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Abstract
This paper focuses on the estimation of income distribution from grouped data in the 
form of quantiles. We propose a novel application of the minimum quantile distance 
(MQD) approach and compare its performance with the maximum likelihood (ML) 
technique. The estimation methods are applied using three parametric distributions: 
the generalized beta distribution of the second kind (GB2), the Dagum distribution, 
and the Singh–Maddala distribution. We provide the density-quantile functions for 
these distributions, along with reproducible R code. A simulation study is conducted 
to evaluate the performance of the MQD and ML methods. The proposed methods 
are then applied to data from 30 European countries, utilizing the aforementioned 
parametric distributions. To validate the accuracy of the estimates, we compare 
them with estimates obtained from more detailed and informative microdata sets. 
The findings confirm the excellent performance of the considered parametric dis-
tributions in estimating income distribution. Additionally, the MQD approach is 
identified as a straightforward and reliable method for this purpose. Notably, the 
MQD method displays superior robustness in comparison to the ML technique when 
it comes to selecting suitable starting values for the underlying computation algo-
rithm, specifically when dealing with the GB2 distribution.
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1 Introduction

Estimating income distribution in an accurate way is very important for the meas-
urement of inequality and poverty, and more generally comparing welfare across 
space and time. An overview of the literature on modeling income distributions, 
various estimation methods and distribution specifications is available in the book 
by Kleiber and Kotz (2003), and the papers in Chotikapanich (2008).

When individual income data are available the estimation of income would be 
quite straightforward. However, very often the available income data is scarce, 
especially for many developing countries, which encumbers deriving representa-
tive income distribution models and inequality statistics. Frequently the income 
data are only available in grouped form, for example income deciles or income 
shares, mean incomes and Gini coefficients. The World Income Inequality Data-
base (WIID), the World Inequality Database (WID) and the World Bank are 
among the largest databases providing grouped income data. However, when 
looking into smaller areas, the data provided can be only in the form of income 
quantiles due to privacy of personal data and the proximity of the considered 
areas as, for example, household income data at local levels provided by the 
French National Institute of Statistics and Economic Studies (INSEE). This paper 
focuses on estimating income distribution using only quantile income data and 
aims at determining a method suitable for such data.

In terms of modeling grouped income data, various approaches have been used 
depending on the data available. Two main strategies have been developed, either 
nonparametric techniques like for instance employing a nonparametric kernel 
density function (Sala-i-Martin, 2006), or parametric techniques assuming that 
the income distribution follows a parametric model. Parametric models are shown 
to perform very well when estimating income distributions and inequality meas-
ures (Chotikapanich et  al., 2007) and even outperform the nonparametric tech-
niques (Minoiu & Reddy, 2014; Jordá et al., 2021).

For the parametric modeling, it is crucial to choose a reliable estimation tech-
nique and a suitable parametric distribution model. Besides, the estimation tech-
niques have to be adjusted to the grouped data types, usually grouped data with 
fixed bounds and random cell size or grouped data with fixed cell size and ran-
dom bounds. Among the most common estimation techniques is the maximum 
likelihood based on sample proportions using a multinomial likelihood function 
[see, for example, (McDonald, 1984; Jöhnk & Niermann, 2002; Bandourian et al., 
2003; Chotikapanich et al., 2018)]. Eckernkemper and Gribisch (2021) propose a 
general framework for ML and Bayesian estimation based on grouped data infor-
mation accounting for known and unknown group boundaries. Another widely 
used technique is the method-of-moments approach where population and income 
shares are matched to their theoretical counterparts. Chotikapanich et al. (2007, 
2012) apply it for the beta-2 distribution using population shares and class mean 
income data. Hajargasht et al. (2012) extended the work of Chotikapanich et al. 
(2007, 2012) to a generalized method-of-moments (GMM) approach and pro-
vided inference for the estimated distributions. Further, minimizing the distance 



1 3

Estimating Income Distributions From Grouped Data: A Minimum…

between a set of income indicators and their parametric representations is sug-
gested by Graf and Nedyalkova (2014) and Hajargasht and Griffiths (2020) sug-
gest minimum distance estimation of parametric Lorenz curves based on grouped 
data information.

In this work, we suggest the minumum quantile distance (MQD) method which 
is designed especially for quantile data (grouped data with fixed bounds) which as 
mentioned above could be the only grouped data available (for example, data from 
INSEE). Assuming that the income distribution of a country can be modeled with a 
specific parametric distribution, in this work we estimate the income distribution of 
each observed country by minimizing the distance between the empirical estimates 
of the respective country’s income quantiles and their parametric representations. 
We compare our estimates with the estimates obtained with a ML method. At the 
end, we verify the results by comparing them with representative microdata.

Some of the earliest research work introducing the minimum quantile distance 
approach was done by Aitchison and Brown (1957) who applied the method to the 
log-normal distribution. After Parzen (1979) introduced the density-quantile func-
tion, LaRiccia and Wehrly (1985) showed the asymptotic properties of a family of 
minimum quantile distance estimators and applied it to the three-parameter log-nor-
mal distribution. Carmody et  al. (1984) applied it to the three-parameter Weibull 
distribution. Jöhnk and Niermann (2002) compare it with other methods employing 
the Weibull distribution.

In the present study, we contribute to the literature by examining the performance 
of the MQD method applied to the generalized beta distribution of the second type 
(GB2), which is the mostly used distribution in recent studies on income distribution 
(Chotikapanich et  al., 2018), the Dagum (1977) and the Singh-Maddala distribu-
tions. We provide the density-quantile functions for the considered distributions and 
reproducible R code (R Core Team, 2022). Further, we compare the MQD method 
with the ML. We estimate the income distribution of 30 European countries using 
data on their income deciles and quintiles. We use data from Eurostat, namely the 
European Union Statistics on Income and Living Conditions (EU-SILC 2011) data. 
Due to the fact that we have microdata for all of the observed countries, we have the 
opportunity to compare the accuracy of our estimates from the grouped data with 
the more representative microdata estimates. The findings of our study reveal that 
the MQD method performs as good as the ML method for both decile and quintile 
data. However, the MQD method exhibits greater robustness and lower sensitivity to 
starting values, as supported by a simulation study we conducted. The Dagum and 
the Singh–Maddala distributions are outperformed by the GB2 in terms of absolute 
differences between the estimated parametric quantiles and their observed nonpara-
metric counterparts. We note that the GB2 outperformance is sometimes at the cost 
of introducing significant empirical and analytical complexity [see also (Bandou-
rian et  al., 2003)]. The Gini coefficient and the mean are best approximated with 
the Dagum distribution irrelevant of the estimation technique, when evaluating the 
estimates based on absolute error (difference between parametric estimates and esti-
mates from the microdata).

This work is structured as follows. In Sect. 2.1, the MQD method is described. Sec-
tion 2.2 outlines briefly the ML technique. In Sect. 2.3, the GB2, the Dagum and the 



 T. Spasova 

1 3

Singh–Maddala distributions are defined. Simulation results are shown in Sect. 3. The 
data being used and the empirical results are discussed in Sect. 4. Finally, we summa-
rize and make some concluding remarks in Sect. 5.

2  Methodology

Let N be the number of income quantiles available for a given country and let 
q = (q(u1),⋯ , q(uN))

⊤ be a N-vector of sample quantiles with q(u) denoting the uth 
quantile and 0 < u1 < ⋯ < uN < 1.

2.1  The Minimum Quantile Distance Method

Assuming that given data comes from a specific parametric distribution, one can rep-
resent the observed income quantiles parametrically with the quantile function of the 
assumed distribution. Then the representative parametric distribution can be estimated 
by minimizing the distance between the observed income quantiles and their paramet-
ric counterparts. This method was applied and proved to be consistent, asymptotically 
normal and robust against gross errors under the regularity conditions specified by 
LaRiccia and Wehrly (1985).

Let Q(�) = (Q(ui;�))
N
i=1

 be a N-vector of theoretical quantiles of a given parametric 
distribution and � the vector of the parameters of the considered distribution. Following 
LaRiccia and Wehrly (1985), the minimum quantile distance estimator is given by

where is q a N-vector of sample quantiles as defined above.
H(�) is the optimal weighting matrix defined as

which is the inverse of the asymptotic covariance matrix of 
√

N(q −Q(�)) and V−1 
is the inverse of the matrix V defined as

and

with fQ(u;�) = f [Q(u;�);�] being the density-quantile function defined in LaRiccia 
and Wehrly (1985) and Parzen (1979).

(1)�̂� = argmin
𝜃

{q −Q(𝜃)}⊤H(𝜃){q −Q(𝜃)},

(2)H(�) = D(�)V−1D(�),

(3)V = {min(ui, uj) − uiuj}N×N

(4)D(�) = diag[fQ(u1;�),⋯ , fQ(uN ;�)],
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2.2  Maximum Likelihood Estimation

Let the cumulative number of the observed income group observations be si =
i

∑

j=1

sj 

with i = 1, ...,N and s = sN+1 be the total number of group observations.
Having the information on the income quantiles and the corresponding number 

of observations for each income group, we could use the maximum likelihood esti-
mation technique. Following Eckernkemper and Gribisch (2021, Equations (4)–(6)) 
and Nishino and Kakamu (2011), we obtain the likelihood from a joint distribution 
of order statistics

Taking logarithms of Eq. 5, we obtain the log-likelihood

where F is a cumulative distribution function of the considered parametric distribu-
tion, f the respective density function, � the vector of the parameters of the consid-
ered distribution and q(ui) is the ui th sample quantile as defined above.

2.3  The GB2 Distribution

The GB2 was introduced by McDonald (1984) and is acknowledged to perform in 
an excellent way when estimating income distributions [see (Kleiber & Kotz, 2003; 
Jenkins, 2009; Chotikapanich et al., 2018)]. It is a four-parameter distribution, and 
we will denote it as GB2(�) , where � is the quadruple (a, b, p, q). Its density is

where a, b, p and q are positive and B(p, q) = ∫
1

0

tp−1(1 − t)q−1dt is the beta func-

tion. When � is obvious in the context, we write only f(x).
The cumulative distribution function (cdf) is given by

(5)

L(�) =s!
(F(q(ui);�))

si−1

(si − 1)!
f (q(u1);�)

×

{ N
∏

i=2

(F(q(ui);�) − F(q(ui−1);�))
si−si−1−1

(si − si−1 − 1)!
f (q(ui);�)

}

×
(1 − F(q(uN);�))

s−sN

(s − sN)!

(6)

logL(�) = C +

N
∑

i=1

log(f (q(ui);�)) + (s1 − 1)log(F(q(u1);�))

+

N
∑

i=2

(si − si−1 − 1)log[F(q(ui);�) − F(q(ui−1);�)]

+ (s − sN)log(1 − F(q(uN);�)),

(7)f (x;𝜃) =
axap−1

bapB(p, q)[1 + (x∕b)a]p+q
, x > 0,
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where B(�;p, q) = ∫
�

0

tp−1(1 − t)q−1dt∕B(p, q) is the incomplete beta function ratio 

with � =
(x∕b)a

1+(x∕b)a
 . B(�;p, q) is commonly included as readily-computed function in 

statistical software.
The quantile function is given by Chotikapanich et al. (2018)

where B−1(u;p, q) is the quantile function of the standardized beta distribution evalu-
ated at u.

The density-quantile function is a basic object in quantile-based methodology. It is 
obtained by substituting the density function (Eq. 7) into the quantile function (equa-
tion 9). For the GB2 distribution the density-quantile function is given by

where B−1(u;p, q) is the quantile function of the standardized beta distribution evalu-
ated at u and B(p, q) is the beta function.

The moment distribution function for the kth moment is given by

where B(�;p + k∕a, q − k∕a) is the incomplete beta function ratio defined as above 
with � =

(x∕b)a

1+(x∕b)a
.

The k− th moment is given by

The Gini coefficient was provided by McDonald (1984) and is given by

where

(8)F(x;𝜃) = B

(

(x∕b)a

1 + (x∕b)a
;p;q

)

, x > 0,

(9)Q(u;𝜃) = b

(

B−1(u;p, q)

1 − B−1(u;p, q)

)1∕a

, 0 < u < 1,

(10)fQ(u;�) =
a
(

B−1(u;p,q)

1−B−1(u;p,q)

)(ap−1)∕a

bB(p, q)
(

1 +
B−1(u;p,q)

1−B−1(u;p,q)

)p+q

(11)Fk(x;�) = B

(

(x∕b)a

1 + (x∕b)a
;p + k∕a, q − k∕a

)

,

�(k) =
bkB(p + k∕a)B(q − k∕a)

B(p, q)
.

(12)G =
B(2q − 1∕a, 2p + 1∕a)

B(p, q)B(p + 1∕a, q − 1∕a)

(

1

p
J(1) −

1

p + 1∕a
J(2)

)
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where 3F2 is the generalized hypergeometric function.
Amongst the special cases of the GB2 distribution are Dagum distribution(q = 1 ) 

and the Singh–Maddala distribution ( p = 1 ). These distributions are three-parameter 
distributions and the functions describing them are available in closed form. We pro-
vide the moments, Gini, density, cdf, quantile, density-quantile and moment distri-
bution functions for the Dagum and the Singh–Maddala distributions in Table 1.

3  Simulation Results

In order to assess the effectiveness of the MQD method to the ML method as 
described in Sect.  2.2, we perform a simulation study. In this study, we assumed 
knowledge of the “true” distribution. The data was simulated from a GB2 distribu-
tion with parameter settings derived from our estimates obtained from income data 
of Austria (a = 3.03, b = 21.71, p = 1.35, q = 1.61) , from a Dagum distribution 
with parameters (a = 3.03, b = 21.71, p = 1.35) and from a Singh–Maddala distri-
bution with parameters (a = 3.03, b = 21.71, q = 1.61) as described in Sect. 2.1 for 
the MQD and Sect.  2.2 for the ML methods, respectively. For every distribution, 
we simulate k = 5000 and k = 10,000 observations in each trial and repeat this pro-
cess for a total of K = 500 trials. Subsequently, we establish N = 9 and N = 4 group 
income boundaries based on the respective quantiles of the simulated data. For each 
of the K data sets, we estimate the parameters of the underlying GB2, Dagum and 
Singh-Maddala distributions using the two estimation methods.

J(1) = 3F2

[

1, p + q, 2p +
1

a
;p + 1, 2(p + q);1

]

,

J(2) = 3F2

[

1, p + q, 2p +
1

a
;p +

1

a
+ 1, 2(p + q);1

]

,

Table 1  Singh-Maddala and Dagum distributions characteristics

Source: Kleiber and Kotz (2003)
Note: a, b, p, q are positive, 0 < u < 1 and x > 0

Function Dagum Singh-Maddala

Density apxap−1

bap[1+(x∕b)a]1+p
aqxa−1

ba[1+(x∕b)a]1+q

CDF [

1 +
(

x

b

)−a]−p

1 −
[

1 +
(

x

b

)a]−q

Quantile b
[

u−1∕p − 1]−1∕a b
[

(1 − u)−1∕q − 1]1∕a

Density-quantile ap(u−1∕p−1)(1−ap)∕a

b(1+(1∕(u−1∕p−1)))p+1
aq((1−u)−1∕q−1)(a−1)∕a

b(1−u)−(q+1)∕q

(kth) Moment distribution B(
(x∕b)a

1+(x∕b)a
;p + k∕a, 1 − k∕a) B(

(x∕b)a

1+(x∕b)a
;1 + k∕a, q − k∕a)

Moments (kth moment) bkΓ(p+k∕a)Γ(1−k∕a)

Γ(p)

bkΓ(1+k∕a)Γ(q−k∕a)

Γ(q)

Gini Γ(p)Γ(2p+1∕a)

Γ(2p)Γ(p+1∕a)
− 1 1 −

Γ(q)Γ(2q−1∕a)

Γ(q−1∕a)Γ(2q)
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Table 2 presents the Mean Squared Error (MSE) results for the given parameter 
settings of the considered case, which were obtained from 500 independently simu-
lated data sets.

The MSE are decreasing with increasing sample size, indicating the consistency 
of the estimates. The MSE of the distribution parameters estimates exhibit negligi-
ble differences and are consistently small for both the MQD and ML methods when 

Table 2  Mean squared errors for estimated distribution parameters (simulation results)

The reported results are based on 500 Monte Carlo replications with the following parameters setting: 
a = 3.03, b = 21.71, p = 1.35, q = 1.61 for the GB2 distribution (Austria) and p = 1 and q = 1 for the 
Dagum and the the Singh–Maddala distributions respectively

 Groups Parameters GB2 Dagum Singh-Maddala

MQD ML MQD ML MQD ML

k = 5000

a 0.640 0.607 0.007 0.007 0.007 0.006
b 10.761 24.614 0.868 0.939 1.228 1.228
p 22.601 5.435 0.014 0.015 – –

N = 9 q 7.924 16.250 – – 0.303 0.030
Mean 0.024 0.025 0.098 0.107 0.022 0.022
Median 0.022 0.021 0.045 0.044 0.021 0.021
Gini 8.9e−06 8.1e−06 2.7e−05 2.8e−05 9.8e−06 9.9e−06

a 3.697 4.525 0.037 0.019 0.018 0.015
p 81.313 392.104 3.066 3.127 4.318 3.655
p 12.700 70.682 0.423 0.062 – –

N = 4 q 39.314 173.489 – – 0.122 0.105
Mean 0.023 0.023 0.107 0.105 0.021 0.023
Median 0.024 0.022 0.046 0.041 0.022 0.022
Gini 1e-05 1e-05 2.6e−05 2.5e−05 1e-05 1.1e−05

k = 10,000

a 0.293 0.331 0.003 0.003 0.004 0.004
b 1.059 1.955 0.436 0.495 0.688 0.604
p 0.564 1.074 0.007 0.008 – –

N = 9 q 0.965 2.065 – – 0.017 0.014
Mean 0.013 0.011 0.051 0.049 0.011 0.011
Median 0.011 0.011 0.0422 0.023 0.010 0.010
Gini 4.9e−06 4.7e−06 1.4e−05 1.4e−05 5.3e−06 5.7e−06

a 1.996 2.290 0.008 0.008 0.009 0.009
p 38.390 156.787 1.811 1.381 1.481 2.049
p 7.262 21.837 0.047 0.026 – –

N = 4 q 20.652 73.835 – – 0.029 0.054
Mean 0.011 0.012 0.055 0.048 0.011 0.011
Median 0.012 0.012 0.022 0.022 0.010 0.010
Gini 4.8e−06 4.6e−06 1.4e−05 1.4e−05 4.6e−06 5.4e−06
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employing the Dagum and the Singh-Maddala distributions. However, the GB2 dis-
tribution estimated with the ML method has much larger MSE than the estimates 
computed with the MQD method which reflects that the MQD is more robust and 
less sensitive to starting values.

Notably, the disparities in the estimates of the mean, the median and the Gini 
coefficient between the grouped and raw data are minimal. This implies that the 
process of grouping data only results in modest reductions in estimation uncer-
tainty when it comes to the income distribution and related metrics such as the Gini 
coefficient. This finding carries substantial implications given the prevalent use of 
grouped data in international income analysis. It challenges the common assumption 
that grouped data entails significant statistical limitations compared to raw data.

4  Applications to Income Data

We use income deciles data for 30 European countries for the year 2010. The income 
we use is equivalized disposable income in purchasing power parities and has been 
scaled by a thousand (the given income divided by 1000). Table 4 in Appendix A. 
Tables shows a complete list of the countries used with their country codes and 
names as given in EU-SILC. The average sample size is 7836. The used income 
deciles along with the mean incomes and Gini coefficients for each country are pro-
vided in Table 5 in Appendix A. Tables.

We have estimated the income deciles directly from the cross-sectional microdata 
set “EUSILC UDB 2011 version 2 of August 2013", Eurostat (2011). This cross-
sectional data set is part of the EU-SILC data which provides representative data 
on income, poverty, social exclusion and living conditions for most of the European 
countries. The EU-SILC data for each country is provided to Eurostat by the rel-
evant national statistical offices which collect the data according to the methodology 
suggested by Eurostat. We provide more computational details and the full R code 
for replicating the results in Appendix C. code.

Our estimates are based on nine income deciles [ q(u1), q(u2), ..., q(u8), q(u9) ] and 
income quintiles [ q(u2), q(u4), q(u6), q(u8) ]. Table 3 provides the absolute differences 
between the empirical estimates for the Gini coefficients, the mean, the observed 

Table 3  Absolute error of the estimates (difference between parametric estimates and estimates from the 
microdata)

 Method Distribution Deciles Quintiles

Quantiles Mean Gini Quantiles Mean Gini

GB2 57.87 229.64 0.01253 91.99 331.25 0.01981
MQD Dagum 109.67 182.74 0.00883 123.32 230.70 0.01097

Singh–Maddala 89.29 197.74 0.00989 109.32 286.14 0.01378

GB2 57.59 227.94 0.01234 91.24 316.73 0.01948
MLE Dagum 108.08 169.44 0.00880 121.12 227.22 0.01081

Singh–Maddala 88.48 200.45 0.01010 108.32 284.72 0.01377
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quantiles and their parametric counterparts approximated using the suggested para-
metric model. The columns “quantiles" provide the average absolute difference for all 
the estimated quantiles and countries. The GB2 estimates provide the smallest abso-
lute differences for both methods MQD and ML. However, the GB2 is very sensitive 
to the starting values of the computation algorithm, especially for the ML method. For 

GB2 Dagum Singh−Maddala
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some of the countries we had to adjust them in order to have convergence of the algo-
rithm. In terms of mean and Gini coefficients, the Dagum distribution is the one which 
provides the smallest differences between observed and estimated values.

Figure  1 displays the empirical quantiles plotted against the theoretical quan-
tile functions aggregated together for all the considered countries. The theoretical 
quantiles are estimated with the MQD and the ML methods using deciles ( N = 9 ) 
grouped data. It is confirmed that the GB2 distribution provides the best estimates 
also for the distribution tails.

Figure  2 shows boxplots of the differences between the estimated and the 
observed Gini index for all the considered countries, methods and distributions using 
deciles ( N = 9 ) grouped data. The GB2 estimates have the largest median ( ≈ 0.009 ) 
and deviation from the observed values and thus confirm the results in Table 3. The 
difference from the observed Gini coefficients are in the interval [−0.02;0.035] . The 
Dagum distribution provides the best estimate with the smallest median ( ≈ 0.006 
estimated with MQD method).

5  Conclusion and Further Research

Considering the importance of the exact estimation of inequality and adding the 
fact that still only sparse income data is available for many countries, it is crucial 
to find a well-performing method for estimating income distributions. This work 
proposes a method for estimating the income distribution when only quantile data 
is available. We suggested the MQD method and applied it to the GB2, Dagum 
and Singh–Maddala distributions. We use decile ( N = 9 ) and quintile ( N = 4 ) 
grouped data as starting values for 30 European countries. We note that the 
absolute differences between the parametric estimates and their nonparametric 
counterparts estimated from the microdata are preserved when we use quintiles 
instead of deciles. These results are confirmed by a simulation study. Further, we 
note that MQD method is more robust than the ML technique in terms of start-
ing values for the underlying computation algorithm, especially for the GB2 dis-
tribution. The Dagum and the Singh–Maddala distributions are outperformed by 
the GB2 in terms of absolute differences between the estimated parametric quan-
tiles and their observed counterparts. The Gini coefficient and the mean are best 
approximated with the Dagum distribution irrelevant of the estimation technique.

One of the potential computational challenges associated with the methodol-
ogy used in this article relates to the starting values for the underlying computation 
algorithm. During our simulation study, we faced difficulties when we started with 
a different value than the mean of the considered data, for the scale parameter b. 
Therefore, we always used as initial value the mean of the given data. An interest-
ing extension of the study could investigate the impact on accuracy when the mean 
of the underlying data is not available as a starting point for estimation. This would 
involve exploring alternative measures or techniques that can serve as effective sub-
stitutes for the mean in the estimation process.
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Appendix A: Tables

Table 4 shows a complete list of the countries used in this work with their coun-
try codes and names as given in EU-SILC. The average sample size is 7, 836. The 
population size of a country is computed as the sum of the product of the household 
size and the household weight.

Table 4  Country codes and 
names in EU-SILC

Country code Country name Sample size Population size

AT Austria 6187 8,315,881
BE Belgium 5910 10,826,442
BG Bulgaria 6554 7,518,649
CH Switzerland 7502 7,619,680
CY Cyprus 3917 839,751
CZ Czech Republic 8866 10,434,558
DE Germany 13,512 80,845,125
DK Denmark 5331 5,512,919
EE Estonia 4993 1,328,259
EL Greece 6029 10,991,212
ES Spain 13,109 45,900,276
FI Finland 9351 5,294,659
FR France 11,360 61,359,753
HR Croatia 6403 4,225,193
HU Hungary 11,685 9,850,181
IS Iceland 3018 300,766
IT Italy 19,399 60,683,909
LT Lithuania 5201 3,234,482
LU Luxembourg 5464 497,640
LV Latvia 6599 2,049,851
MT Malta 4076 412,580
NL Netherlands 10,492 16,526,278
NO Norway 4628 4,961,793
PL Poland 12,871 37,473,013
PT Portugal 5740 10,636,979
RO Romania 7675 21,501,653
SE Sweden 6717 9,531,043
SI Slovenia 9247 2,003,382
SK Slovakia 5200 5,392,446
UK United Kingdom 8058 61,770,154
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Table 5 provides the observed quantiles used in this work for estimating the cor-
responding distribution parameters with the MQD method. Table 5 displays also the 
observed mean incomes and Gini coefficients for each country. The empirical esti-
mates called “observed" are computed from the microdata set “EUSILC UDB 2011 
version 2 of August 2013" using the "quantile" option of the wtd.quantile 
function from the R package Hmisc (Harrell Jr et al., 2015) and the observed mean 
using the function weighted.mean (package stats). The income deciles and 
the mean values are given in thousands of purchasing power parities. The Gini coef-
ficients are computed with the gini function from the R package reldist (Hand-
cock, 2015) using the corresponding sample weights.

Table 5  Observed income deciles and mean

Country q1 q2 q3 q4 q5 q6 q7 q8 q9 Mean Gini

AT 11.302 14.01 16.034 18.064 20.251 22.511 25.14 28.557 34.978 22.458 0.263
BE 9.526 11.778 13.696 15.753 17.994 20.014 22.371 25.339 30.374 19.462 0.262
BG 2.28 3.224 4.032 4.84 5.7 6.658 7.655 9.171 11.814 6.725 0.351
CH 12.09 15.25 17.894 20.41 23.069 26.151 29.534 34.248 42.292 26.552 0.296
CY 10.29 12.762 14.871 17.049 19.239 21.762 24.763 29.211 37.204 22.378 0.291
CZ 5.961 7.288 8.154 8.992 9.859 10.958 12.145 13.979 17.323 11.167 0.252
DE 9.207 12.016 14.138 16.155 18.242 20.661 23.426 27.163 33.326 20.672 0.288
DK 10.331 12.82 14.72 16.697 18.68 20.77 22.993 25.986 30.973 20.417 0.267
EE 3.488 4.624 5.495 6.328 7.337 8.545 9.926 11.892 15.127 8.614 0.319
EL 4.977 6.656 8.242 9.658 11.481 13.326 15.26 17.98 22.625 13.201 0.335
ES 5.133 7.399 9.265 10.93 12.906 15.021 17.616 20.911 26.608 14.736 0.337
FI 9.906 12.039 13.998 15.843 17.744 19.764 22.165 25.238 30.237 19.633 0.258
FR 9.871 12.354 14.26 16.111 18.062 20.211 23.011 26.867 34.805 21.57 0.308
HR 3.138 4.339 5.387 6.369 7.304 8.226 9.536 11.149 14.179 8.122 0.310
HU 3.778 4.759 5.561 6.28 7.017 7.837 8.909 10.354 12.718 7.903 0.268
IS 10.579 12.706 14.25 15.584 17.145 18.808 20.738 23.185 27.44 18.717 0.235
IT 6.967 9.367 11.54 13.488 15.514 17.652 20.153 23.531 29.361 17.541 0.319
LT 2.639 3.702 4.45 5.218 6.165 7.111 8.161 9.824 12.831 7.097 0.328
LU 14.981 17.741 20.672 23.526 26.668 30.354 34.606 39.687 49.036 30.091 0.271
LV 2.365 3.456 4.165 4.899 5.666 6.696 8.033 9.652 12.59 6.955 0.353
MT 7.377 9.201 10.7 12.258 14.034 15.857 18.09 20.854 25.047 15.688 0.274
NL 10.95 13.44 15.215 16.912 18.751 20.857 23.433 26.808 32.592 20.922 0.253
NO 14.253 17.874 20.185 22.233 24.197 26.456 29.013 32.547 38.191 25.95 0.229
PL 4.034 5.163 6.171 7.189 8.207 9.354 10.585 12.546 15.874 9.494 0.310
PT 4.601 6.112 7.211 8.42 9.584 11.012 12.923 15.524 21.034 11.86 0.342
RO 1.381 1.992 2.543 3.039 3.554 4.111 4.79 5.727 7.249 4.056 0.333
SE 10.039 12.529 14.675 16.61 18.474 20.322 22.49 25.318 29.864 19.608 0.243
SI 7.394 9.611 11.231 12.476 13.798 15.26 16.859 19.101 22.592 14.815 0.238
SK 4.892 6.315 7.227 8.086 8.856 9.873 11.084 12.56 15.348 9.802 0.257
UK 8.751 11.151 13.121 15.011 17.192 19.966 23.041 27.618 34.589 20.867 0.330
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Appendix B: Code

In this appendix, the code used in this work for estimating the GB2, Dagum and 
Singh–Maddala distributions parameters a, b, p and q with the minimum quantile 
distance method is provided. To reduce precision loss (due to disproportionately 
large parameter values) in our computations, we scale the income deciles by 1, 000 
(the observed ones divided by 1, 000). We perform the optimization of the minimum 
quantile distance estimator �̂� (given in Eq. 1) with the statistical software R (R Core 
Team, 2022) using the function optim (from the R package stats). We employ 
the L-BFGS-B optimization method which is a modification of the quasi-Newton 
method. It is crucial to set the starting value of the parameter b equal or close to 
the (scaled by a thousand) mean income of each country. Otherwise, the algorithm 
may not converge. Further, we set the initial values of a = 3 , p = 1 , q = 1 for all the 
observed countries.
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