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Abstract
The security of any proof-of-work blockchain protocol is based upon the assump-
tion that the probability of a miner finding the next valid block is proportional to 
that miner’s hashing power and constant throughout the process of mining that 
block (i.e., that the mining process is a “memoryless” process). While the literature 
assumes that the mining process is indeed memoryless, in this paper we use deduc-
tive reasoning to show how, given the finiteness of hashing functions’ domains, this 
is not the case. This implies that the Bitcoin protocol induces a centralization of 
miners’ hashing power, which in turn threatens the long-term viability of Bitcoin 
and of other cryptocurrencies based on similar protocols. The novelty of this paper 
stems from our documenting of a previously unrecognized flaw in the incentive sys-
tem sustaining Bitcoin’s security.

Keywords  Bitcoin · Negative hypergeometric · Poisson distribution · Quantum 
computing

1  Introduction

The key differential characteristic of a blockchain is its protocol. A blockchain pro-
tocol is an economic mechanism that incentivizes miners (i.e., the agents participat-
ing in the blockchain-based system) to correctly process information in a decentral-
ized manner. The first example of an application based on a blockchain protocol 
was Bitcoin, a decentralied peer-to-peer currency first conceived and described by 
Nakamoto (2008). The protocol that gave rise to Bitcoin was the first of its kind, and 
belongs to the family of proof-of-work protocols.
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In the Bitcoin protocol (just like in every other proof-of-work protocol), miners 
compete with one another in a trial-and-error contest to find the next valid block 
of the blockchain. Miners pass potentially valid blocks (i.e., blocks that respect the 
structure defined by the protocol and only contain correct transactions) through a 
hash function in the hope that the resulting hash is below a predefined threshold 
called “the target.” A valid block is a block that not only respects the structure of the 
protocol and only contains correct transactions, but whose hash is below “the tar-
get.”. If a potentially valid block results in a non-valid block once it has been hashed 
(i.e., if it is potentially valid but its hash is above the target), the miner changes a 
small component of the block called the “nonce” (an integer) and hashes the result-
ing, new version of the originally potentially valid block again. Every miner hashes 
a series of potentially valid blocks until one finds a valid block and wins the contest. 
The contest then starts anew. Winning this contest (i.e., finding a valid block) is 
rewarded with newly created bitcoins.

The properties that blockchain protocols need to possess in order to enable a 
decentralized system that relies on anonymous, profit-driven miners who can freely 
join the system—i.e., a system fulfilling the promise made by Nakamoto (2008)—
have been formalized in three axioms (Leshno & Strack, 2020). One of these states 
that miners can have no incentive to centralize their resources (i.e., their hashing 
power). In the case of Bitcoin, this axiom implies that the change in any miner’s 
winning probability resulting from a change in that miner’s hashing power needs 
to be directly proportional to that change in hashing power. Should this axiom not 
be fulfilled, the Bitcoin protocol would incentivize the centralization of the miners’ 
hashing power, and thus, Bitcoin would not anymore be the decentralized system 
that it aims to be. In other words, Bitcoin’s value proposition (the decentralization 
that avoids the double-spending of peer-to-peer digital currencies) would fall apart.

So far, the vast majority of the literature has assumed that a miner’s probability of 
finding a new block in the Bitcoin blockchain (and in Bitcoin-like blockchains) fol-
lows a negative binomial distribution, which implies that the axiom whereby miners 
have no incentive to centralize their resources is fulfilled. Hence, scholars consider 
the process of bitcoin mining to be a memoryless process (memoryless in the sense 
that miners forget the nonces that have previusly resulted in hashes below the target, 
such that every newly tried nonce has the same success probability than the previ-
ous one, no matter how many nonces have been tried before). However, parts of this 
assumption are increasingly being questioned. The work conducted by Grunspan 
and Pérez-Marco (2017) corrects the analysis given in Nakamoto (2008) regard-
ing the success of double-spending attacks on the Bitcoin blockchain. Specifically, 
Grunspan and Pérez-Marco (2017) demonstrate that the success of double-spending 
attacks is not consistent with assuming that the winning probabilities of bitcoin min-
ers follow a negative binomial distribution. Along these same lines, Bowden et al. 
(2018) challenge the assumption of the block arrival rate following a negative bino-
mial distribution. But while they demonstrate that the block arrival rate does not in 
fact follow such a distribution, they leave the question of “How does the arrival rate 
of blocks really behave?” open.

This is the question that we anser with our work, in which we show how, 
due to the—often overlooked—finiteness of the domain of hashing functions, 
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proof-of-work–based cryptocurrencies (including Bitcoin and Bitcoin-like crypto-
currencies) follow a negative hypergeometric distribution.

This result has an important implication for scholarship and practice, as it implies 
that the winning probability for a miner mining a block are non-proportional to that 
miner’s hashing power and non-constant throughout the time spent mining that 
block. From this result it emerges that, at a theoretical level, the axiom whereby 
miners can have no incentive to centralize their resources is not fulfilled by Bitcoin, 
or by any Bitcoin-like protocol. This reveals a misconception in the understanding 
of proof-of-work protocols, and a flaw in the economic incentive structure that sus-
tains proof-of-work protocols such as that of Bitcoin. Given that the viability of Bit-
coin (and of any Bitcoin-like protocol) relies on the economic incentives that its pro-
tocol offers (Ciaian et al., 2021), our findings reveal an unknown threat to Bitcoin’s 
and similar systems’ long-term viability. Moreover, as mining pools base the way in 
which they divide their earnings among the miners on the assumption that miners 
have no incentive to centralize their resources, our result force such pools to search 
for alternative ways to compensate miners for their work.

The rest of the paper is organized as follows. In Sect. 2 we review the most rel-
evant related literature. In Sect. 3 we conduct a theoretical analysis around proof-of-
work mining and illustrate the non-proportionality of the selection rule for Bitcoin. 
In Sect.  4 we run a simulation to compare the relative probabilities for miners of 
different sizes when the memoryless property is fulfilled, and when it is not. Addi-
tionally, we describe the challenges that mining pools face when assessing the actual 
hashing power of miners, something that complicates the solution to the problem we 
are describing. In Sect. 5 we discuss the implications of our work, and in Sect. 6 we 
conclude.

2 � Literature and Background

It is broadly accepted that the process of finding a valid block in proof-of-work 
protocols follows a negative binomial distribution (as a limiting case of the nega-
tive binomial distribution). This is assumed by authors such as John et al. (2022), 
Nakamoto (2008), Rosenfeld (2011), and Cocco and Marchesi (2016) when intro-
ducing and studying the properties of bitcoin mining, and by authors such as Li 
et al. (2023), Eyal and Sirer (2018), Houy (2016), Dimitri (2017), and Wang et al. 
(2019) when studying the incentive structure for miners. Authors including Rosen-
feld (2014), Solat and Potop-Butucaru (2016), Beccuti and Jaag (2017), and Aggar-
wal et al. (2018) also make similar assumptions when studying the security aspects 
of the Bitcoin protocol. When studying information propagation in the Bitcoin net-
work, Miller and La Viola (2014), Göbel et al. (2015), and Lewenberg et al. (2015) 
repeat this assumption, and assumption that is also made by Decker and Watten-
hofer (2013) when studying the creation of forks in the Bitcoin network, by Cong 
et al. (2018) and Hayes (2019) when creating models for bitcoin valuation, by Cong 
et al. (2019) when studying mining pool centralization, by Easley et al. (2019) when 
analyzing the evolution of Bitcoin transaction fees, and by Chiu and Koeppl (2017) 
when studying the optimal design of cryptocurrencies.



	 J. Parra‑Moyano et al.

1 3

Other papers that assume proportional winning probabilities include that of 
Halaburda et al. (2022), which studies the microeconomics of cryptocurrencies, 
that of Easley et  al. (2019), which studies the evolution of transaction fees in 
Bitcoin, that of Böhme et al. (2015), which points out risks and regulatory issues 
as Bitcoin interacts with the conventional financial system and the real economy, 
that of Benigno et  al. (2019), which studies the classic “impossible trinity” in 
a two-country economy with complete markets, that of Schilling et  al. (2020), 
which studies some elements of central bank digital currencies (CBDCs), and 
that of Athey et al. (2015), which develops a model of user adoption and use of 
virtual currencies.

The assumption that finding a block in a proof-of-work blockchain follows 
a negative binomial distribution implies that miners’ probabilities of winning are 
directly proportional to their hashing power, and therefore remain constant through-
out the mining process (i.e., given a constant hashing power, the winning probability 
remains constant throughout the time that elapses between the moment at which the 
miner starts trying to find the next valid block and the moment at which any miner 
finds and broadcasts that valid block). This implies that for every attempt (i.e., for 
every newly generated hash) the winning probability is independent of the number 
of previously tried and failed attempts. In other words, this assumption implies that 
there is no within-block learning when mining blocks and that thus.

This lack of within-block learning is what Cong et al. (2019) call the “well-known 
‘memoryless’ property” of proof-of-work mining, which “implies that the event of 
finding a solution is captured by a negative binomial process with the arrival rate 
proportional to a miner’s share of hash rates globally” as described by Eyal and Sirer 
(2018) and Sapirshtein et al. (2015). By assuming that the arrival rate of blocks fol-
lows a Poisson distribution (a limiting case of the negative binomial distribution), all 
these authors are assuming (as stated by Cong et al., 2019) that mining is a memory-
less process, and therefore that the probability of finding a valid block is independ-
ent of previous attempts to do so.

The idea behind proof-of-work mining being a memoryless process is captured 
by one of the axioms that blockchain protocols need to fulfill in order to enable a 
decentralized system that relies on anonymous, profit-driven miners who can freely 
join the system (Leshno & Strack, 2020)—namely, the axiom stating that miners can 
have no incentive to centralize their resources. From this axiomatic formalization 
results that any protocol in which a miner i devotes an amount of work x

i
 (hash-

ing power in the case of Bitcoin) to finding the next valid block of the blockchain 
will only be anonymous, robust to Sybil attacks (such that miners cannot split their 
performance to increase their probabilities of winning), and robust to merging (such 
that miners cannot increase their selection probability by merging) if the selection 
mechanism is given by a proportional selection rule (Halaburda et al., 2022). This 
proportional selection rule is the same rule that determines the winning probability 
of drawing a winning ball from an urn, assuming that non-winning balls are returned 
to the urn (i.e., drawing from an urn with replacement). The rule implies that regard-
less of the number of versions of a particular potentially valid block that a miner has 
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previously generated, the probability that the next version of the block (the same 
block with a different nonce) results in a hash below the threshold remains constant.1

While this assumption about proportional winning probabilities in proof-of-
work protocols is widespread, parts of it are increasingly being questioned. The 
work conducted by Grunspan and Pérez-Marco (2017) corrects the analysis given 
in Nakamoto (2008) regarding the success of double-spending attacks on the Bit-
coin blockchain. Grunspan and Pérez-Marco (2017) give a closed-form formula for 
the probability of success of a double-spending attack, and in doing so assume that 
the number of blocks N(t) mined at time t follows the negative binomial distribu-
tion. Grunspan and Pérez-Marco (2017) do not revise or study the arrival rate of 
blocks, but do demonstrate that one of the characteristics of the Bitcoin blockchain 
that emerges from this arrival rate–namely, the probability of the success of double-
spending attacks–differs from what was previously assumed in the literature. Their 
work is especially important for us since while it still accepts that the arrival rate 
of blocks follows the negative binomial distribution, it challenges the assumption 
implied by Nakamoto (2008) that the probability of the success of a double-spend-
ing attack also follows a negative binomial distribution.

Along these same lines, Ciaian et  al. (2021) question the memoryless prop-
erty by stating that “the probability of winning a mining contest increases with 
the miner size.” Bowden et  al. (2018), meanwhile, challenge the assumption of 
the block arrival rate following the negative binomial distribution, and based on a 
stochastic analysis of the block arrival process demonstrate that this is indeed not 
the case. They present a refined mathematical model for block arrivals, focusing 
on both block arrivals during a period of constant difficulty and how the difficulty 
level evolves over time. Their work, however, leaves the question of “How does the 
arrival rate of blocks really behave?” open. This question motivates our work.

3 � Analysis

In this section we briefly describe the concept of hashing, illustrate how the Bitcoin 
protocol works, and by using deductive reasoning derive why the selection rule in 
proof-of-work protocols is based on non-proportional probabilities.

3.1 � Fundamentals of the SHA‑256 Function

The SHA-256 (Secure Hash Algorithm 256) function is a cryptographic, one-way 
compression function. The domain of the SHA-256 function is composed of any 
string of a length of up to 264 bits. This implies that the domain of the SHA-256 
function, while being colossal, is finite.

The result of a hashing function is called a “hash.” The SHA-256 function is a 
one-way (non-invertible) function. Hence, the original data can not be retrieved 

1  From this point on we will use the terms “selection rule” and “winning probability” in an interchange-
able manner.
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from the resulting data (i.e., only by conducting a trial-and-error process can one 
find the input that yields a particular output).

3.2 � Bitcoin Mining as an Urn Problem

The Bitcoin protocol defines how bitcoins come into existence and how bitcoin 
transactions are validated. Miners write blocks (pieces of information that contain 
information about previous transactions) and compete to position their block as 
the next valid block of the blockchain. Every block has a block header. A block’s 
header has a size of 80 bytes (Antonopoulos, 2014) and, as explained by Courtois 
et al. (2014), contains the following information: The version number of the proto-
col (with a size of 4 bytes); the hash of the previous block’s header (with a size of 
32 bytes); the Merkle root (with a size of 32 bytes); the timestamp (with a size of 4 
bytes); the target (with a size of 4 bytes); the padding + len (with a size of 4 bytes); 
and the nonce (with a size of 4 bytes). Miners fix all the components of the block, 
and for that particular block try different nonces.

A block is accepted by other miners as “the next valid block" of the blockchain 
only if it fulfills two conditions. First, the information contained in the block respects 
the rules determined by the Bitcoin protocol: it can only contain new and legitimate 
transactions made by the blockchain’s users and it contains a (hashed) reference 
to the last valid block. We refer to blocks that fulfill this condition as “potentially 
valid blocks.” Second, the hash of this block’s header (i.e., the result of passing the 
block’s header through the SHA-256 function) results in a number that is below a 
certain threshold, called the “target.”2

Miners write potentially valid blocks, expecting the hash of their block’s header 
to be smaller than the target. Whenever the hashing of a potentially valid block’s 
header results in a non-valid hash (i.e., a hash that is greater than the target), min-
ers change a small component of the block’s header (an integer called the “nonce”) 
that does not affect the correctness of the information contained in the block (such 
that this block still respects the first condition) but that makes this new version of 
the block’s header result in a new, different hash. Once a block is accepted as valid, 
a new problem using the hash of this newly accepted block as the one of the inputs 
for the next block starts for all the miners. It is essential to note that a one-bit change 
in the hashed input (the computationally smallest unit that can be changed) results 
in a completely new hash that has no relationship whatsoever with the previous one. 
Most importantly, since the hashing function is non-invertible it is impossible to 
anticipate which input (which nonce) is going to yield a particular output. This is 
the cornerstone of proof-of-work mining: for a potentially valid block, miners have 
to try many different 32-bit random nonces to potentially find the next valid block. 
This design makes mining under this protocol a binary stochastic process.

2  In fact, miners pass the block header through the SHA-256 function and hash the resulting 256-bit 
string again using the same SHA-256 function. It is the second hashing that needs to result in a number 
below the target. Since the SHA-256 function is deterministic, this does not alter our calculations.



1 3

A Note on the Non‑proportionality of Winning Probabilities…

Since the difficulty of the mining process has increased so much, sometimes 
miners do not find a valid block when iterating over all the nonces for their block. 
In such a case, miners change the coinbase (a part of the Merkle tree with enough 
space to add some free text), such that they increase the space they can explore in 
their search for the next valid block. The size of the coinbase transaction is 8 bytes. 
This implies that miners have 4 bytes of the nonce plus 8 bytes of the coinbase in 
terms of space in which to make combinations (Antonopoulos, 2014).

Figure 1 illustrates the creation of a block. In Fig. 1, the hash of Block 8’s header 
serves as the basis for two different, potentially valid blocks, each from one of two 
competing miners (Miner A and Miner B).

Since generating a new hash requires electricity, miners have an incentive to only 
hash blocks that have the potential to be valid. Hashing a block that contains trans-
actions that contravene the rules of the protocol will result in the rest of the min-
ers rejecting that block, even if the hash of the block is below the target. With this 
mechanism, the Bitcoin protocol prevents the double-spending problem. In other 
words, systems based on blockchain protocols are reliable because the expected 

Fig. 1   Illustration of a blockchain and the different versions of a block that can become the next valid 
block. Own illustration
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value of writing wrong transactions in the ledger is negative, and miners are there-
fore deterred from such illicit behavior. This, however, is only the case as long as 
the winning probabilities in proof-of-work protocols are proportional to the effort 
(electricity) spent on mining. Should larger miners gain a non-proportional (posi-
tive) wining probability relative to their size, then miners would have an incentive 
to pool their resources, which would result, from a strategic point of view, in a very 
large mining pool controlling the totality of the hashing power. Such a situation 
would turn Bitcoin (and any Bitcoin-like system) centralized and reliant on one cen-
tral authority. Thus, the whole purpose of Bitcoin (and of any system based on a 
Bitcoin-like blockchain) would disappear.

3.3 � Statistical Properties of Proof‑of‑Work Mining

Given the finite set of combinations that a miner can try in order to find the next 
valid block of a proof-of-work blockchain, the process of proof-of-work mining 
has the same structure as the classical urn problem. The simplest urn problem that 
one can think of consists of an urn containing balls of two different colors. One 
person draws balls from the urn. The problem can be set such that drawing a ball 
of one color (green) represent a success, whereas drawing a ball of the other color 
(red) represents a failure. In the Bitcoin setting, each miner draws balls from their 
personal urn. The urn contains all the versions of the potentially valid block that 
a miner is aiming to mine (i.e., the different versions of the same block’s header 
with different nonces). Hashing the potentially valid block with one of the nonces 
is equivalent to drawing a ball from the urn, and hence it is a process that can result 
in either success (a hash below the target) or failure (a hash above the target). Each 
miner is confronted with such an “urn” and successively tries different inputs (non-
ces) until it or another miner finds a truly valid block (success). Note that the urn of 
each miner is different from that of each other miner, as the blocks differ in at least 
one respect: the address to which the newly created bitcoins need to be sent should 
that block become the next valid block of the blockchain.

Urn problems can be of two types: urns with or without replacement. In an urn 
problem with replacement, the balls are returned to the urn once they are drawn. 
Hence, in an urn with balls of two colors, red and green, in which balls are drawn 
until a green ball is drawn, the probability of drawing a green ball from the urn 
remains constant, no matter how many red balls have been previously drawn. In 
an urn problem without replacement however, the probability of drawing a green 
ball from the urn increases every time that a red ball is drawn. The fact that nonces 
known to yield a non-valid hash for a particular potentially valid block’s header are 
not tried twice implies that this problem has the structure of the urn problem “with-
out replacement,” in which balls representing a failure event are not returned to the 
urn.

Schemes of sampling from a finite population without replacement like the one 
that we are describing here are governed by the negative hypergeometric distribu-
tion. Consider a total population of N elements, of which M elements are labeled a 
“success” and the remaining N −M elements are considered a “failure.” Suppose we 
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select elements out of the population without replacement until the number of “suc-
cesses” reaches a fixed number m. Define the random variable X as the total num-
ber of draws (without replacement) in the sample until (and including) the mth suc-
cess. Then, X follows the negative hypergeometric distribution X ∼ NHG (N, M, m) . 
The probability mass function (PMF) of the negative hypergeometric distribution is 
given by

For the special case of a single success, m = 1 , the PMF simplifies to

As the number of hashes made by a miner can be expressed in relation to units of 
time (i.e., in hash rate), this implies that the probability that a hash results in a valid 
block increases with the time a miner spends attempting to solve a particular block. 
Therefore, the winning probability in proof-of-work protocols is non-proportional, a 
fact that is beneficial for relatively larger miners. This is at odds with the axiomatic 
formalization derived by Leshno and Strack (2020) and more importantly, implies 
that proof-of-work protocols like the Bitcoin protocol are not memoryless processes 
that induce no centralization of the hashing power.

4 � Scenario Comparison

In this section we compare the differences in the relative winning probabilities of 
miners when assuming the mining process follows the negative binomial distribu-
tion vs. the negative hypergeometric distribution. Moreover, as the negative bino-
mial distribution can be used to approximate the negative hypergeometric distribu-
tion, we derive the size of the total hashing power that must be reached for that 
approximation to result in significant errors. Finally, we comment on the difficulty 
of measuring the actual hashing power of a network.

4.1 � Comparison of Winning Probabilities

For illustration purposes, let us assume a small, simplified domain of a hash func-
tion that only accepts 100,000 possible inputs. This means that the domain of this 
function contains 100,000 elements. Moreover, let us assume that we have two min-
ers, A and B, each of which has written a potentially valid block whose respective 

Pr(X = x) =

(
x − 1

m − 1

)(
N − x

M − m

)

(
N

M

) .

Pr(X = x) =

(
N − x

M − 1

)

(
N

M

) .
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headers have space for 10,000 possible different nonces each. Let us continue by 
assuming that Miner A has a hash rate of 1 hash per second (i.e., it can compute one 
hash per second) whereas Miner B has a hash rate of 10 hashes per second (i.e., it 
can compute 10 hashes per second). Finally, let us assume that out of these 10,000 
combinations of block + nonce, the difficulty level is defined such that exactly one 
of the 10,000 combinations yields a valid block for each of the miners. While this is 
an oversimplified version of mining, it serves the purpose of illustrating the differ-
ences between using the negative binomial distribution and the negative hypergeo-
metric distribution.

Table  1 presents the winning probabilities and relative winning odds of Miner 
B with respect to Miner A, under each of the different distributions and at different 
points in time given that no valid block has previously been found. In this exam-
ple, under the negative binomial distribution assumption (urn with replacement) the 
probability of each miner finding the next valid block remains constant during the 
time they spend mining. Therefore, the probability of Miner B winning is 10 times 
larger than that of Miner A winning. The value of 10 is consistent with the fact that 
Miner B has a hash rate that is ten times larger than the hash rate of Miner A. This 
construct has the same structure as the urn problem with replacement (the prob-
abilities of winning are independent of the number of previously tried and failed 
attempts, such that there is no learning).

However, under the assumption of a negative hypergeometric distribution the 
winning probability of each miner increases across the time that the miners spend 
mining (i.e., across the time that a miner spends trying and failing). This construct 
has the same structure as the urn problem without replacement (the probabilities of 
winning are dependent on the number of previously tried and failed attempts, such 
that there is learning). It is interesting to see how the winning probability of Miner 
A, while increasing across time, is the same across time once it is rounded to four 
significant digits. This illustrates how the increase in the winning probability is very 
sensitive to the number of possible combinations (i.e., the increase in the winning 
probability is very sensitive to the number of balls in the urn). Comparing the win-
ning probability of Miner B with that of Miner A, we see an increase over time. This 
is the crucial aspect of the whole analysis. Bigger miners (in terms of their hash 
rate) explore the space faster than smaller miners and by doing so increase their 

Table 1   Relationship of winning probabilities

Relationship of winning probabilities

Distribution Metric 1 s 2 s 5 s 10 s 100 s 200 s

Neg. Bin Winning Prob. A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Winning Prob. B 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
Winning Prob. B/A 10.000 10.000 10.000 10.000 10.000 10.000
Winning Prob. A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Neg. Hyp Winning Prob. B 0.0010 0.0010 0.0010 0.0010 0.1011 0.0120
Winning Prob. B/A 10.000 10.009 10.036 10.082 10.989 12.236
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winning probabilities faster than do smaller miners. This feature of the mining pro-
cess provides an economic incentive for miners to pool together in order to benefit 
from this within-block learning. Such pooling would be something entirely different 
to the innocuous pooling observed thus far, in which miners pool together simply to 
smooth their income over time.

Figure 2 illustrates the relation of the relative odds of Miner B to those of Miner 
A under both scenarios. The distance between the two lines represents the effect 
of the within-block learning feature, which leads to non-proportional winning prob-
abilities in proof-of-work protocols.

4.2 � On the Differences Between Distributions

Probability events that follow the Poisson distribution can occur n times in an inter-
val. The average number of events in an interval is designated by � , which is also 
called the rate parameter. In the Poisson distribution the probability of observing k 
events in an interval is given by

As described by Rosenfeld (2011), the bitcoin protocol sets the target value (the 
minimum number of zeroes with which a hash will be considered valid) such that 
every hash has a probability 2

16−1

D248
 of yielding a valid block, beeing D the Difficulty 

level in the system, which is autamoatically derived from the network metrics and 
can hence be autonomously calculated by each miner. For the sake of simplicity, 

P(k) = e
−� �

k

k!
.

Fig. 2   Illustration of the relationship between the winning probabilities of each miner under different 
assumptions about the distributions. Own illustration
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we– like other scholars– approximate this value by 1

D232
 . This implies that the Pois-

son parameter that determines the probability of winning of miner i over time t 
expressed in seconds (the probability of finding a valid block after mining for time t) 
can be written as

h
i
t being the hash rate of miner i and D the Difficulty parameter. Therefore, a miner 

i mining at a rate of h
i
 hashes per second for time t (time expressed in seconds) has 

an expected rate of finding a valid hash that is given by h
i
t

D232
 . This is the same as 

assuming that the probability of finding a valid block follows the negative binomial 
distribution.

To approximate the negative hypergeometric distribution with the Poisson dsitri-
bution (as a limiting case of the negative binomial distribution) requires the follow-
ing conditions to be fulfilled: n is large, p is small, and � is of moderate size. How-
ever, since drawing from an urn without replacement isn’t a binomial process, this 
approximation induces an error E(k) = |PNHG(k) − PPoisson(k)| . This error is the dis-
tance between the dotted lines in Fig. 2. If the number of balls is very large, and the 
number of draws is relatively small compared to the total number of balls, then the 
probability p doesn’t change much with each draw. However, when p is not small, 
then error increases and becomes significant.

4.3 � Conditions for the Memoryless Property to Vanish

As suggested by Devore and Berk (2012), the negative hypergeometric distribution 
should not be estimated by the negative binomial distribution when the sample size, 
n, is bigger than 5% of the population size, N.3 In our case this means that once a 
miner has explored around 5% of all possible nonces that miner shall start experi-
encing the effect of non-proportional probabilities. The reason is that in that case, 
the errpr E(k) = |PNHG(k) − PPoisson(k)| is non-negligible.

The nonce has a size of 4 bytes. Additionally, the coinbase has a size of 8 bytes. 
Given that a byte contains 8 bits, the domain that a miner explore contains 296 pos-
sible inputs. This implies approximately 8 ∗ 1028 possible inputs that the miner can 
change in order to try different hashes for a given block. We refer to this space as the 
restricted domain, which in the analogy of the urn problem represents the number of 
balls contained in the urn. Given that the restricted domain contains approximately 
8 ∗ 1028 possible inputs, 5% of that domain lies at 4 ∗ 1027.

As of September 2023, the global hash rate of Bitcoin was approximately 400 
million terahashes per second (i.e., 4 ∗ 1020 hashes per second).4 This indicates that 

�
i
=

h
i
t

D232
,

3  Note that this 5% is an approximate figure indicating the area of the sample size around which this dif-
ference starts to matter (rather than a dichotomous threshold that should serve as a hard line).
4  The global hash rate of Bitcoin can be consulted at any time at sites such as https://​www.​block​chain.​
com/​explo​rer/​charts/​hash-​rate.

https://www.blockchain.com/explorer/charts/hash-rate.
https://www.blockchain.com/explorer/charts/hash-rate.
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by that date the effect of the non-proportionality of winning probabilities in Bit-
coin had not yet become significant. However, with every increase in the global hash 
rate5 this effect increases in significance.

From this result it emerges that the higher the hash rate, the larger the risk of the 
memoryless property of the Bitcoin protocol vanishing. This is paradoxical, because 
thus far, it was assumed that increases in the global hash rate increase the security of 
Bitcoin by reducing the probability of a double-spending attack. However, while this 
remains true, increases in the global hash rate also bring the point in which Bitcoin 
will cease the be decentralized, closer. This is a counter-intuitive outcome: increases 
in the global hash rate increase the security of Bitcoin and bitcoin-like protocols, 
until they don’t.

4.4 � On the Impossibility of Correctly Estimating Actual Hashing Power

Due to the nature of the Bitcoin protocol, only the miner that wins each block can 
be observed (and not the miners that mine it but do not find a valid version of it). 
We can observe neither the hashing power of the successful miner nor that of the 
miners that competed to find a valid version of each block but without success. The 
impossibility of observing the work actually done, is of particular importance for 
mining pools. Mining pools are groups of miners who share their computational 
resources in order to parallelize the search for the next valid block of the blockchain, 
and increase the frequency with which they collectively find blocks. Miners partici-
pate in a mining pool to smooth their earnings across time (not to increase their total 
expected earnings). Mining pools split their bitcoin earnings among their members 
in a manner that is proportional to the shares of each member of the pool (Can et al., 
2022). A share is a hash that while not being below the target is low enough to 
be considered close enough to the target (it is usually a hash starting with enough 
zeroes). Since generating shares is related to actually performing hashing opera-
tions, it makes sense that mining pools estimate the hashing power of their miners 
by observing the number of shares that these miners supply to the pool. Based on 
these shares, different mining pools use different reward schemes to distribute the 
bitcoins earned among their members. All these reward schemes, however, assume 
that mining is a memoryless process, thus establishing linear relationships between 
shares and rewards.

5 � Discussion

Many important aspects of proof-of-work protocols are based on the assumption 
that the probability of finding the next valid block of a proof-of-work blockchain 
is governed by a Poisson distribution as a limiting case of the negative binomial 

5  Note that the average annual growth rate of the hashpower of Bitcoin between September 2019 and 
September 2023 lies at 266%. See https://​ychar​ts.​com/​indic​ators/​bitco​in_​netwo​rk_​hash_​rate for the refer-
ence.

https://ycharts.com/indicators/bitcoin_network_hash_rate
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distribution. These important aspects include that no double-spending attack has a 
positive expected outcome as long as the miner conducting it possesses less than 
50% of the total hash rate, that the winning probabilities of miners are proportional 
to their hash rates, that the winning probabilities of miners are constant through-
out the process of mining a particular block, and that miners have no incentive to 
pool other than to smooth their income across time. Moreover, mining pools use this 
same assumption as the foundation on which they base the distribution of their earn-
ings among member miners.

By studying the Bitcoin proof-of-work protocol from a probabilistic perspective, 
we find that in fact, and due to the finiteness of the hash function, the probability of 
finding the next valid block of a proof-of-work blockchain is governed by a nega-
tive hypergeometric distribution. Hence, the probabilities of finding valid blocks of 
blockchains using proof-of-work protocols are non-proportional and non-constant 
throughout time. This is the key insight from our study, and answers the question 
that motivated it.

In theory, this result reveals that miners generating more hashes per second 
increase their winning probabilities faster than those (smaller) miners that generate 
fewer hashes per second. Consequently, it emerges that at a theoretical level not even 
Bitcoin fulfills the three axioms derived by Leshno and Strack (2020). This implies 
that the Bitcoin protocol induces centralization, and that the hashing power required 
for a double-spending attack to succeed is smaller than expected. Hence, the Bitcoin 
system, and any system based on a proof-of-work protocol whose block size is lim-
ited, is more fragile than is currently believed. Therefore, the aspects of proof-of-
work protocols that assume a negative binomial distribution should be revised.

In practice, at the current hash rate, and given the huge domain of the hash func-
tions used by proof-of-work protocols, approximating the negative hypergeometric 
distribution by the negative binomial distribution yields no significant error. Yet the 
fact that the incentive structure associated with proof-of-work protocols is flawed, 
and that at a certain hash rate systems based on proof-of-work protocols shall col-
lapse, remains.

Given the result of our paper, what becomes particularly challenging and should 
be further and thoroughly discussed by scholars and practitioners is the difficulty 
(impossibility?) of actually calculating the hashing power of miners. If we cannot 
trust the proportional relationship between miners’ hashing power and their proba-
bility of finding the next valid block of the blockchain, we cannot correctly calculate 
the hashing power of the network or of the miners, and thus are blind with regard to 
the point at which the memoryless property of the Bitcoin protocol and Bitcoin-like 
protocols will vanish.

5.1 � Implications

Our results imply that some aspects of the assumptions made with regard to the 
properties of bitcoin mining (Nakamoto, 2008; Rosenfeld, 2011; Cocco & Marchesi, 
2016) should be revised. Similarly, the assumptions made when modelling the 
incentive structure for miners to participate in the mining process should be refined 
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(Eyal and Sirer, 2018; Houy, 2016; Dimitri, 2017; and Wang et al., 2019). Likewise 
the security aspects of the Bitcoin protocol that rely on its memoryless property—
including those described by Rosenfeld (2014), Solat and Potop-Butucaru (2016), 
Beccuti and Jaag (2017), Aggarwal et al. (2018), Miller and La Viola (2014), Göbel 
et al. (2015), Lewenberg et al. (2015), and Decker and Wattenhofer (2013)—need to 
be reconsidered in order to incorporate the insights derived in this paper. Our results 
also imply that adjustments are required in those models that study the microeco-
nomics of cryptocurrencies (Halaburda et  al., 2022), mining pool centralization 
(Easley et  al., 2019), bitcoin valuation Hayes (2019), the evolution of transaction 
fees (Cong et  al., 2019), the optimal design of cryptocurrencies (Chiu & Koeppl, 
2017), CBDCs (Benigno et al., 2019), and user adoption and use of virtual curren-
cies (Athey et al., 2015).

In light of the results presented in this paper, it seems imperative to develop more 
advanced protocols whose incentive structures keep the behavior of miners constant 
at different hash rate levels. Proof-of-stake protocols may be one solution, although 
further economic analysis is needed.

Additionally, future research should continue studying the long-term viability of 
blockchain protocols at increased hash rates. Anticipating changes in miners’ behav-
ior is important since blockchain technology (ultimately governed by protocols) is 
playing an increasing role in the operations of organizations of all kinds.

Furthermore, future research should also extend the study made in this paper to 
blockchains other than the Bitcoin blockchain, in order to discover if, at their current 
respective hash rates, miners are already experiencing within-block learning.

Moreover, the results presented in this paper imply that the development of quan-
tum computing may alter the viability of blockchain protocols in ways thus far not 
considered. To understand this statement, it is important to understand that the 
straightforward threat that quantum computing poses to blockchain protocols comes 
from the fact that quantum computers could easily make hashing functions invert-
ible. Experts in quantum computing have proposed cryptographic methods of devel-
oping hashing functions that would remain non-invertible even in the presence of 
quantum computing (Li et al., 2019). However, what this type of advance in cryp-
tography does not take into consideration is the fact that quantum computers would 
enable miners to generate hashes much faster than they do with currently available 
computers. Using a quantum computer, a miner could conduct “a quadratic speed-up 
in the number of operations compared to a classical computer, which should lead 
to an increased hash rate” (Stewart et  al., 2018). This increase in hashing capac-
ity, together with the finiteness of the blocks, would make the non-proportionality 
of wining probabilities very clear at an applied level. Therefore, even if advances 
in cryptography were to keep hashing functions non-invertible in the presence of 
quantum computing, these technical advances would not be able to address the fact 
that the probability of winning is non-proportional. This reveals more exactly how 
quantum computing threatens this type of protocol.

Finally, and most importantly, scholars and practitioners alike should study alter-
native reward schemes for mining pools—schemes that offset the advantage gained 
by larger pools once the memoryless property of the Bitcoin protocol vanishes. In 
fact, having alternative reward schemes that offset the potential advantage of larger 
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pools could increase the decentralization of cryptocurrencies like Bitcoin and play a 
pivotal role keeping the system secure.

5.2 � Limitations

Naturally there are a number of limitations to our study that need to be considered. 
First, we study the proof-of-work protocol used by Bitcoin. While all proof-of-work 
protocols work in a similar manner, they use different hash functions with different 
domain sizes. Proof-of-work protocols using other hashing functions are subject to 
different domains; for these protocols, the hash rates at which the negative bino-
mial distribution can be approximated by the binomial distribution are different than 
for the Bitcoin protocol. Second, we are assuming that miners fix some parts of a 
potentially valid block and then explore a relatively small area of that block’s header 
to find a valid hash. It could, however, be that miners also change the timestamp 
when they exhaust the nonce (and not only the coinbase). For miners that do this, 
the memoryless property will remain for much longer than it will for those who only 
change the coinbase.

6 � Conclusion

In this paper we have proven that given the finiteness of the SHA-256 function the 
probability of finding the next block in the Bitcoin blockchain is governed by a neg-
ative hypergeometric distribution and not by a negative binomial distribution. This 
implies that winning probabilities in proof-of-work protocols are non-proportional 
and non-constant within a block, which is equivalent to stating that there is within-
block learning in the mining process of proof-of-work protocols and that the act of 
mining currencies in such protocols is not a “memoryless process.” While at the cur-
rent hash rate approximating the negative hypergeometric distribution by the nega-
tive binomial distribution yields no significant error, our results reveal a misconcep-
tion present in the understanding of proof-of-work protocols.

The major implication of our findings is that, given a certain total hash rate, 
miners of proof-of-work protocols will have an incentive to concentrate as much 
hashing power as they can to benefit from non-proportional winning probabilities. 
This would result in the proof-of-work system collapsing. This gives rise to a con-
tradiction, since having a higher total hash rate increases the security of a proof-
of-work–based system by making it harder for a miner to conduct double-spending 
attacks, but at the same time brings the point of collapse closer. The implementation 
of quantum computing would bring that point of collapse dramatically closer. To 
avoid such a collapse, proof-of-work protocols need to be revised.

Based on the results presented here and the implications of this paper, we would 
like, finally, to reinforce the notion that blockchain protocols are economically, and 
not cryptographically, secured (Ciaian et al., 2021). Hence, an economic analysis of 
the incentives behind any protocol is crucial to assessing the viability of blockchains 
and the applications based on them. Therefore, we argue, for blockchain technology 
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to be fully understood the economics behind any blockchain protocol should be 
studied with care.
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