data about price 
dynamics and market efficiency.

The data for all series are extracted from DataStream. The continuously com-
pounded intraday percentage returns at time n on day t are defined as 
Rt,n = ln

[
Pt,n

Pt,n−1

]
× 100 , where n is the number of time intervals in the day (i.e., 

5-min, 10-min, 30-min, and 60-min), and t is the number of trading days in the sam-
ple period. Figure 1 shows the dynamics of 5-min returns (a) SSEC and (b) HSI over 
the sample period. As shown in this figure, we observe volatility clustering and fats 
tails that are stronger for HSI than SSEC mainly during Chinese stock markets crash. 
Figure  2 shows the distributions of intraday returns in different time scales. It is 
observed that the distributions have the high peak with fat-tailed futures, as known 
as a leptokurtic distribution. These findings support the non-normality for all intra-
day returns.

Table  1 presents the preliminary analysis for intraday SSEC and HSI index 
returns. The results show that the average returns for both markets are positive and 
increase with frequencies for both markets. Moreover, the average SSEC index 
returns are higher than HSI index returns for all frequencies. Similarly, the uncon-
ditional volatility is higher for SSEC markets than HIC markets. The market risk 
also increases with frequencies. The skewness coefficient values for all cases are 
negative and the kurtosis values are superior to the value of three Gaussian distribu-
tions, indicating asymmetry and leptokurtic behaviors (fats tails) for intraday return 
series. The results of a Jarque–Bera test strongly reject the normal hypothesis. All 
intraday returns series are stationary according to the ADF and PP unit root tests of 
Augmented Dickey and Fuller (1979) and Phillips and Perron (1988) and KPSS sta-
tionary test of Kwiatkowski et al. (1992).

4  The Chinese government implemented a number of rescue programs like direct purchase intervention 
of stocks from firms.



1 3

Upward and Downward Multifractality and Efficiency of Chinese…

Fig. 1   The dynamics of intraday index returns
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3 � Empirical Analysis Results

3.1 � MF‑DFA Analysis

Figure  3 shows a log–log plot of the MF-DFA functions Fq(n) versus the time 
scale n . Note that fluctuation functions Fq(n) are calculated with a range of q val-
ues from − 5 to 5. For 5-min data, the local slope changes its trajectory for almost 
all colored lines. This result indicates the appropriateness of MF-DFA. Specifically, 
when q varies from − 5 to 5, we find that the change of generalized Hurst expo-
nents of two sub-series depends on q. The stock markets are characterized by mul-
tiple fractal and the monofractal scaling behavior hypothesis is therefore rejected. 
Regarding the rest of the frequencies (10-min, 30-min and 60-min), changes in the 
local slope of the plots occur in (log n∗=5). Figure 4 displays the slope of H(q) in 
different time scales. A se can see, the stock markets are more inefficient under small 
fluctuation than large fluctuation. Moreover, we observe that the Hurst exponent is 
less than 0.5 for large fluctuations, underlying an anti-persistence process (mean-
reverting process). The HSI market is more (less) inefficient than SSEC particularly 
for 5-, 10-, and 30-min (60-min) data.

Figure  5 plots the multifractal spectrum of different time scales and shows 
that the multifractality of Hong Kong stock markets has a very large width com-
pared to the Chinese stock markets for all frequencies. For example, the multi-
fractal spectrum for 5-min data ranges between 0.15 to 0.8 for Hong Kong and 
0.3 to 0.7 for China. This result implies that multifractality in Hong Kong mar-
ket dynamics is much higher than in the Chinese market. The magnitude of the 
multifractal spectrum is higher in 5-min data than in 60-min data, indicating that 

Fig. 2   The density of intraday index returns
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the multifractality is higher as the frequency data rises. One possible explana-
tion of this result is that the fear, irrationality and the strong herding behavior of 
equity investors are more pronounced in 5-min data than 60-min data. This result 
also justifies the reason behind selecting different frequencies. Time horizon is an 
important factor for investment strategies.

Figures 6 and 7 illustrate the time-varying dynamics of Hurst exponents for SSEC 
and HSI stock markets, respectively. We choose the minimum segment size s = 8 
and maximum segment size s = 128 to compute the local Hurst exponents 

(
Ht

)
 , 

shown in Figs. 6 and 7. Two scales were selected to analyze the spatial distribution 
of the Hurst exponent. Looking at the evolving efficiency of the SSEC market, we 
find that the Hurst exponent is time varying and positive among the sample period 
regardless of the frequencies for both scales. SSEC market experiences phases of 
persistence and anti-persistence behaviors. In addition, the Hurst exponent varies 
between 0.174 and 0.840 for scale 8 and between 0.189 and 0.861 for scale 128. 
The mode of the Hurst exponent reaches 0.588, indicating persistence and evidence 
against efficiency hypothesis. When the frequency data decreases, the Hurst expo-
nent value rises from 0.617 for 10-min data to 0.638 for 60-min data, suggesting an 
increase in the persistence with decreasing frequency. The market share price devi-
ates from its fair value (intrinsic value) with time lags. We note that the minimum 
Hurst exponent value occurs in June 2015 and its maximum is in October 2016 for 
scale 8 and in October 2017 for scale 128. Similarly, the Hurst exponent value of the 
Hong Kong market evolves over time and is above 0.5, indicating that the persis-
tence of Hong Kong stock markets is not constant. The mode of the Hurst exponent 
at scale 8 is 0.599 at 5-min data, 0.589 at 10-min data, 0.555 for 30-min data, and 

Table 1   Descriptive statistics and unit root tests for intraday returns

The intraday returns represent the percentage intraday returns. ADF and PP are the Augmented Dickey-
Fuller and Philipps-Perron unit root tests, respectively. KPSS refers to the Kwiatkowski-Phillips-
Schmidt-Shin test for stationarity
*** indicates the rejection of the null hypothesis at the 1% significance level. (.) values indicate the t-sta-
tistics of H0 : mean = 0

SSEC HSI

5 min 10 min 30 min 60 min 5 min 10 min 30 min 60 min

Mean 0.0008 0.0015 0.0036 0.0056 0.00037 0.00068 0.0017 0.0032
t-statistic (0.8188) (0.9513) (1.0177) (1.0096) (0.7750) (0.8334) (0.8459) (0.8576)
Maximum 7.5286 6.6380 4.8802 4.8802 3.1666 3.1666 3.1666 3.7579
Minimum − 7.2233 − 7.1318 − 6.2479 − 6.2479 − 4.2427 − 4.2427 − 4.2427 − 4.0357
Std. dev 0.2184 0.2557 0.3729 0.4709 0.1250 0.1578 0.2448 0.3279
Skewness − 1.8845 − 2.2806 − 1.8616 − 1.6255 − 0.6053 − 0.3562 − 0.3100 − 0.6153
Kurtosis 111.75 88.631 37.427 26.439 104.27 74.524 34.571 24.637
Jarque 

Bera
2.4e+07*** 8.2e+06*** 5.4e+05*** 1.6e+05*** 2.8e+07*** 7.7e+06*** 6.1e+05*** 1.5e+05***

ADF − 80.55*** − 74.66*** − 29.10*** − 28.79*** − 187.4*** − 176.0*** − 110.4*** − 79.39***

PP − 233.0*** − 155.1*** − 85.50*** − 66.93*** − 255.7*** − 175.8*** − 110.5*** − 79.39***

KPSS 0.1747 0.1573 0.1576 0.1580 0.2128 0.2140 0.2118 0.2236
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0.611 for 60-min data. Like the SSEC market, the persistence level of the HSI mar-
ket increases as frequency decreases.

Overall, both the Chinese and Hong Kong markets are inefficient, as illustrated by 
the Hurst exponent. More importantly, the Chinese stock market is more inefficient 
than the Hong Kong market for 10-, 30-, and 60-min data. Financial investors can 
predict the futures prices in these markets to generate abnormal returns. In addition, 
the difference in the market inefficiency may be due to the microstructure for each 
market.

Table  2 shows the parameters of generalized Hurst exponents at different time 
scales (from q = −20 to q = 20 ) and different intraday price returns (5-min, 10-min, 
30-min, and 60-min). The Hurst exponent values vary across scales, indicating mul-
tifractal behavior in Chinese and Hong Kong stock markets. In addition, we find 
that the Hurst exponents are superior to the 0.5 value of random walk hypothesis. 
Moreover, the Hurst values decrease as the scale increases. This implies that the per-
sistence level decreases with scale rises. Furthermore, we note that the Hurst expo-
nent values are higher at 60-min data than 30-min data. The market becomes more 
inefficient with time increases. Looking at the value of Hurst exponent for q = 2, the 
results reveal that both stock markets exhibit persistence behavior as the Hurst expo-
nent value, which also increases with frequencies, is superior to 0.5. Specifically, 
the Hurst exponent of SSEC and HSI at 5-min data is 0.51 and 0.50, respectively, 
whereas it is 0.55 and 0.52 at 60-min data. The SSEC is more inefficient than the 
HSI market. This result is in line with the graphical evidence of Figs. 6 and 7.

Figure 8 displays the generalized Hurst exponent for different time scale intra-
day returns. The graphical evidence shows a significant persistence under nega-
tive scale and anti-persistence under positive scales. Furthermore, the gap in the 
degree of inefficiency of SSEC market is more pronounced under negative scales 
and 60-min data. Conversely, the difference in the inefficiency of HSI is high 
under positive scales.

However, markets experience phases of upward and downward trends. Inves-
tors’ psychology, reaction, and risk appetite depend on market trends. Thus, 
asymmetry is an important variable that should be considered to improve the 
investment decision-making process. On the other hand, the descriptive statistics 
(Skewness test) show evidence of asymmetry. In the next subsection, we employ 
the A-MF-DFA to study the efficiency and multifractality during different market 
trends.

3.2 � Asymmetric MF‑DFA Analysis

Following Cao et al. (2013), Fig. 9 shows the A-MF-DFA functions Fq(n) versus the 
time scale n in a log–log plot of the SSEC and HSI price returns. The results reveal 
significant distinctions between uptrend and downtrend values throughout various 
time scales. This result rejects the symmetric multifractality hypothesis. The devia-
tions from the symmetry are significant at higher time scales (3 and above). The tra-
jectories of the A-MF-DFA functions for different frequencies are quite similar. The 
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Fig. 3   The MF-DFA functions Fq(n) versus the time scale n in log–log plot. Note The functions Fq(n) 
are calculated with a range of q values from − 5 to 5
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Fig. 4   The slope of H(q) in different time scales
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results indicate that financial investors with a log horizon should pay attention to the 
asymmetric long-range correlation.

Figure  10 displays the excess asymmetry in multifractality for SSEC and HSI, 
for 5-min, 10-min, 30-min, and 60-min frequencies. The excess asymmetry is the 
difference between the Hurst exponent at upward and downward trends. If ΔH(q) is 
different (equal) to zero, it indicates evidence of (symmetric) asymmetric multifrac-
tality. The higher the ΔH(q) , the more asymmetric the market is. If H+(q) > H−(q) , 
this indicates a higher cross-correlation exponent when the time series has a posi-
tive trend than when it has a negative trend. As we can see, there is a strong excess 
asymmetry in multifractality for all markets regardless of the frequencies. For the 
HSI market, we observe a negative and a downward trend of excess asymmetry in 
multifractality. These results show that the multifractality is much stronger in down-
ward stock price movements. For the SSEC market, the excess asymmetry in multi-
fractality oscillates between negative and positive values, regardless of the four fre-
quencies. This result indicates the validity of our A-MF-DFA method. Both markets 
exhibit different behavior in terms of excess asymmetry in multifractality.

Figure 11 plots the overall, upward, and downward generalized Hurst exponent 
( H(q) , H+(q) , and H−(q) ) values in the SSEC and HSI return dynamics for different 
q values ranging from –10 to + 10. We find that the Hurst exponent values decrease 
with scale increases for overall, downward, and upward trends. This result is in line 
with the findings of Cao et  al. (2013) where they find that values of the general-
ized Hurst exponents for Chinese stock markets (Shanghai stock exchange compos-
ite index and the Shenzhen component index) both decrease with increases in q , 

Fig. 5   Multifractal spectrum of different time scales
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(a) 5-min SSEC 

(b) 10-min SSEC 

(c) 30-min SSEC 

(d) 60-min SSEC 

Fig. 6   Time-varying dynamics of Hurst exponents for SSEC
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(a) 5-min HSI 

(b) 10-min HSI 

(c) 30-min HSI 

(d) 60-min HSI 

Fig. 7   Time-varying dynamics of Hurst exponents for HSI
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Table 2   Generalized Hurst exponent for different time scale intraday returns

q SSEC HIS

5 min 10 min 30 min 60 min 5 min 10 min 30 min 60 min

− 20 0.66876 0.69530 0.74931 0.74494 0.75991 0.78849 0.76871 0.70801
− 19 0.66642 0.69302 0.74662 0.74213 0.75733 0.78602 0.76600 0.70561
− 18 0.66384 0.69050 0.74362 0.73902 0.75449 0.78329 0.76301 0.70297
− 17 0.66097 0.68771 0.74027 0.73557 0.75135 0.78024 0.75969 0.70007
− 16 0.65777 0.68460 0.73650 0.73173 0.74786 0.77681 0.75599 0.69685
− 15 0.65418 0.68112 0.73224 0.72741 0.74398 0.77295 0.75184 0.69327
− 14 0.65013 0.67719 0.72737 0.72255 0.73963 0.76857 0.74717 0.68928
− 13 0.64552 0.67272 0.72179 0.71704 0.73475 0.76356 0.74186 0.68479
− 12 0.64028 0.66762 0.71533 0.71076 0.72926 0.75778 0.73580 0.67973
− 11 0.63427 0.66175 0.70780 0.70358 0.72309 0.75109 0.72880 0.67399
− 10 0.62736 0.65494 0.69896 0.69531 0.71617 0.74328 0.72065 0.66748
− 9 0.61944 0.64703 0.68853 0.68576 0.70847 0.73416 0.71107 0.66008
− 8 0.61042 0.63784 0.67624 0.67472 0.70001 0.72350 0.69971 0.65171
− 7 0.60036 0.62731 0.66191 0.66204 0.69086 0.71119 0.68619 0.64237
− 6 0.58972 0.61564 0.64570 0.64769 0.68116 0.69731 0.67021 0.63212
− 5 0.57967 0.60344 0.62849 0.63205 0.67099 0.68220 0.65192 0.62119
− 4 0.57162 0.59170 0.61212 0.61605 0.66016 0.66619 0.63251 0.60984
− 3 0.56587 0.58142 0.59886 0.60138 0.64806 0.64905 0.61399 0.59819
− 2 0.56169 0.57317 0.58999 0.59019 0.63346 0.62985 0.59754 0.58610
− 1 0.55833 0.56697 0.58441 0.58440 0.61455 0.60741 0.58245 0.57320
0 0.55442 0.56169 0.57797 0.58322 0.58889 0.58055 0.56659 0.55893
1 0.54436 0.55209 0.56326 0.57730 0.55358 0.54794 0.54714 0.54261
2 0.51946 0.53026 0.53674 0.55744 0.50715 0.50836 0.52196 0.52370
3 0.48425 0.49960 0.50665 0.53036 0.45417 0.46393 0.49179 0.50261
4 0.45247 0.47080 0.48075 0.50477 0.40474 0.42135 0.46059 0.48099
5 0.42892 0.44788 0.46041 0.48327 0.36543 0.38590 0.43257 0.46085
6 0.41202 0.43017 0.44455 0.46563 0.33631 0.35822 0.40959 0.44342
7 0.39949 0.41623 0.43198 0.45111 0.31487 0.33673 0.39147 0.42888
8 0.38976 0.40498 0.42179 0.43904 0.29875 0.31975 0.37726 0.41684
9 0.38192 0.39566 0.41337 0.42894 0.28627 0.30600 0.36598 0.40684
10 0.37541 0.38781 0.40629 0.42039 0.27633 0.29464 0.35689 0.39845
11 0.36987 0.38110 0.40026 0.41310 0.26822 0.28509 0.34944 0.39133
12 0.36510 0.37528 0.39506 0.40684 0.26147 0.27694 0.34321 0.38523
13 0.36092 0.37019 0.39052 0.40141 0.25577 0.26991 0.33794 0.37995
14 0.35724 0.36569 0.38654 0.39667 0.25087 0.26379 0.33342 0.37534
15 0.35396 0.36171 0.38300 0.39250 0.24663 0.25841 0.32950 0.37128
16 0.35103 0.35814 0.37985 0.38881 0.24291 0.25365 0.32605 0.36769
17 0.34839 0.35494 0.37703 0.38552 0.23962 0.24942 0.32301 0.36448
18 0.34600 0.35204 0.37448 0.38258 0.23669 0.24563 0.32029 0.36160
19 0.34382 0.34942 0.37216 0.37992 0.23406 0.24222 0.31785 0.35900
20 0.34183 0.34703 0.37006 0.37752 0.23169 0.23914 0.31565 0.35665



1 3

Upward and Downward Multifractality and Efficiency of Chinese…

suggesting gradually weakened correlations for both down and uptrends. In addition, 
we find that the upward Hurst exponent values for SSEC markets are superior to 
downward Hurst exponent values for all scales. In contrast, the reverse is true for the 
HSI market. We note that the deviation between upward and downward Hurst expo-
nents is more significant for negative scales than positive scales. We note that the 
gap between the uptrend and downtrend is important for negative scales (small fluc-
tuations) for HSI and for positive scales (large fluctuations) for SSEC. This result 
implies that the multifractality and its asymmetry are more apparent in the HSI mar-
ket for small fluctuations and for large fluctuations in the SSEC market. This sug-
gests that equity investors are more interested in the market with large multifractal-
ity. This supports evidence of long-range temporal correlations, suggesting higher 
predictability patters and abnormal profits.

Fig. 8   Generalized Hurst exponent for different time scale intraday returns
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Fig. 9   Asymmetric MF-DFA functions F2(n) vs the time scale (n) . Note This figure represents the plot of 
log10

(
F2(n)

)
 vs. log10(n) for each intraday returns
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Figure  12 shows the multifractal spectrum for overall, downward, and upward 
trends. We find evidence of asymmetric multifractality for the two markets and for 
the four frequencies. The multifractal spectrum of different time scales is different 
for upward and downward trends. Taking the 5-min frequency as an example, we 
observe that the downward multifractality of Hong Kong stock markets has a much 
larger width than the upward multifractality for all frequencies. The reverse is true 
for the Chinese stock market. As a result, the Hong Kong stock market shows strong 
evidence of asymmetric behaviors between upwards and downwards markets. This 
finding indicates that the Hong Kong stock market is more sensitive to downwards 
market conditions rather than upwards market conditions.

Following Wang et al. (2009), we quantify the level of inefficiency by utilizing 
the market deficiency measure (MDM) as follows:

It worth noting that a cryptocurrency market is efficient if all fluctuations, includ-
ing small (q = −5) and large (q = +5) , follow a random walk process. The MDM 
value will therefore be zero for an efficient market and high for an inefficient market.

We quantify the MDM and report the measurement results of market efficiency 
in Fig. 13. The graphical evidence shows that both the SSEC and HSI markets are 
highly inefficient under a downward market trend rather than an upward trend. For 
overall and upward trends, we observe that the HIS is less inefficient than the SSEC 
market for all frequencies. On the other hand, the inefficiency increases with time 
factor for both markets but is more pronounced for the SSEC market. This result 
demonstrates that markets become more inefficient as time increases. This result 
also justifies the appropriateness of using the A-MF-DFA method, relative to the 
symmetric MF-DFA method. Thus, ignoring the asymmetry in multifractality mis-
allocates the resources. The changes in efficiency during different market statuses 
(bear and bull) enhance our understanding of market behavior and optimize asset 
allocation and the management of portfolio risk. In sum, the SSEC market is more 
inefficient than HSI markets. The high inefficiency in the Chinese stock exchange 
market may be attributed to China’s stock market crash in 2015, when the govern-
ment implements a rescue program that includes a massive government stock pur-
chases from 1000 firms. The market responsiveness to macroeconomic policies and 
global financial events, as well as the changes in the market environment, affect indi-
vidual investor sentiment during bear and bull market scenarios, which explains the 
difference in the efficiency level of both Chinese and Hong Kong stock exchange 
markets.

It is worth noting that the last few years have been marketed by fierce competi-
tion in international stock markets, including the Hong Kong and mainland China 
markets. The Chinese government has launched a series of reforms and policies to 
enhance the development and liquidity of their stock markets. The Shanghai-Hong 
Kong Connect Program (SHCP) implemented on April 10, 2014 is one of the most 
important programs allowing foreign investors that have stock accounts in Hong 
Kong to buy shares of some connected firms in the Chinese stock market. Moreover, 

(13)MDM =
1

2
(|h(−5) − 0.5| + |h(5) − 0.5|) = 1

2
Δh.
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China’s stock market is not fully liberalized, which means that local (domestic) 
investors cannot easily invest overseas.

To test the validity of our results, we augment our study with some important 
robustness tests. We first test the null hypothesis that the Hurst exponent under scale 
2 equates 0.5 in the value of the random walk hypothesis ( H(q = 2) = 0.5 ) against 
the alternative hypothesis that ( H(q = 2) ≠ 0.5 ). The results of this test are reported 
in Table 3. On the other hand, we test the equality of the slope under downwards and 
upwards trends using two mean equality tests (e.g., Satterthwaite & Welch, 1946; 
Anova of Welch, 1951) and two variance equality tests (e.g., Brown & Forsythe, 
1974; Levene, 1960). The results are presented in Table  4. Looking at these two 
tables, we can draw two important conclusions. First, the Hong Kong and Chinese 
stock markets are inefficient for overall, upward, and downward trends. Second, the 
downward inefficiency is statistically and significantly different to upward ineffi-
ciency (Table 3).

3.3 � The Determinants of Time‑Varying Hurst Exponent: The Role of BTC

To determine the driver factors in the time varying of Hurst exponents 
(
Ht

)
,5 we 

estimate a QRA model6 specified as follows:

where c(�) denotes a constant term and Q� indicates the � th quantile in the 
explained variables of Hurst exponents (H) . Moreover, the �k� parameter moni-
tors the impact at the � th quantile of the dependent variable using three explana-
tory variables, namely BTC returns ( rBTC_Price) , changes in BTC volumes 
( ΔBTC_Vol ), and log BTC USD trading capitalizations (Log(BTC_Cap) ). Among 
all cryptocurrencies, BTC is the most important crypto asset. In terms of mar-
ket capitalization ($1 trillion). BTC values experience a first upside pattern from 
2008 until 2017 followed by a crash by about 65% in the first quarter of 2018. 
The second BTC price crash occurred in September 2018. The BTC price is soar-
ing in early 2021 after a first decrease in March 2020 (price increases by 700%). 
The impact of BTC prices on stock market returns and volatility attracts a special 
attention. The existing empirical literatures shows spillovers between BTC and 
stock markets (Ahmed, 2021; Jiang et al., 2022; Singh, 2021; Uzonwanne, 2021; 
Zhang et al., 2021). Goodell and Goutte (2021) shows that COVID-19 intensifies 

(11)
Q�

(
Ht

)
= c(�) + �1�rBTC_Pricet + �2�ΔBTC_Volt + �3�Log

(
BTCCap

)
+ �t,

Fig. 10   Excess asymmetry in multifractality for intraday returns. Note The x-axis represnts the time scale 
n , which varies from 5 to N∕4 (where N is the number of observations in the time series). The y-axis rep-
resents the difference between log10

(
F+
2
(n)

)
 and log10

(
F−
2
(n)

)
▸

5  The descriptive statistics of the Hurst exponent show evidence of non-normality and nonlinearity. The 
results are available upon request.
6  For more information on QRA, see Koenker (2005), Koenker and Bassett (1982), Koenker and D’Orey 
(1987), and Koenker and Hallock (2001).
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the co-movements between cryptocurrencies and equity indexes. Salisu et  al. 
(2019) find that BTC is a good predictor instrument of stock markets. QRA exam-
ines the conditional dependence of specific quantiles of the efficiency degree with 
respect to the conditioning control variables. It enables us to examine the nonlin-
ear relationships between Hurst level and the control variables when the level of 
efficiency ranges from the lowest (lower quantiles or q = 0.05) to highest (upper 
quantile or q = 0.95). The QRA offers valuable information on the impacts of 
BTC returns, changes in BTC volumes, and log BTC USD trading capitalizations 
on the degree of efficiency under different market efficiency circumstances. This 
method explores whether the effects of control variables on varying level of effi-
ciency are symmetric or asymmetric. The 5-min data for BTC are obtained from 
the Bitfinex Exchange. The data for the other frequencies are not available, which 
is why we carried out the regression using 5-min data.

Table 5 reports the estimates of QRA between the Hurst exponents of SSEC 
and HSI markets and BTC price returns, changes in BTC volumes, and BTC 
USD trading capitalizations across seven quantiles. The results indicate that BTC 
price returns have no impact on the efficiency in both Chinese and Hong Kong 
markets for all quantiles. BTC volumes negatively and significantly influence 
the efficiency level of Chinese stock markets during lowest, normal, and highest 
quantiles. This result indicates that the decrease in BTC volumes amplifies the 
inefficiency for different levels of Hurst exponent. For Hong Kong stock markets, 
the BTC volume negatively influences the efficiency during periods in which the 
Hurst exponent value is low ( q = 0.05 and q = 0.1 or lowest inefficiency). The 
BTC USD trading capitalizations contribute significantly to the efficiency level of 
Chinese stock markets under different quantiles. For Hong Kong, we find asym-
metric relationships between BTC USD trading capitalizations and efficiency 
level. Figure A1 plots the changes in the quantile regression coefficients of effi-
ciency level conditioning by three driver variables.

For robustness, we carry out the nonparametric Wald robustness test (see Koen-
ker & Bassett, 1982 for more information on this test) to check for the stability of the 
slopes over quantiles. This test checks all slope heterogeneity across any two quan-
tiles. More specifically, we test the null of homogeneity of slopes for two quantiles 
against the alternative hypothesis of heterogeneity of slopes. Table 6 reports, as an 
example, the results of the Wald tests across the quantiles q = 0.05 vs. q = 0.5 and 
q = 0.05 vs. q = 0.95 . The remaining results are available upon request. This table 
rejects the null of parameter homogeneity across quantiles for BTC USD trading 
capitalizations, indicating that the estimated coefficients are time varying, implying 
that the relationship between trading capitalization and efficiency level varies sig-
nificantly across quantiles.

Fig. 11   Plots of Hurst exponents for SSEC and HSI stock markets. Notes This figure shows the overall, 
upward, and downward generalized Hurst exponent ( H(q) , H+(q) , and H−(q) ) values in the SSEC and 
HSI return dynamics for different q values ranging from − 10 to + 10. (i) If 0 < H < 0.5 , then the intra-
day returns x(t) is not persistent; (ii) if 0.5 < H < 1 , x(t) exhibits persistence; (iii) if H = 0.5 , then x(t) 
follows a random series

▸
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Fig. 12   Asymmetric multifractal spectrum. Note The multifractal spectra f (�) versus � where q ranges 
from − 5 to 5
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4 � Conclusions

Upward and downward movements of stock prices have important implications for 
asset allocations and risk management. Equity investors follow price patterns and 
formulate investment strategies given market trends. On the other hand, market effi-
ciency, long memory, and multifractality issues are not only influenced by the time 
factor but also by market trends. This study sheds light on the asymmetry in multi-
fractality, long-range memory, and evolving efficiency of Chinese and Hong Kong 
stock markets. We use the A-MF-DFA method and generalized Hurst exponent for 
intraday data using four different frequencies (5-min, 10-min, 30-min, and 60-min). 
We also examine the drivers (BTC prices, BTC volume and BTC USD trading capi-
talizations) of time-varying efficiency across quantiles.

Using the MF-DFA method, our results provide evidence of crossover time scale 
for both markets and for all frequencies, indicating that variation in the trajectory 

0
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0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

5-min 10-min 30-min 60-min

(a) SSEC

Overall Upward Downward

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

5-min 10-min 30-min 60-min

(b) HSI

Overall Upward Downward

Fig. 13   Measurement of market efficiency using MDM

Table 3   t-test results of the null hypothesis for H(q = 2) = 0.5

The generalized Hurst exponent in the case of q = 2 , i.e., Hq , is identical to the standard Hurst exponent, 
which can be used to test the long-memory property of a time series. *** denotes the rejection of the null 
hypotheses at the 1% significance level

SSEC HSI

Overall Upward Downward Overall Upward Downward

5-min 2.8894
[0.009]

6.0088
[0.000]

0.9127
[0.372]

-0.5458
[0.591]

-3.8272
[0.001]

5.0716
[0.000]

10-min 3.1242
[0.005]

6.3664
[0.000]

1.0925
[0.287]

-0.1521
[0.880]

-3.6226
[0.002]

5.1915
[0.000]

30-min 3.4688
[0.002]

6.9395
[0.000]

1.3648
[0.187]

0.3828
[0.705]

-3.4602
[0.002]

5.3428
[0.000]

60-min 3.6250
[0.002]

7.0160
[0.000]

1.4747
[0.155]

0.8284
[0.417]

-3.1751
[0.004]

5.5441
[0.000]



	 W. Mensi et al.

1 3

of the local slope. These results provide supporting evidence for the multifractality 
hypothesis. Moreover, the multifractality of Hong Kong stock markets has a very 
large width compared to the Chinese stock markets for all frequencies, suggesting 
that the multifractality in Hong Kong stock price dynamics is much higher than in 
the Chinese stock prices. For both markets, the Hurst exponent is time varying along 
the sample period regardless of the frequencies. More interestingly, the values of 
the Hurst exponent increase with time factor. Both markets are inefficient accord-
ing to the values of the Hurst exponent. In addition, the inefficiency is higher under 
small fluctuations (q < 0) than large fluctuations (q > 0) . Using the A-MF-DFA 
method, the results reveal significant distinctions between uptrend and downtrend 
values throughout various time scales. The extent of the symmetry is significant 
at higher time scales. This result provides evidence against the symmetric multi-
fractality assumption. The Hurst exponent values decrease with scale increases for 
overall, downward, and upward trends. In addition, we find that the upward Hurst 
exponent values for SSEC market are superior to downward Hurst exponent values 
for all scales. In contrast, the reverse is true for the HSI market. We note that the 
deviation between upward and downward Hurst exponents is more significant for 
negative scales than for positive scales. Using the MDM measure, we show that 
the Chinese and Hong Kong stock markets are highly inefficient under downward 

Table 4   Robustness tests for heterogeneity of slopes

This table presents the mean equality tests (Satterth-Welch and Anova statistics) and the variance equal-
ity tests (Bartlett, Levene, and Brown-Forsythe) for the Hurst exponent coefficients of MF-DFA vs. 
A-MF-DFA models

Equality mean tests Equality variance tests

Satterthwaite-Welch Anova Bartlett Levene Brown-Forsythe

SSEC
5-min 88.071

[0.000]
5796.9
[0.000]

21.845
[0.000]

4.6788
[0.003]

2.7548
[0.042]

10-min 261.82
[0.000]

1797.7
[0.000]

22.701
[0.000]

5.9933
[0.000]

3.0887
[0.027]

30-min 275.20
[0.000]

1044.1
[0.000]

18.772
[0.000]

5.8374
[0.001]

3.4063
[0.018]

60-min 261.06
[0.000]

819.94
[0.000]

12.533
[0.013]

3.0876
[0.027]

2.295
[0.078]

HIS
5-min 97.065

[0.000]
108.41
[0.000]

34.177
[0.000]

4.5588
[0.004]

2.9463
[0.033]

10-min 86.227
[0.000]

8081.6
[0.000]

41.183
[0.000]

7.0486
[0.003]

4.5261
[0.005]

30-min 63.569
[0.000]

5433.9
[0.000]

44.442
[0.000]

10.896
[0.000]

9.070
[0.000]

60-min 125.01
[0.000]

294.21
[0.000]

10.552
[0.032]

3.7384
[0.012]

3.3557
[0.019]
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market status compared to upward trends. In addition, the Hong Kong market is less 
inefficient than the Chinese market for all frequencies. The Chinese and Hong Kong 
markets are more inefficient under 60-min data than 5-min data. The robustness tests 
show that the coefficient of the Hurst exponents is statistically different for overall, 
upward, and downward trends. The downward inefficiency is statistically and signifi-
cantly different to upward inefficiency.

Finally, we find that BTC price returns have no impact of the efficiency of both 
Chinese and Hong Kong markets for all quantiles. BTC volumes negatively and sig-
nificantly influence the efficiency level of the Chinese stock market during the low-
est, normal, and highest quantiles. For the Hong Kong stock market, the BTC vol-
ume negatively influences the efficiency when Hurst exponent values are low. The 
BTC USD trading capitalizations contribute significantly to the efficiency level of 
the Chinese stock market under different quantiles. The study finds asymmetric rela-
tionships between BTC USD trading capitalizations and the efficiency level for the 
Hong Kong stock market.

Our results have important implications for equity investors. First, investors should 
account for asymmetric multifractality to better understand the price dynamics, and 
to predict volatility and crashes (Grech & Pamula, 2008; Wei & Wang, 2008). Sec-
ond, investors in Chinese and Hong Kong stock markets can exploit abnormal returns 
more during downward market conditions compared to upward trends. The evidence of 
dependencies implies some capacity for the predictability of stock prices. Third, inves-
tors should keep a close eye on the BTC market to better understand the price dynamics 
and efficiency of the Chinese and Hong Kong stock markets and optimize the invest-
ment strategies. Our findings also assist policymakers and regulators in implementing 
policy actions and measures, mainly during downward trends, to ensure transparency 
and stability and boost the confidence of retail and institutional investors. These meas-
ures protect the investment environment in equity shares during turmoil periods and 
promote the sustainability and development of the stock markets for financial stability.

Table 6   Wald tests for the 
equality of slopes (0.05 against 
0.5 and 0.95 quantiles)

This table presents the estimated results of the Wald test for equality 
of slopes (0.05 against each of 0.5 and 0.95 quantiles)
The asterisks *, ** and ***denote statistical significance at the 10%, 
5%, and 1% levels, respectively

Against the 0.5 
quantile

Against the 0.95 
quantile

Test-statistic p-value Test-statistic p-value

Panel A: SSEC_5min
�1(rBTC_Price) − 0.0105 0.6206 0.0174 0.7112
�2(ΔBTC_Vol) − 0.0004 0.2131 − 0.0011 0.1110
�3(Log(BTC_Cap)) 0.0022*** 0.0004 0.0034** 0.0359
Panel B: HSI_5min
�1(rBTC_Price) 0.0403 0.4467 − 0.0251 0.8592
�2(ΔBTC_Vol) 0.0006 0.4667 − 0.0022 0.1388
�3(Log(BTC_Cap)) − 0.0033* 0.0673 0.0072** 0.0477
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Our paper can be extended by analyzing the effects of investors’ happiness on the 
time-varying efficiency of stock markets.

Appendix

See Fig. 14

Fig. 14   Changes in the quantile regression coefficients
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