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Abstract
American-type financial instruments are often priced with specific Monte Carlo 
techniques whose efficiency critically depends on the dimensionality of the prob-
lem and the available computational power. Our work proposes a novel approach for 
pricing Bermudan swaptions, well-known interest rate derivatives, using supervised 
learning algorithms. In particular, we link the price of a Bermudan swaption to its 
natural hedges, which include the underlying European swaptions, and other rel-
evant financial quantities through supervised learning non-parametric regressions. 
We explore several algorithms, ranging from linear models to decision tree-based 
models and neural networks and compare their predictive performances. Our results 
indicate that all supervised learning algorithms are reliable and fast, with ridge 
regressor, neural networks, and gradient-boosted regression trees performing the 
best for the pricing problem. Furthermore, using feature importance techniques, we 
identify the most important driving factors of a Bermudan swaption price, confirm-
ing that the maximum underlying European swaption value is the dominant feature.
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1  Introduction

In different scientific fields, the adoption of machine learning algorithms has shown 
significant promise to enhance the understanding and analysis of complex systems, 
as well as to improve the efficacy of current solutions. Specifically, a field that could 
greatly benefit from the study and application of these techniques is quantitative 
finance, particularly the pricing of financial instruments. Recently, a diverse range of 
machine learning techniques was effectively applied to this problem, as summarized 
by Bloch (2019). For example (Hernandez, 2017) applied neural networks to the 
market calibration of interest rate models; Masters and Luschi (2018), Ferguson and 
Green (2018), Cao et al. (2021) applied deep learning respectively to plain vanilla, 
basket and exotic options; Cao et al. (2019) employed neural networks to understand 
the option’s implied volatility; while (Huge & Savine, 2020) combined automatic 
adjoint differentiation (AAD) with modern machine learning for option pricing.

In the realm of financial instruments’ pricing, one crucial problem is deter-
mining the optimal stopping time; in general, it involves devising a strategy for 
determining when to take action to maximize an expected reward or minimize an 
expected cost. This issue is particularly relevant especially when pricing financial 
products such as American or Bermudan-type options, in which the purchaser 
can exercise their right at the most favourable time, making the determination of 
the optimal stopping time policy essential to achieve the highest expected value. 
Several studies explored optimal stopping time problems from a theoretical point 
of view, including works by Carriere (1996), Kobylanski et  al. (2011). From a 
practical point of view, Monte Carlo simulations and dynamic programming are 
widely used; in fact, a number of algorithms were proposed in the literature, such 
as those presented by Barraquand and Martineau (1995), Longstaff and Schwartz 
(1998), Glasserman (2003), Egloff et al. (2007). However, the efficiency of Monte 
Carlo methods and, more importantly, the computational power available are crit-
ical factors affecting these techniques. Recently, researchers proposed the appli-
cation of machine learning algorithms to solve or expedite the solution of opti-
mal stopping time problems. For example, Becker et al. (2020a) and Becker et al. 
(2021) established a generalized framework and provided practical applications. 
Chen and Wan (2019), Lapeyre and Lelong (2020) utilized neural network regres-
sion to estimate continuation values, while (Becker et  al., 2020b; Gaspar et  al., 
2020; Kohler et al., 2010) focused on pricing American/Bermudan options using 
deep learning. Hoencamp et  al. (2022), Lokeshwar (2022) employed machine 
learning techniques for pricing and hedging American-type options. Addition-
ally, Goudenège et  al. (2019) proposed variance reduction techniques. These 
approaches are limited to a subset of machine learning algorithms that belong to 
the field of artificial neural networks to solve dynamic programming problems 
or approximate the optimal exercise boundary. Furthermore, they are still based 
on Monte Carlo numerical simulations, which may prove to be computationally 
intensive for path-dependent exotic options (Goldberg & Chen, 2018).

The present study contributes to this field by proposing an original approach 
based on a different perspective. We focus on supervised learning, a branch of 
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machine learning, that facilitates the automation of decision-making processes by 
drawing generalizations from previously known examples. Specifically, we aim 
to establish a connection between the price of a Bermudan swaption, which is a 
well-known interest rate derivative used for hedging or speculation purposes in 
callable debt instruments or OTC trading, and the relevant financial quantities 
quoted on the market.

To achieve this goal, we employ different supervised algorithms and non-par-
ametric regressions to obtain estimators for Bermudan swaption prices. Some, by 
nature, fit better to regression problems than others (e.g. regression models, k-near-
est neighbours, etc), some are more suited to classification problems (e.g. decision 
trees, random forest, etc), some are more sensitive to hierarchical feature selection 
and assume some sort of feature independence (e.g. decision trees, etc) and some 
are more global models and treat the full feature vector together (e.g. kNN, MLP, 
etc). Since the selected machine learning algorithms differ profoundly in the way 
they interpret, process and represent the data, we carry out a comparative analysis in 
order to identify the algorithm with the best performance.

Moreover, as the actual market does not provide enough information and scenar-
ios to build a sizeable dataset and, to make our models as general as possible, we 
generate a synthetic coherent price dataset through numerical simulations based on 
the Hull-White interest rate model (Hull & White, 1994). We consider two dimen-
sions to increase the size of the dataset: the first consists of the contractual informa-
tion of the Bermudan options, i.e. tenors, strikes and moneyness, that we select to 
cover a huge tradable domain. The second dimension consists of market scenarios. 
Typically the parameters of the pricing model are calibrated to the current market; 
instead in our approach, in order to consider a variety of market conditions, we 
select a large domain of feasible and market-consistent values of the model param-
eters. At this point, the synthetic option’s prices are derived using the Least Square 
Monte Carlo dynamic programming algorithm proposed by Longstaff and Schwartz 
(1998). Both the Hull-White model and the Least Square Monte Carlo technique are 
standard approaches widely used in the market.

Summarizing, the novelties introduced by our work range in several fields: first, 
to our knowledge, the paper is the first one to use machine learning to address the 
Bermudan swaption pricing problem, offering a viable solution to the computational 
challenges posed by Monte Carlo numerical simulations discussed above. Moreover, 
we do not the training of the models to a single market condition, but rather we have 
created a huge dataset with different feasible market scenarios trying to cover the 
research space in the most exhaustive and possible way. Furthermore, in order to 
maintain an agnostic view of the problem and to make our approach as general as 
possible, we implemented a heterogeneous set of machine learning algorithms with 
different peculiarities. Consequently, through feature importances analysis, we can 
obtain insights into the primary drivers of Bermudan swaption prices, a piece of 
information that cannot be obtained from traditional simulations. In addition, our 
approach is fully extendable to any other American-type instrument.

The remainder of the paper is structured as follows. In Sect. 2, we provide a con-
cise overview of the various tools employed in this study. This includes a discussion 
of the Hull-White One Factor model, which we use to generate synthetic market 
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data, and the description of the Least Square Monte Carlo algorithm, which we use 
to obtain target prices for Bermudan swaptions. Additionally, we provide a brief 
summary of the supervised learning algorithms used to estimate option prices. In 
Sect. 3, we provide a detailed description of the dataset creation process, including 
the specific market scenarios considered and the methodology used to generate syn-
thetic data. In Sect. 4, we present the numerical results obtained from our analysis, 
including a comparative analysis of the performance of different supervised learning 
algorithms and an investigation of the relative importance of different input features. 
Finally, in Sect. 5, we summarize our findings and present some potential directions 
for future research.

2 � Theoretical Setting

In this section, we give a short compendium of the tools implemented for this 
work. The first two sections briefly deal with the financial topics at the core of our 
research, while the last section introduces supervised learning and the algorithms 
considered.

2.1 � Bermudan Swaptions

Swaptions are interest rate derivatives on an Interest Rate Swap (IRS) typically 
traded by large corporations, banks, financial institutions, and hedge funds. There 
are two main versions of swaptions, a payer and a receiver. A payer swaption is an 
option that gives the right, but no obligation, to enter a payer IRS at the maturity of 
the option; in other words, the buyer has the right to become the fixed rate payer in 
an IRS, which length is called the tenor of the swaption. Instead in the receiver ver-
sion, the buyer has the right to become the receiver of the fixed leg. There are two 
standard market payoffs, that differ in the settlement convention: physical or cash. 
We will focus only on the first type, i.e. those once exercised, are transformed into 
the underlying swap. In general, three main styles define the exercise of derivative 
instruments and therefore also of a swaption: European, Bermudan and American. 
In this work, we will focus only on co-terminal Bermudan swaptions, i.e. exotic 
interest rate derivatives that allow the buyer to enter, at multiple exercise dates {
T1,… , TN

}
 into a swap starting at time Ti , i = 1,… ,N and maturing at TM > TN . If 

we indicate the valuation date as t the period T1 − t > 0 is defined as no call period. 
Notice that European swaptions can be seen as Bermudan with a single exercise date 
and in turn, the American type can be seen as the extension to the continuum of the 
Bermudan. There are no market quotations or broker pages available for Bermudan 
swaptions because they cannot be priced analytically; in fact, their value depends, at 
each exercise date, on the choice of the option holder whether it is more convenient 
to exercise it (retrieving the payoff) or to continue with the contract (continuation 
value).

2.2 � Hull‑White One‑Factor Model and Least Square Monte Carlo

To analyze and price instruments described in the previous section we imple-
mented two tools: the Hull-White One-Factor Model (G1++) (Hull & White, 
1994) and the Least Square Monte Carlo (LSMC) (Longstaff & Schwartz, 1998).
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The Hull-White One-Factor Model, also known as G1++, is a specific case of 
the Ornstein-Uhlenbeck process characterized by a single stochastic factor (see 
Appendix A). It is one of the major exogenous short rate models which is nowa-
days often used for pricing and risk management purposes and specifically, we 
used it for the simulation of the underlying stochastic dynamics and hence for the 
evolution of the interest rate curve. This model is analytically tractable, in fact, 
there are closed pricing formulas for some instruments, e.g. European swaptions 
(Brigo & Mercurio, 2006); this feature is decisive for us as European swaptions 
represent the natural hedges of Bermudan swaptions and they have a fundamental 
role in the pricing of these products (Hagan, 2002). Our aim is to probe different 
market scenarios, but since in recent years the rates and their correlations have 
always been low, these historical data do not allow us to have enough wealth in 
the dataset. For this reason, we have exploited the two G1++ parameters, i.e. 
speed of mean reversion (a) and volatility (�) , to create many different market 
scenarios that differ in the global level of variances and covariances of the rele-
vant stochastic processes, in order to increase the variability of our dataset, avoid-
ing any type of calibration.

On the other hand, the Least Square Monte Carlo (LSMC) is one of the most 
widely used dynamic programming tools for the pricing of American-type 
options. It is one of the methods proposed to reduce the complexity of American 
option pricing avoiding nested Monte Carlo; it is a regression-based method that 
uses some specific function (basis function) to approximate the continuation val-
ues in the underlying optimal stopping time problem (Brigo & Mercurio, 2006). 
The success of this type of method, as well as depending on the computational 
power available, strongly relies on the choice of the basis functions and their 
number, making it still tied to the efficiency of the Monte Carlo simulation.

2.3 � Supervised Learning Algorithms

The implementation of the tools explained in previous sections allowed us, start-
ing from real market data (Appendix F) to obtain a synthetic price dataset used 
to train the supervised algorithms. To find out which supervised algorithm is best 
suited to our problem, we analysed a very heterogeneous set of models. Gener-
ally, since the problems faced with these techniques involve inferences on com-
plex systems, it is a common choice to select several candidate models to which 
their predictive performance must be compared. Below we present the list of 
algorithms used in our work. For a more in-depth discussion of their main char-
acteristics, strengths and weaknesses we refer to Appendix B, while for all math-
ematical details, we refer to Hastie et al. (2001), Géron (2017).

•	 k-Nearest Neighbour (k-NN);
•	 Linear Models;
•	 Support Vector Machine (SVM);
•	 Tree-based algorithms;

•	 Random Forest (RF);
•	 Gradient Boosted Regression Tree (GBRT).
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•	 Artificial Neural Networks (ANN or MLP).

Although these algorithms are all different from each other in how they interpret and 
represent the features and the data, in order to define their predictive capabilities and 
to be able to compare them, we have adopted a similar approach for all. It can be 
divided into 3 steps: 

1.	 The first focuses on the modelling of the input data in such a way as to present the 
dataset to the algorithms in the most effective way possible based on its intrinsic 
characteristics of the algorithm;

2.	 The second step concerned the optimization of the algorithms by modifying the 
respective hyperparameters to exploit their potential. This research on hyper-
parameters was carried out using exclusively the training set and the technique 
known as k-fold cross-validation; it consists of dividing the training set into k sets 
and in rotation using k − 1 to the training and the remainder for validation. Once 
all the possible combinations have been completed, the average performance is 
used as a measure of the goodness of the model and as a comparison metric for 
the same algorithm with different values of the hyperparameters;

3.	 The third, and last step, consists of quantifying the errors of each algorithm in 
order to be able to compare them with each other. For this phase, we used exclu-
sively the test set and different evaluation metrics with different characteristics. 
For definitions and their peculiarities, we refer to Appendix C.

3 � Creation of the Dataset

Each supervised learning algorithm needs a dataset to start from and, given its 
importance, we will focus on its creation and exploration of it. Since our goal is to 
predict the price of Bermudan swaptions starting from some of their characteristics 
available to market participants, we need a dataset containing this information. Spe-
cifically, the prices of the Bermudan swaptions represent the dependent variable also 
known as the target, while all the information that we decide to use as independent 
variables, is known as features. Furthermore, it is well to underline that in our case 
the quantity to be predicted is a single real number (the Bermudan swaption price) 
and therefore the problem we face falls into the category of single output regression 
problems.

For the creation of the dataset, we selected a heterogeneous set of 434 Bermudan 
swaptions such as their terms cover the typical trading activity on the market. We 
report the entire set with their contractual specifications in Table 11 of Appendix G. 
The Bermudan swaptions considered have different characteristics like the side, i.e. 
the payer and receiver version, tenor, no call period and strike. Specifically, the tenor 
represents the duration (months) of the underlying swap contract, the no-call period 
is the period (months) until the first possible exercise date, and the strike is the dis-
tance in basis points from the ATM. Unlike pricing these instruments in a single 
market scenario, we considered different market scenarios to increase the number 
and variability of our dataset. This operation is possible considering multiple values 
of the parameters of the short-rate model implemented. Pricing the entire swaption 
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set with different speed of mean reversion and volatility values allows us to consider 
different variance levels of the underlying stochastic processes, thus generating dif-
ferent market situations. In theory, these parameters could be chosen arbitrarily, but 
to obtain values that were reasonable with today’s market we acted differently: we 
calibrated the G1++ parameters (with the Nelder-Mead algorithm) for each of the 
Bermudan swaptions in the basket to their natural hedges, i.e. the underlying Euro-
pean swaption, not only using the market data available (Appendix F) but also other 
two scenarios obtained by modifying the implied Black volatility of those available. 
Specifically, we built high and low volatility scenarios by bumping the original vola-
tility of +25% and −25% of its original value. In conclusion, this procedure allowed 
us to define reasonable ranges for the parameters of the Hull-White model:

within this parameter space, we identified two pathological areas that are not inter-
esting to be explored, which are respectively the one with high speed of mean rever-
sion and low volatility values and the opposite one, i.e. with high volatility and low 
speed of mean reversion. Specifically, the first combination returns an almost deter-
ministic model as it does not have volatility while the second combination returns an 
explosive behaviour of the model. For these reasons, we have selected a central area 
in which to sample the parameters. We have selected 10 pairs of values which homo-
geneously cover the parameter space and we report them in Appendix E. Once these 
values were defined, it was possible to obtain the price, through the Least Square 
Monte Carlo, for each of the 434 Bermudan swaptions in the basket for a total of 
4340 prices (10 different scenarios for each swaption). With the aim of speeding 
up the computation, we parallelized the simulations on a cluster; specifically, we 
used 25 CPU cores each of which is entrusted with 2 × 104 simulations for a total of 
5 × 105 Monte Carlo paths for each sample.

Having defined the possible values of the G1++ parameters and obtained the cor-
responding prices, i.e. the target, we just have to identify the features. Since we want 
supervised learning algorithms to be independent of the underlying model, neither 
the speed of mean reversion nor the volatility will be used as a feature, but we have 
decided to designate as independent variables some parameters related to the distri-
bution of underlying stochastic process (Cao et al., 2021). In particular, we choose 
the no-call period, the tenor, the strike, and the side. The first two are related to the 
variance of the underlying swap rate and the last two are linked to the moneyness of 
the swaption. This information uniquely identifies the 434 Bermudan swaptions that 
make up our basket. We have decided not to include maturity as a feature because, 
knowing the tenor and the no-call period, it is redundant information and we have 
also excluded the exercising frequency as for all swaptions it is the same (annual). 
To help supervised algorithms to distinguish the Bermudan swaptions in the dif-
ferent market scenarios, we decided to provide two additional elements that could 
be useful for characterising the target. First, the price of the underlying maximum 
European swaption, computed with the closed-form of G1++, since we know it to 
be the lower bound of the Bermudan swaption price. Second, once the Monte Carlo 
paths have been simulated we compute the correlations between the swap rates of 

(1)a ∈ [−2%, 30%], � ∈ [0.1%, 9%].
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the underlying European swaptions and used them as a feature. With such simpli-
fied dynamics, the speed of mean reversion is related to these statistical quantities. 
Specifically, we have calculated the correlation between the swap rates of the Euro-
pean swaption with the longest tenor and that with the shortest tenor. For example, 
if we consider a Bermudan swaption with a 10-years no-call period and a 5-years 
tenor, we have evaluated the correlation between the swap rates of the 11 × 4 Euro-
pean swaption and the 14 × 1 European swaption. We report in Fig. 1 the correlation 
obtained between the swap rates and the price of the maximum European swaption 
while in Fig. 2 we report the distributions of the target (Bermudan price).

In conclusion, to summarize, we report in Table 1 all the features (independent 
variables) and their possible ranges and in Table 2 the target (dependent variable) 
and its domain.

As stated previously, in the development of supervised learning algorithms, it is 
fundamental how features are presented. The side feature in our dataset is the encod-
ing of a categorical variable to distinguish the payer version from the receiver. The 
most common way to represent categorical variables is one-hot-encoding; since any 
of the possibilities excludes the other, we have decided to create a single feature that 
takes value 1 when it is payer and 0 otherwise.

At this point, before applying supervised algorithms it is necessary to separate 
our dataset into the training set, used to build our model, and the test set used to 
assess how well the model works. We decided to use 80% (3472 samples) of the 
dataset for training and the remaining 20% (868 samples) for testing. Since the data 
were collected sequentially before dividing the dataset it is necessary to shuffle it to 
make sure the test set contains data of all types. Moreover, a purely random sam-
pling method is generally fine if the dataset is large enough, but if it is not, there 
is the risk of introducing a significant sampling bias. For this reason, we have per-
formed what is referred to as stratified sampling (Géron, 2017): since we know that 
the price of the maximum European swaption is an important attribute to predict 
the price of Bermudan swaptions, we have divided the price range of the maximum 

Fig. 1   Distribution of the correlation between the swap rates (left) and the price of the maximum Euro-
pean swaption (right). It can be noted that the correlations obtained cover the space in a homogeneous 
way while the prices of European swaptions, obtained with the closed formula of G1++, vary on very 
different scales
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European swaptions into subgroups and in order to guarantee that the test set is rep-
resentative of the overall population the instances are sampled from each of them. 
The test set thus generated has been put aside and will be used only for the final 

Fig. 2   Distribution of the target (Bermudan price). The price of the Bermudan options is obtained 
through the Least Square Monte Carlo algorithm with 5 × 105 paths each. Note that the price obtained 
varies on very different scales

Table 1   Features (independent variables) of the dataset

The total number of features selected for this issue is 6:4 of them are contractual information related to 
the Bermudan swaption while the other two are additional features

Features Values/Domain

Tenor {2Y, 5Y, 10Y, 15Y, 20Y}
Strike {−100, − 75, − 60, − 50, − 40, − 30, − 25, − 20, − 

15, − 10, − 7, − 5, − 2, 0, 20, 25, 30, 50, 100, 200, 
300, 400}

Side {Payer, Receiver}
No call period {1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y, 15Y, 20Y}
Correlation (swap rates) [0.0035, 0.8356]
Maximum European price [11.52 EUR, 8621.52 EUR]

Table 2   Target (dependent variable) of the dataset; it is unique and is represented by the price of the Ber-
mudan swaption obtained through the LSMC

Target Domain

Bermudan price [14.85 EUR, 13405.17 EUR]
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evaluation of each model. The construction of the various models and the choice of 
hyperparameters was based exclusively on the training set.

4 � Numerical Results

This section is devoted to the comparison of the predictive performance of all the 
algorithms analyzed. For simplicity, we will not report here the data preparation and 
optimization phase of the individual algorithms, but we report in Table 3 all of them 
with their respective pre-processing phase and the optimized hyperparameters on 
the training set. For more details, we described in Appendix D the hyperparameters 
tuning for all supervised algorithms. All the algorithms were implemented through 
Python open-source libraries like scikit-​learn, Keras and Tenso​rflow on a MacBook 
Pro (MacOS version 10.15.7) with an Intel Quad-Core i5 2.3 GHz processor with a 
memory of 2133 MHz and 8GB of RAM.

An easy way to compare models and their predictive capabilities is to observe 
their performance on the test set. For this purpose, we report in Fig.  3 the com-
parison between all the values of the evaluation metrics (Appendix C), both absolute 
and relative, grouped by the algorithm. For completeness, we also report in Table 4 
a comparison between all the indices of the relative error distribution for each of the 
algorithms and in Fig.  4 the respective error distributions. Furthermore, we have 
also reported in Table 5 the comparison between the training and pricing times for 
all the supervised algorithms. To compare these results with the standard method, 
we priced the same set with the Least Square Monte Carlo considering 5 × 104 paths 
for each Bermudan swaption obtaining a pricing time equal to 1086.6 s. Given these 
results, the first observation in Fig. 3 is purely statistical; as expected the RMSE val-
ues are always greater than the MAE ones for all the algorithms. Furthermore, the 
values of WAPE and RRMSE, introduced to reduce and limit some negative aspects 
of the MAPE and the RMSRE respectively, are in fact lower or equal to the latter. 
It can be observed that the model that can be considered the worst for this type of 
problem is undoubtedly the k-NN as it has the highest generalization error in almost 
all the metrics considered. We believe that this is due to the too-simple nature of the 
algorithm and above all to the lack of flexibility of its hyperparameters, which limit 
the reachable complexity. Among all the tree-based models, we can observe that the 
RF and GBRT perform better than the simple decision tree as we reasonably expect 
for ensemble methods. The best of this kind of model and the most promising is the 
GBRT that have the lowest generalization error of all and for all the metric consid-
ered. The great strength of this type of algorithm, which makes them very versatile, 
is the fact that they require practically no preprocessing of the data. For this reason, 
we consider the GBRT promising and usable even with a larger dataset above all 
as the first-entry algorithm. Instead, SVM has slightly worse performance than the 
GBRT for all the metrics considered; also note that it has the highest RMSRE value 
among all the analyzed models. Let us consider the two best algorithms obtained; 
the best performance of all belongs to the Ridge regressor. Moreover, note that it 
has the lowest generalization error whatever the metric considered. A slightly worse 
result than this, but still very promising, is obtained by MLP. However, we believe 
that with even more research on hyperparameters and especially with a greater 

https://scikit-learn.org/stable/
https://keras.io
https://www.tensorflow.org


1 3

Learning Bermudans﻿	

Ta
bl

e 
3  

A
ll 

m
od

el
s w

ith
 th

ei
r p

re
-p

ro
ce

ss
in

g 
ph

as
e 

an
d 

op
tim

iz
ed

 h
yp

er
pa

ra
m

et
er

s

W
e 

ha
ve

 st
an

da
rd

iz
ed

 fe
at

ur
es

 b
y 

re
m

ov
in

g 
th

e 
m

ea
n 

an
d 

sc
al

in
g 

to
 u

ni
t v

ar
ia

nc
e;

 c
en

tri
ng

 a
nd

 s
ca

lin
g 

ha
pp

en
 in

de
pe

nd
en

tly
 o

n 
ea

ch
 fe

at
ur

e/
ta

rg
et

 b
y 

co
m

pu
tin

g 
th

e 
re

l-
ev

an
t s

ta
tis

tic
s o

n 
th

e 
sa

m
pl

es
 in

 th
e 

tra
in

in
g 

se
t

A
lg

or
ith

m
Pr

e-
pr

oc
es

si
ng

H
yp

er
pa

ra
m

et
er

s

k-
N

N
Fe

at
ur

e 
st

an
da

rd
iz

at
io

n
{k
=
4

}
R

id
ge

Fe
at

ur
e 

st
an

da
rd

iz
at

io
n;

 p
ol

yn
om

ia
l f

ea
tu

re
s

{a
l
p
h
a

=
0.

01
, d
e
g
r
e
e

=
6}

SV
M

Fe
at

ur
e 

an
d 

ta
rg

et
 st

an
da

rd
iz

at
io

n
{k
e
r
n
e
l

=
rb

f, 
C

=
10

0,
 g
a
m
m
a

=
0.

1}
Tr

ee
–

{m
a
x
_
d
e
p
t
h

=
11

, m
i
n
_
s
a
m
p
l
e
s
_
l
e
a
f

=
3}

R
F

–
{m
a
x
_
d
e
p
t
h

=
 1

7,
 m
a
x
_
f
e
a
t
u
r
e
s

 =
 lo

g2
, n
_
e
s
t
i
m
a
t
o
r
s

 =
 5

00
}

G
B

RT
–

{l
e
a
r
n
i
n
g
_
r
a
t
e

=
0.

1,
 n
_
e
s
t
i
m
a
t
o
r
s

=
10

00
, m
a
x
_
d
e
p
t
h

=
5,

 m
a
x
_
f
e
a
t
u
r
e
s

=
lo

g2
}

M
LP

Fe
at

ur
e 

an
d 

ta
rg

et
 st

an
da

rd
iz

at
io

n
{i
n
i
z
i
a
l
i
z
a
t
i
o
n

=
H

e 
no

rm
al

, a
c
t
i
v
a
t
i
o
n
_
f
u
n
c
t
i
o
n

=
Re

LU
, o
p
t
i
m
i
z
e
r

 =
 N

ad
am

, 
b
a
t
c
h
_
s
i
z
e

=
32

, l
e
a
r
n
i
n
g
_
r
a
t
e

=
0.

01
, n
_
h
i
d
d
e
n

 =
3,

 n
_
n
e
u
r
o
n
s

=
10

0 
}



	 R. Aiolfi et al.

1 3

Fig. 3   Values of the different evaluation metrics on the test set for each algorithm. The graph above 
shows the comparison for the absolute metrics, that is, those that report the error in the unit of inter-
est (euro). The graph below shows the comparison for relative metrics in which the relative error is 
expressed in percentage terms

Table 4   Comparison for all relevant statistics of relative error for each algorithm

In addition to means and standard deviation, the third (skewness) and fourth (Fisher kurtosis) moments 
are also reported. The quantiles, i.e. the value below which a certain percentage of the errors was found, 
are also reported between the minimum value and the maximum value obtained

k-NN Ridge  SVM Tree RF GBRT MLP

Mean 0.0524 0.0006 0.0475 0.0329 0.0243 0.0036 0.0002
Std 0.2771 0.0182 0.3422 0.8381 0.1153 0.0444 0.0041
Skew 6.6101 − 0.2800 9.6765 0.7100 7.2053 0.3922 1.2675
Kurtosis 66.9179 24.2352 126.0146 5.6378 71.2143 17.3850 58.2962
Min − 0.4514 − 0.1608 − 0.8059 − 0.3820 − 0.2713 − 0.4172 − 0.4506
25% − 0.0517 − 0.0049 − 0.0344 − 0.0402 − 0.0154 − 0.0157 − 0.0128
50% − 0.0053 − 0.0004 − 0.0029 − 0.0014 0.0049 0.0001 − 0.0013
75% 0.0747 0.0061 0.0353 0.0412 0.0363 0.0191 0.0119
Max 3.9007 0.1549 5.2834 0.5939 1.5604 0.3683 0.5659
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amount of training data, ANN could improve its performance. The only downside to 
the Neural Network is the long time it takes to train the model (Table 5).

All these deductions are also supported by the information reported in Table 4 
and Fig. 4. In fact, it can be noticed the algorithms that have been identified as the 
best, have the average values closest to zero with the lowest standard deviation. Fur-
thermore, it can also be seen from the values of skewness, kurtosis and quantiles 
that these models are characterized by the most symmetrical distributions without 
outliers. All the others, on the other hand, are characterized by higher standard devi-
ations and in some cases larger tails of the distributions.

In general, from Fig. 3 it can be seen, apart from a few exceptions, that the result 
of the comparison between two models does not change if we observe different met-
rics. In other words, if one model is better than another by considering the error 
reported by one metric, it will remain better even if they are compared using a dif-
ferent metric. Consequently, if the goal is the pure comparison between models, we 

Fig. 4   Relative error distribu-
tions for each of the algorithms. 
To make them comparable, all 
the distributions were super-
imposed and the interval was 
reduced; for this reason, some of 
the distribution queues are not 
visible. The distributions were 
obtained with a Gaussian kernel 
density estimation

Table 5   Comparison between 
training and pricing times of 
all supervised algorithms and 
Monte Carlo simulation.

The pricing times take into consideration 434 Bermudan swaptions 
while the training was carried out with 3472 swaptions. In general, 
the computational times are highly dependent on the hyperparam-
eters adopted. We did not tune them such that the computational 
effort is comparable across the different algorithms

Pricing algorithm Training time Pricing time

k-NN 0 s 9.4 × 10−3 s
Ridge 316 × 10−3 s 7.7 × 10−3 s
SVM 736 × 10−3 s 161 × 10−3 s
Tree 15.9 × 10−3 s 4 × 10−3 s
RF 2.1 s 71.3 × 10−3 s
GBRT 1.6 s 10.9 × 10−3 s
MLP 28 s 98.7 × 10−3 s
Monte Carlo – 1086.6 s
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can say that the use of a particular metric with respect to another is useless. The use 
of a particular metric becomes decisive if we consider the purpose of the work and 
what represents the generalization error. Since in our case the goal was to predict 
prices over an extended range with different scales, we believe a relative metric has 
more meanings than an absolute one, and among the relative metrics (on the bottom 
of Fig. 3), we prefer the RRMSE (green) for its intrinsic characteristics. Summariz-
ing, we can say that the average price error of the Ridge equal to 1% is an excellent 
result in comparison to the 2% average of the standard deviation found from market 
data. In conclusion, we can state that the Ridge Regressor and the Neural Networks 
are the most reliable algorithms for this type of problem as they have shown the 
greatest pricing precision and represent valid alternatives to Monte Carlo simula-
tions as their pricing time is at least 5 orders of magnitude fewer.

Typically, in supervised learning algorithms it is customary to ask what the rela-
tive weight of the independent variables in target prediction; this analysis is com-
monly known as feature importance. In other words, it gives a qualitative measure 
of the impact that each explanatory variable has in predicting the target. In Fig. 5 for 
each of the features, the importance assigned by each of the algorithms is reported 
together with their average value and the standard deviation.

Specifically, all methods based on decision trees have an endogenous method 
which is based on the reduction of the value of the metric used in the construction 
of the trees. For all the other models, however, we used an indirect method, known 
as permutation importance, which consists of evaluating the deterioration in per-
formance when the values of a feature are randomly mixed and then using it as an 
indirect measure of the importance of a variable.

From Fig.  5 we can see a significant aspect: although with different weights, 
all the models developed indicate the price of the maximum underlying European 
swaption as the most explanatory variable. This outcome is reassuring as all models 
are able to recognize that the price of the Bermudan swaption is closely linked to the 

Fig. 5   Feature importance for each of the algorithms grouped by feature. The values assigned by the 
algorithms to each of the features have been normalized so that sum up to 1. Note that all tree-based 
models have an endogenous method while for all the other models we used an indirect method, known as 
permutation importance. The last bar on the right for each feature represents the mean value and standard 
deviation of the feature importance assigned by each of the individual algorithms
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price of the maximum European swaption which constitutes its lower bound. Fur-
thermore, except for the no-call period which is practically unused by all algorithms, 
the other features have comparable average values, with the only difference that the 
correlation between the swap rates has the lowest standard deviation, a sign that the 
returned weights by the individual algorithms are very similar to each other.

5 � Conclusions and Perspective

In this paper we explored supervised learning techniques to address optimal stop-
ping time problems in quantitative finance, focusing on the pricing of Bermudan 
swaptions. Our main goals were to assess the capability of these algorithms to cor-
rectly price these options overcoming the computational limitations of traditional 
Monte Carlo simulations, and identify the most important price drivers relying on 
feature selection analysis. To achieve these goals, we employed a heterogeneous set 
of different machine learning algorithms trained and tested on a synthetic dataset 
generated by means of the popular Hull and White short-rate model. By tuning its 
parameters we were able to explore different market conditions. Benchmark prices 
of Bermudan swaptions were obtained with a classic Least Square Monte Carlo 
simulation.

Our analysis demonstrates that the considered machine learning algorithms dis-
play high pricing precision yet being at least four orders of magnitude faster than 
the benchmark Monte Carlo simulation. In particular, the Neural Network and Ridge 
Regression are the most effective algorithms for this problem, with Ridge Regressor 
having a faster training phase. Gradient Boosted Regression Tree is also a promis-
ing algorithm due to its minimal data preparation requirements and intrinsic feature 
importance evaluation.

Furthermore, all the employed algorithms consistently highlight that the most 
relevant feature to explain Bermudan swaption prices is the maximum underlying 
European swaption premium. This result is coherent with the market knowledge that 
in order to price a Bermudan swaption it is essential to adopt pricing models capa-
ble of correctly pricing the underlying European swaptions quoted on the market. 
Finally, we emphasize that the approach developed in this work is easily generaliz-
able to other American-type financial products.

The findings of this paper open new perspectives. For example, the set of features 
could be extended to include, for each Bermudan swaption, all the corresponding 
underlying European swaptions, leading to interesting analyses about optimal hedg-
ing strategies vega risk. Another interesting application of our approach regards co-
terminal rate correlations, which are typically very difficult to imply from observed 
market prices. Instead to include their estimation with Hull and White model in the 
features set, one could use the machine learning algorithms to estimate them from 
historical Bermudan prices (i.e. swapping target and feature). Once available, these 
estimations could be used for pricing and correlation risk hedging purposes.
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Appendix A: Hull‑White One Factor Model (G1++)

The G1++ model assumes that the instantaneous short-rate process evolves under 
the risk-neutral measure according to

where a and � are positive constants and � is chosen so as to exactly fit the term 
structure of interest rates being currently observed in the market.

For more details see Brigo and Mercurio (2006)

Appendix B: Supervised Learning Algorithms

We present a list of the supervised learning algorithms chosen in this work and their 
main characteristics and differences.

•	 k-Nearest Neighbour (k-NN) This algorithm is arguably the simplest, however 
being a non-parametric algorithm, i.e. it does not make assumptions regarding 
the dataset, it is widely used. The principle behind nearest neighbour methods 
is to find a predefined number k of training samples closest in distance to the 
new point and predict the label from these. As there is only a data storing phase, 
and no training phase, it is well suited for a small dataset (both in the number 
of features and in the number of samples) and it is known not to work well on 
sparse data1 and features must have the same scale since absolute differences 
must weigh the same. The label assigned to a query point is computed based 
on the mean of the labels of its nearest neighbours. The model mainly presents 
three important hyperparameters: the number of neighbours k, the metric used to 
evaluate the distance and the weights assigned to the neighbours to define their 
importance.

•	 Linear Models Linear models are a class of models widely used in practice 
because they are very fast to train and predict; they make a prediction using a 
linear function of the input features, i.e. the target value is expected to be a lin-
ear weighted combination of the features. Notice that the linearity is a strong 
assumption and it is not always respected, but this gives them an easy interpreta-
tion. Training a model like that means setting its parameters so that the model 
best fits the training set. In general, linear models are very powerful with large 
datasets, especially if the number of features is huge (high-dimensional prob-
lem). There are many different linear models and the difference between them 
lies in how the parameters are learned and how the model complexity can be 
controlled. We have considered the Linear Regression and two of its regularised 
versions: Ridge and Lasso Regression where the regularization term is respec-
tively the L2 and the L1 norm of the weight vector.

(A1)dr(t) = [�(t) − ar(t)]dt + �dW(t)

1  Few data in large hyper-volume, i.e. most are zero.
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•	 Support Vector Machine (SVM) Conceptually the SVM, using some significant 
data points (support vector), try to define a corridor (or a hyper-volume in higher 
dimensions) within which the greatest number of data points fall. In general, 
SVMs are effective in the higher dimension, but they do not perform well when 
we have a large dataset due to the higher training time. They have a hyperparam-
eter that performs the same task as the alpha of the linear models and therefore 
it limits the importance of each support vector. SVMs are efficient also for non-
linear problems thanks to a mathematical technique called kernel trick; depend-
ing on the kernel used, additional hyperparameters are needed, but we must take 
that into account that one of the biggest drawbacks of these algorithms is the 
high sensitivity to hyperparameters.

•	 Tree-based algorithms As the name suggests, these algorithms are based on sim-
ple decision trees. Like SVMs, decision trees are versatile and very powerful and 
like k-NN, they are non-parametric algorithms. The goal of these algorithms is 
to create a model that predicts the value of a target variable by learning sim-
ple decision rules inferred from the data features. To build a tree, the algorithm 
searches all over the possible tests (a subdivision of the training set) and finds 
the one that is most informative about the target variable. This recursive process 
yields a binary tree,2 with each node containing a test and it is repeated until 
each region in the partition only contains a single target value. A prediction on 
a new data point is made by checking which partition of feature space the point 
lies in and the output is the mean target of the training point in this leaf. One of 
the main qualities of decision trees is that they require very little data prepara-
tion, moreover, they are very fast to predict and they are defined as white models 
because they are easily interpretable. Typically, building a tree and continuing 
until all leaves are pure leads to models that are very complex and highly overfit 
to the training data and therefore they provide poor generalization performance. 
The most common way to prevent overfitting is called pre-pruning and it consists 
of stopping the creation of the tree early. Possible criteria for pre-pruning include 
limiting the maximum depth of the tree, limiting the maximum number of leaves 
and others making the decision trees highly dependent on the numerous hyper-
parameters. Moreover, they have two main problems: the first is the inability to 
extrapolate or make predictions outside the training range, while the second is 
that they are unstable due to small variations in the training set. This last prob-
lem is solved with the decision tree ensembles: Random Forest (RF) and Gra-
dient Boosted Regression Tree (GBRT).

	   Ensembles are methods that combine multiple supervised models to cre-
ate a more powerful one. They are based on the idea that the aggregation of 
the predictions of a group of models will often give better results than with the 
best individual predictor. One way to obtain a group of predictors is to use the 
same algorithm for every model and train them on different random subsets of 
the training set; when sampling is performed with replacement, this method is 
called bagging, otherwise, it is called pasting. Generally, the net result is that the 

2  We have considered only binary trees.
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ensemble has a similar bias but a lower variance than a single predictor trained 
on the original training set. Below we briefly describe the two ensemble methods 
considered.

–	 A RF is an ensemble method of decision trees, generally trained via bagging 
method (Breiman, 2001). The idea behind random forests is that each deci-
sion tree will likely overfit on a specific part of the data, but if we build many 
trees that overfit in different ways, we can reduce the amount of overfitting by 
averaging their results. RF get its name from injecting randomness into the 
tree building in two ways: by the bagging method and by selecting a random 
subset of the features in each split test. In summary, the bootstrap sampling 
leads to each decision tree in the RF being built on a slightly different dataset 
and due to the selection of features in each node, each split in each tree oper-
ates on a different subset of features. Together, these two mechanisms ensure 
that all the trees in the RF are different. Essentially, RF shares all pros of 
the decision tree, while making up for some of their deficiencies; it also has 
practically all their hyperparameters with the addition of a new one that regu-
lates the number of trees to consider whose greater values are always better, 
because averaging more trees will yield a more robust ensemble by reducing 
overfitting.

–	 GBRT (Friedman, 2002) is part of the more general boosting method in 
which predictors are trained sequentially, each trying to correct its predeces-
sor. By default there is no randomization in gradient-boosted decision trees 
instead, strong pre-pruning is used; it often uses very shallow trees which 
makes the model smaller in terms of memory and makes predictions faster. 
Each tree can only provide good predictions on part of the data, and so more 
and more trees are added to iteratively improve performance. This method 
shares the same hyperparameters as RF with the addition of the learning rate 
but, in contrast to RF, increasing the number of predictors leads to a more 
complex model. The learning rate and the number of estimators are highly 
interconnected, as a lower rate means more trees are needed to build a model 
of similar complexity and therefore there is a trade-off between them. Similar 
to other tree-based models, the GBRT works well without scaling and often 
does not works well on high-dimensional sparse data. Their main drawback is 
that they require careful tuning of hyperparameters and may take a long time 
to train.

•	 Artificial Neural Networks (ANN) or Multi-Layer Perceptron (MLP) They can be 
understood as a large set of simpler units, called neurons, connected in some way 
and organized in layers. An ANN is composed of one input layer, one or more 
hidden layers and one final output layer. In order to understand the entire func-
tioning of the network, it is necessary to consider a single neuron: the inputs and 
the output are numbers and each input connection is associated with a weight. 
The artificial neuron computes a weighted sum of its inputs and then applies a 
non-linear transformation, called the activation function. In some way, ANNs 
can be viewed as generalizations of linear models that perform multiple stages 
of processing to come to a decision. The key point of ANN is the algorithm used 
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to train them; it is called the back-propagation algorithm and in simple terms, 
it is a gradient descent using an efficient technique for computing the gradients 
automatically. In conclusion, ANNs are typically black box models defined by 
a set of weights; they take some variables as input and modify the values of the 
weights so that they return the desired target. Given enough computation time, 
data and careful tuning of the hyperparameters, ANN are the most powerful and 
scalable machine learning models. The real difficulty in implementing a suitable 
model is contained in the enormous amount of hyperparameters that regulate the 
complexity of the network. Both the number of hidden layers and the number of 
neurons in each layer can affect the performance of an ANN, but there is a large 
variety of hyperparameters that need to be optimized for acceptable results. In 
general, choosing the exact network architecture for an ANN remains an art that 
requires extensive numerical experimentation and intuition, and is often prob-
lem-specific.

Appendix C: Error Metrics

We present a list of the metrics implemented and their main characteristics and 
differences.

•	 MAE It measures the average magnitude of the errors in a set of predictions, 
without considering their direction. It’s the average over sample (n) of the abso-
lute differences between the target ( yi ) and prediction ( ̂yi ) where all individual 
differences have equal weight. In formula: 

•	 MAPE Instead of using actual value, MAPE uses relative error to present the 
result. It is defined as 

 MAPE is also sometimes reported as a percentage, which is the above equation 
multiplied by 100.

•	 WAPE It is relative to what it would have been if a simple predictor had been 
used. More specifically, this simple predictor is just the average of the real val-
ues. Thus, it is defined as dividing the sum of absolute differences and normalis-
ing it by dividing the total absolute error of the simple predictor. In formula: 

(C2)MAE ∶=
1

n

n∑

i=1

||yi − ŷi
||

(C3)MAPE ∶=
1

n

n∑

i=1

||||
yi − ŷi

yi

||||

(C4)WAPE ∶=

∑n

i=1
�yi − ŷi�∑n

i=1
�yi�
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 WAPE is also sometimes reported as a percentage, which is the above equation 
multiplied by 100.

•	 RMSE It represents the square root of the second sample moment of the differ-
ences between predicted values and real values. In formula: 

•	 RMRSE It is defined as 

 RMRSE is also sometimes reported as a percentage, which is the above equation 
multiplied by 100.

•	 RRMSE Similarly to WAPE, it takes the total squared error and normalizes it by 
dividing it by the total squared error of a simple predictor. By taking the square 
root of the relative squared error one reduces the error to the same dimensions as 
the quantity being predicted. In formula: 

 RRMSE is also sometimes reported as a percentage, which is the above equation 
multiplied by 100.

Both MAE and RMSE express average model prediction error in units of the vari-
able of interest, they can range from 0 to ∞ and are indifferent to the direction of 
errors. They are negatively-oriented scores, which means lower values are better. 
Since the errors are squared before they are averaged, the RMSE gives a relatively 
high weight to large errors. This means the RMSE should be more useful when large 
errors are particularly undesirable and generally, RMSE will be higher than or equal 
to MAE. It can be noted that RMSRE and RRMSE are completely analogous to 
MAPE and WAPE where the absolute value is replaced with the square. RMSRE 
and MAPE are the relative versions of RMSE and MAE respectively and are taken 
into consideration in this context because, for example, an error of 100 EUR out 
of 200 EUR is worse than an error of the same amount out of 2000 EUR. How-
ever, they have some drawbacks: they are undefined for data points where the target 
value is 0 and they can grow unexpectedly large if the actual values are exception-
ally small themselves. To avoid these problems, an arbitrarily small term is usu-
ally added to the denominator. Moreover, they are asymmetric and it puts a heavier 
penalty on negative errors (when forecasts are higher than target) than on positive 
errors. To solve these problems RRMSE and WAPE are introduced and they are 
particularly recommended when the number of samples is low or their values are on 
different scales.

(C5)RMSE ∶=

√√√√1

n
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Appendix D: Hyperparameters Tuning

We report the analysis for the selection of the best hyperparameters for all the algo-
rithms implemented.

D.1 k‑Nearest Neighbour

The model mainly presents three important hyperparameters: the number of neigh-
bours k, the metric used to evaluate the distance and the weights assigned to 
the neighbours to define their importance. In the construction of this algorithm, we 
considered the Euclidean distance and we assigned uniform weights to all the neigh-
bours as values other than these, which worsened the cross-validation performance 
considerably. The only hyperparameter that needs to be fixed is, therefore, the num-
ber of neighbours. Its value is strictly linked to the complexity of the model since 
by increasing the number of neighbours the prediction will be averaged over more 
data points, thus making the model less linked to the peculiarities of the training 
set and therefore simpler. Figure 6 shows the trend of the RMSE evaluated on the 
training and on the validation set as a function of the number of neighbours. Each 
point shown is the average value, with the respective error, of the RMSE obtained 
with 5-fold cross-validation. Considering a single neighbour the prediction on the 
training set is perfect, but when more neighbours are considered the model becomes 
simpler and the training error increases while the validation error drops. It can be 
easily seen that the optimal value of neighbours is 4 as the value of the validation 
error from that value onwards starts to increase and, since its distance with training 
error is low, we clearly avoid overfitting the training test.

Linear Models

Among the linear models used, we found that the Ridge is the most promising for 
our problem. Therefore, considering the possibility of adding polynomial features, 

Fig. 6   RMSE trend of training 
(blue) and validation (orange) 
of k-NN as a function of the 
number of neighbors (k). For 
each value of k the mean value 
of the 5-fold cross-validation 
is reported with the respective 
error
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there are two hyperparameters of the algorithm: alpha, which is the magnitude 
of the regularization and degree, which is the maximum degree of the polyno-
mial features. We report in Fig. 7 a grid search on the hyperparameters to find the 
optimal combination. The mean of the 5-fold cross-validation RMSE is reported for 
each pair of values. As can be deduced from Fig. 7, the hyperparameters that return 
the lowest value of the evaluation metric on the validation set are ����� = 0.01 
and ������ = 6 and consequently they were chosen as optimal parameters. It can 
be seen that increasing the maximum degree gives a great improvement in perfor-
mance, but using one that is too high the model begins to generalize worse; this is 
due to the fact that polynomials of high degrees fit in an excellent way to the training 
set, but thus having a poor predictive power on the validation set.

D.2 Support Vector Machines

The hyperparameter that performs the same task of alpha of the linear models is 
called C and therefore represents a regularizing parameter that has the task of lim-
iting the importance of each support vector. The strength of the regularization is 
inversely proportional to C. In general, support vector machines are really effective 
in the higher dimension, but they do not perform well when we have a large dataset 
because the required training time is higher. SVMs are efficient also for non-linear 
problems thanks to a mathematical technique called kernel trick, which allows us 
to map our data into a higher-dimensional space. In our work, we implemented the 
Gaussian radial basis function kernel which considers all possible polynomials of 
all degrees, but the importance of the features decrees for a higher degree. Doing 
so, there is an additional hyperparameter, gamma, which is a regularizing hyperpa-
rameter. To obtain the best hyperparameters, we performed a grid search on C and 
gamma and we report in Fig. 8 the average values of the RMSE obtained from a 

Fig. 7   Heat-map of mean 5-fold cross-validation RMSE of Ridge Regression as a function of � and 
degree. Only the RMSE mean value on the validation set is reported
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5-fold cross-validation for each pair. As can be deduced from Fig. 8, the hyperpa-
rameters that return the lowest value of the evaluation metric on the validation set 
are � = 100 and ����� = 0.1 and consequently, they were chosen as optimal param-
eters. In reality, the same value obtained for � = 100 is also obtained with � = 1000 , 
but since the greater the value of C the more complex the model and the greater the 
probability of overfitting, the lower value has been chosen.

D.4 Tree

Since the decision tree works well on data with features that are on completely 
different scales, we have decided not to apply any transformations to our data, 
but as we would expect, if we apply this algorithm without pruning it, it tends 
to overfit; specifically, the algorithm builds a tree with a depth of 22 levels and 
with 3472 leaves, that is exactly the number of samples in our training set. After 
a phase of analysis and study of the various hyperparameters, we discovered that 
the parameters that most influenced the performance of our tree are respectively 
the maximum reachable depth (max_depth) and the minimum number of sam-
ples required to be at a leaf node (min_samples_leaf). We then carried out 
a grid search on these hyperparameters and in Fig. 9 we report the trend of the 
RMSE as a function of them. Each point shown is the average value, with the 
respective error, of the RMSE obtained with 5-fold cross-validation. As can be 
deduced from Fig. 9, the optimal values of the hyperparameters are respectively 
���_�������_���� = 3 , as it returns the lowest value of the RMSE on the val-
idation set and ���_����� = 11 because for higher values the metric remains 
approximately constant, but having a greater error on the training set, the pos-
sibility of overfitting is lower.

Fig. 8   Heat-map of mean 5-fold cross-validation RMSE of SVM with a radial basis function kernel as a 
function of C and gamma. Only the RMSE mean value on the validation set is reported
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D.5 Random Forest

Like decision trees, random forest works well with features that are on a com-
pletely different scale, therefore we have not applied any transformations to our 
data. It is known that the most important hyperparameters are max_features, 
i.e. the number of features to consider when looking for the best split and max_
depth, i.e. the maximum depth of the trees. We have therefore decided to per-
form a grid search on these hyperparameters and we report in Fig. 10 the trend of 
the RMSE as a function of them. Each point shown is the average value, with the 
respective error, of the RMSE obtained with 5-fold cross-validation. As can be 

Fig. 9   RMSE trend on training (blue) and validation (orange) set of the decision tree as a function of 
max_depth (left) and min_samples_leaf (right). For each of the hyperparameters, the average 
value of RMSE obtained with 5-fold cross-validation is reported with the respective error

Fig. 10   RMSE trend on training (blue) and validation (orange) set of the random forest as a function of 
the number of max_depth (left) and max_features (right). For each of the hyperparameters, the 
average value of RMSE obtained with 5-fold cross-validation is reported with the respective error. The 
term sqrt and log2 means that max_features are respectively equal to square root and logarithm to 
base 2 of the number of features; auto means that all features are used and therefore no randomness in 
selecting features
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deduced from Fig. 10, the values of the optimal hyperparameters are respectively 
���_����� = 17 , because for higher values the metric remains approximately 
constant, and ���_�������� = log2 . The term log2 means that max_features 
are equal to the logarithm to base 2 of the number of features. Once these values 
were set, we searched for the optimal value of trees to use. In Fig. 11 we report 
the trend of the RMSE as a function of the number of trees in the forest. A larger 
number of n_estimators is always better, but the training time increases con-
siderably. As can be seen from Fig. 11, we have chosen to use 500 decision trees 
as increasing this number further does not provide any improvement in terms of 
performance.

D.6 Gradient Boosted Regression Tree

This method shares the same hyperparameters as a random forest with the addi-
tion of the learning rate (learning_rate), which controls how strongly 
each tree tries to correct the mistakes of the previous trees; a higher learning 
rate means each tree can make stronger corrections, allowing for more complex 
models. In contrast to the random forest, where a higher number of predictors 
(n_estimators) is always better, increasing it in gradient boosting leads to a 
more complex model. The learning_rate and n_estimators are highly 
interconnected, as a lower rate means more trees are needed to build a model of 

Fig. 11   RMSE trend on training (blue) and validation (orange) set of random forest with 
���_����� = 17 and ���_�������� = log2 as a function of the number of n_estimators. For each 
of the hyperparameters the average value of RMSE obtained with 5-fold cross-validation is reported with 
the respective error
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similar complexity; generally, there is a trade-off between these two hyperparam-
eters. Their main drawback is that they require careful tuning of hyperparameters 
and may take a long time to train. Furthermore, the number of hyperparameters 
to be set is high as each of them has a great influence on the performance. The 
first two hyperparameters studied are those considered most decisive and specifi-
cally, the learning rate and the number of trees. Figure 12 shows the heat map of 
the grid search on them where the average values of the RMSE obtained from 
5-fold cross-validation for each pair are reported. From Fig. 12, it can be clearly 
seen that the learning rate has the greatest impact on performance and the pair 
��������_���� = 0.1 and �_���������� = 1000 has been selected as optimal 
hyperparameters. Like the random forest, the other two essential parameters 
to avoid overfitting our model are the maximum depth of the simple predictors 

Fig. 12   Heat-map of mean 5-fold cross-validation RMSE of GBRT as a function of learning_rate 
and n_estimators. Only the RMSE mean value on the validation set is reported

Fig. 13   Heat-map of mean 5-fold cross validation RMSE of GBRT with ��������_���� = 0.1 and 
�_���������� = 1000 as a function of max_depth and max_features. Only the RMSE mean 
value on the validation set is reported
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(max_depth) and the number of features used for each split (max_features). 
In a totally similar way to before, we performed a grid search also on these hyper-
parameters in order to select the optimal ones. From Fig. 13, it can be noted that 
the factor that influences the performance the most is max_depth; the pair 
���_����� = 5 and ���_�������� = log2 are the optimal values. Although in 
a much lower way than all the previous ones, we have observed that the mini-
mum number of samples required to be at a leaf node (min_samples_leaf) 
slightly influences the performance of gradient boosted regression tree. In Fig. 14 
we report the trend of the RMSE as a function of it. Each point shown is the 
average value, with the respective error, of the RMSE obtained with 5-fold cross-
validation. As can be seen from Fig.  14, as min_samples_leaf varies, the 
RMSE value on the validation set slightly decreases to a value of 6, while the 
training value increases. After this value, the evaluation metric on the validation 
set increases again. For this reason, we have fixed ���_�������_���� = 6.

D.7 Artificial Neural Networks

In general, the design of the input and output layers in a network is often straight-
forward because they should adapt to the dataset and to the problem. In general, 
for multivariate regression, it is necessary one output neuron per output dimension. 
Consequently, since our aim is to produce a single value we will need only one out-
put neuron. The number of neurons in the input layer is instead established by the 
number of inputs of our problems, that is, by the number of features; in our case, 
therefore we have an input layer composed of 7 neurons, i.e. one for each of the 
features of the dataset. These neurons have the sole task of passing the input val-
ues to the hidden layers without applying them to any transformations. Usually, in 
regression problems the activation function is the ReLU (or one of its variants); it is 
applied to all hidden neurons but not to the output ones, so they are free to output any 
range of values. The loss function to use during the training is typically the MSE. In 
order to make our training faster and more stable, we have scaled all the features 
and also the target by removing the mean and scaling to unit variance; centring and 

Fig. 14   RMSE trend on 
training (blue) and valida-
tion (orange) set of GBRT 
with ��������_���� = 0.1 , 
�_���������� = 1000 , 
���_����� = 5 and 
���_�������� = log2 as a 
function of min_samples_
leaf. For each of the hyper-
parameter, the average value 
of RMSE obtained with 5-fold 
cross-validation is reported with 
the respective error
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scaling happen independently on each feature by computing the relevant statistics 
on the samples in the training set. The back-propagation algorithm suffers from a 
problem called vanishing/exploding gradient, which consists of very unstable gra-
dients. A way to alleviate that is to use the correct initialization of the weights for 
each activation function (Glorot & Bengio, 2010); for this reason, we select the He 
normal initialization in combination with ReLU. The random initialization of the 
weights is fundamental because breaks the symmetry and allows back-propagation 
to train a diverse team of neurons. Another fundamental element of neural networks 
is the batch size i.e. the size of the groups of instances used in the back-propagation 
algorithm; it can have a significant impact on the model performance and training 
time. Typically small batches are preferable because they led to better models in less 
training time (Masters & Luschi, 2018); for this reason, the batch size is set to 32. 
Moreover, in order to avoid overfitting, we have implemented early stopping. It is a 
regularization technique that consists of interrupt training when there is decreasing 
in the training loss function, but, at the same time, no progress on the validation set 
for a predefined number of epochs3; we set this limit to 30 epochs.

Once we have set these parameters and have adequately prepared the data to be 
processed by our neural networks we can concentrate on tuning the other hyper-
parameters. The most important are 4 mainly: the optimizer, the learning rate, the 
number of hidden layers and the number of neurons for each hidden layer. Training 
very large deep neural networks can be very slow. Some of the techniques already 
implemented and the choice of a good initialization strategy together with a good 
activation function, allow to speed up the training, but another huge speed boost 
comes from using a faster optimizer than the regular gradient descent. Our choice is 
to use Nadam algorithm (Dozat, 2016) that is an adaptive optimization method plus 
the Nesterov trick (Nesterov, 1983); it returns an excellent quality of convergence 
in a short time. A fundamental element for the convergence of the algorithm is the 
choice of the learning rate. Since the optimal learning rate depends on the other 
hyperparameter, we fix it after choosing the optimizer. Using too high learning rate 
values the training may diverge, but with values that are too low, training will even-
tually converge to the optimum, but it will take a very long time. One way to find a 
good learning rate (Muller & Guido, 2016) is to train the model for a few hundred 
iterations, exponentially increasing the learning rate from a very small value to a 
very large, and then looking at the learning curve and picking a learning rate slightly 
lower than the one at which the learning curves starts shooting back up; in this way, 
we set its value equal to 0.01.

Theoretically, neural networks with just one hidden layer can model even the 
most complex functions (Hornik, 1991), provided it has enough neurons. But for 
complex problems, deep networks have a much higher efficiency than shallow 
ones: they can model complex functions using exponentially fewer neurons than 
shallow nets allowing them to reach much better performance with the same 
amount of training data. Regarding the number of neurons in the hidden layers, 
it is common practice to use the same number of neurons in all hidden layers as 

3  Number of the cycle through the full training set in the back-propagation algorithm.
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in general performs well, plus, there is only one hyperparameter to tune, instead 
of one per layer. To obtain the optimal number of these two hyperparameters, 
we performed a grid search as in the previous cases. In Fig.  15 we report the 
heat-map of mean 5-fold cross-validation RMSE of the neural networks imple-
mented as a function of the number of hidden layers (n_hidden) and the num-
ber of neurons per hidden layer (n_neurons). From Fig.  15, it would seem 
that increasing the number of layers has a greater impact on network perfor-
mance than the number of neurons per layer. The hyperparameters that return 
the lowest value of the evaluation metric on the validation set are �_������ = 3 
and �_������� = 100 . Compared to the other similar cross-validation values we 
have chosen this configuration as it is the one with fewer weights to learn and 
consequently, the probability of overfitting is lower.

Fig. 15   Heat-map of mean 5-fold cross-validation RMSE of MLP as a function of n_hidden and n_
neurons. Only the RMSE mean value on the validation set is reported

Table 6   G1++ parameters 
chosen for the creation of the 
dataset

Speed of mean reversion (a) (%) Volatil-
ity ( � ) 
(%)

− 2 0.5
− 1 1
2 5
3 2
4 1.5
5 2.5
6 3
9 4
15 7
30 8
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Appendix E: G1++ Parameters

We present the values of the G1 ++ parameters used for the creation of the data-
set (Table 6).

Appendix F: Market Data

See Tables 7, 8, 9, and 10.

Table 7   EONIA and EURIBOR 
6 M zero rate yield curves as of 
31st October 2019 (First part) in 
percentage values (continuous 
compounding, act/365 day-
count convention)

Maturity ZC rates (EONIA OIS) ZC rates 
EURIBOR 
6 M

01/11/19 − 0.46943 − 0.32479
04/11/19 − 0.46944 − 0.32479
05/11/19 − 0.46911 − 0.32479
11/11/19 − 0.46299 − 0.32479
18/11/19 − 0.46237 − 0.32479
25/11/19 − 0.46097 − 0.32479
04/12/19 − 0.46056 − 0.32479
06/01/20 − 0.46293 − 0.32808
04/02/20 − 0.46483 − 0.33032
04/03/20 − 0.46782 − 0.33337
06/04/20 − 0.47286 − 0.33823
04/05/20 − 0.47693 − 0.34200
04/06/20 − 0.48104 − 0.34571
06/07/20 − 0.48517 − 0.34914
04/08/20 − 0.48830 − 0.35194
04/09/20 − 0.49245 − 0.35463
05/10/20 − 0.49560 − 0.35705
04/11/20 − 0.49875 − 0.35916
04/12/20 − 0.50170 − 0.36108
04/01/21 − 0.50438 − 0.36283
04/02/21 − 0.50669 − 0.36432
04/03/21 − 0.50847 − 0.36541
06/04/21 − 0.51032 − 0.36636
04/05/21 − 0.51175 − 0.36686
04/06/21 − 0.51321 − 0.36706
05/07/21 − 0.51435 − 0.36692
04/08/21 − 0.51490 − 0.36648
06/09/21 − 0.51467 − 0.36571
04/10/21 − 0.51402 − 0.36484
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Table 8   EONIA and EURIBOR 
6 M zero rate yield curves as of 
31st October 2019 (Second part) 
in percentage values (continuous 
compounding, act/365 day-
count convention)

Maturity ZC rates (EONIA OIS) ZC rates 
EURIBOR 
6 M

04/11/21 − 0.51305 − 0.36368
04/11/22 − 0.50001 − 0.33954
06/11/23 − 0.47279 − 0.30385
04/11/24 − 0.43445 − 0.26003
04/11/25 − 0.38600 − 0.20939
04/11/26 − 0.33043 − 0.15369
04/11/27 − 0.27072 − 0.09292
06/11/28 − 0.20884 − 0.03198
05/11/29 − 0.14779 0.02709
04/11/30 − 0.08655 0.08475
04/11/31 − 0.03021 0.13987
04/11/32 0.02316 0.19116
04/11/33 0.07304 0.23762
06/11/34 0.11844 0.27911
05/11/35 0.15768 0.31473
04/11/36 0.19140 0.34514
04/11/37 0.21996 0.37064
04/11/38 0.24384 0.39166
04/11/39 0.26351 0.40860
05/11/40 0.27957 0.42199
04/11/41 0.29222 0.43210
04/11/42 0.30202 0.43944
04/11/43 0.30928 0.44437
04/11/44 0.31438 0.44724
06/11/45 0.31783 0.44865
05/11/46 0.31991 0.44894
04/11/47 0.32080 0.44821
04/11/48 0.32064 0.44655
04/11/49 0.31953 0.44403
04/11/54 0.30413 0.42202
04/11/59 0.27804 0.38979
04/11/69 0.22309 0.32341
06/11/79 0.19565 0.28838
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