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Abstract
We introduce agents’ heterogeneity into a model of endogenous business cycles, in 
which agents can invest either in ‘good’ projects that contribute to future capital for-
mation, or in ‘bad’ projects without that property. The resulting map involves three 
distinct regimes, two of which we linearize. Using theoretical results on piecewise 
linear systems and on border collision bifurcations, we are able to provide a thour-
ough analysis of the dynamics.

Keywords Business cycles · Heterogeneous agents · Piecewise linear systems · 
Bifurcations

JEL Classification C61 · E32

1 Introduction

Matsuyama et al. (2016) offer an endogenous explanation of business cycles within 
a representative agent framework. In their model agents can invest either in ‘good’ 
projects whose output can either be consumed or invested, thus contributing to future 
capital formation, or in ‘bad’ projects that can only be consumed. Good projects 
are produced with a Neoclassical production function that is subject to diminishing 
returns while the return of bad projects is constant. Thus, as the economy grows 
and the return of good projects drops below that of bad projects entrepreneurs have 
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incentives to invest in the latter. However, investment in bad projects is financially 
constrained. Provision of funds for such investment depends on the entrepreneur’s 
net worth. Thus, even if the stage of development of the economy is such that the 
return of bad projects is higher than that of good projects, financial constraints might 
limit the investment in bad projects. Under these conditions the economy can exhibit 
complex dynamics that include both periodic and aperiodic fluctuations. Along a 
typical two-period cycle when the level of capital/labor ratio, and thus net worth, 
is too low for any funds to be allocated to bad projects, some of the output of good 
projects will be devoted to capital formation and thus the following period there will 
be a higher capital/labor ratio. But now the financial constraints are relaxed and as 
entrepreneurs invest in bad projects capital formation declines and the following 
period the capital/labor ratio drops and a new cycle begins.

In this paper, we extend the basic framework and allow for heterogeneous agents, 
which differ in their initial endowment. In this framework, interesting new questions 
can be studied. For example, in financial economics there are two types of credit 
rationing. There are some agents that cannot obtain funds at all and therefore cannot 
become entrepreneurs, while others might be able to get some funds but below the 
optimal level and therefore will underinvest. These two margins of adjustment for 
investements (who is going to invest and how much) will be in the focus of our anal-
ysis. In addition, this framework can be used to help us understand how financial 
constraints affect occupational choice (entrepreneurship) along the different phases 
of the business cycle. The model can also be applied to the study of the effects of 
business cycles on income inequality. However, the introduction of heterogeneous 
agents involving two margins of adjustment complicates significantly the analyt-
ics of dynamic solutions. In this paper we provide extensive analytical results for 
a linearized version of the model that can complement other numerical approaches 
(reviewed below). We focus our analysis on the nature of the business cycles, its 
severeity and duration, and on the regime switches that are involved. We show how 
the introduction of heterogeneity affects the impact of financial constraints on the 
characteristics of the business cycle.

The mathematical form of the model is a one-dimensional piecewise smooth and 
continuous system in discrete time, with two kink points at which the map changes 
its definition. These kink points have a clear economic motivation and reflect the 
fact that investment in bad projects is financially constrained. They play an impor-
tant role for the resulting dynamics. We describe, in five propositions, which kind of 
attracting sets can occur and the related bifurcations. The analysis is performed by 
using much of the theory of piecewise smooth systems and in particular piecewise 
linear systems, that is nowadays enough developed (see Avrutin et al., 2019), and the 
references therein), and uses the border collision bifurcations to explain many of the 
changes that may occur. In fact, in piecewise smooth systems, the bifurcations are 
often not the usual ones occurring in smooth systems, and the classification of the 
possible dynamics may be quite different, involving the kink points of the system.

Our paper is related to a number of papers that extend Matsuyama (2013). Mat-
suyama et  al. (2016) is a simpler version of Matsuyama (2013) that allows for a 
richer menu of technologies. The slightly simpler version in Matsuyama et al. (2016) 
allows for a more detailed study of the stability properties of the model. Other 
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studies that use this framework to examine issues related to business cycles are 
Bougheas et al. (2022), Kubin and Zörner (2021) and Kubin et al. (2019). Bougheas 
et al. (2022), motivated by events in financial markets around the Global Financial 
Crisis of 2008, introduces a banking sector that has a choice between financing pro-
ductive projects and investing funds in high yield investments that do not contrib-
ute in capital formation. As in the present paper agents are heterogeneous which 
allows the authors to study income inequality dynamics along the business cycle. In 
contrast to the present paper, the whole analysis is performed on the non-linearized 
version and, thus, some of the results are obtained numerically. Kubin and Zörner 
(2021) augment Matsuyama et  al. (2016) by introducing human capital and study 
the effects of learning-by-producing on the evolution and stability of income distri-
bution, while Kubin et al. (2019) take aspects from behavioral finance on board.

The rest of the paper is organized as follows. In Sect. 2, we motivate and describe 
the model which extends Matsuyama et  al. (2016) by allowing for borrowing and 
lending among heterogeneous agents. As we mentioned above, heterogeneity of 
agents introduces a second margin of adjustment for investment. Under a represent-
ative agent, like in Matsuyama et  al. (2016), only the level of investment matters 
which simplifies the model and allows for the derivation of closed form solutions. 
The reason is that after the second kink the map is a straight line with zero slope. 
However, when heterogeneity is introduced, as in the banking model of Bougheas 
et al. (2022) both margins adjust which complicates considerably the analysis of the 
model. Now after the second kink the map is non-linear and upward sloping imply-
ing that only computational solutions are feasible. In Sect. 3 we present a linearized 
version of the model that can be analytically solved. We focus our analysis on the 
interaction between financial constraints and the nature of business cycles (how 
strong are the fluctuations of capital and output per capita? how long are business 
cycles? and which regime switches do they involve?) and leave other applications 
to further research. Finally, Sect. 4 summarizes some results evidencing their role in 
the economic context and pointing to possible future extensions.

2  The Model

Time is discrete and the horizon infinite (t = 0, 1, 2, ...) . At each date a generation 
of unit mass is born and lives for two periods. Young agents born at t are not homo-
geneous. They are endowed with z units of (effective) labor that they supply inelas-
tically for the production of the final good. The distribution of labor endowments 
is continuous, time invariant with support on 

[
z, z̄

]
 and density function g(z). Let ẑ 

denote the level of aggregate (average) endowments. We normalize the aggregate 
supply of labor to 1. Young agents do not consume.

The single final good can be produced by two distinct technologies. One is a 
constant returns-to-scale technology, yt = f (kt) where yt denotes per capita output 
and kt denotes the capital/labor ratio at t. For all t, f � (kt) > 0 > f ��(kt) , f (0) = 0 
and f �(0) = ∞ . The final good can either be consumed or invested (good pro-
jects). Capital fully depreciates in one period. Factor markets are competitive with 
the reward to physical capital equal to �t = f � (kt) , and the reward to labor equal to 
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wt = f (kt) − ktf
�

(kt) ≡ W(kt) > 0 . Thus, the labor income of a young agent with 
endowment z is equal to zW(kt) . The second technology uses only capital with each 
unit of capital yielding B units of the final good. The output of this technology can-
not be invested (bad projects).

At the end of the first period (the beginning of the second period), young agents 
have received their wage income and turn old. They have the following two options. 
One option is to become lenders by investing their endowments in frictionless com-
petitive financial markets and enjoy a utility benefit u (home production or leisure). 
The other option is to become entrepreneurs by using their endowments together 
with borrowed funds to invest in the good projects technology. The amount of the 
final good that agents can borrow from the financial system depends on their endow-
ments. at t, an agent with endowment z will be able to borrow a maximum amount 
of (m − 1)zwt−1 units of the final good from financial markets (total investment in 
good projects will be equal to mzwt−1 , where m > 1).1

Financial markets can use the funds invested by lenders either to offer funds to 
entrepreneurs or to invest in bad projects. However, the latter type of investment is 
constrained. To ensure consistency with Matsuyama et al. (2016), we assume that 
bad projects become gradually available after the economy reaches a certain level 
of development.2 Let V̂

(
kt
)
 denote the level of bad projects available and V

(
kt+1

)
 

denote the funds invested in bad projects. Let rt denote the market clearing interest 
rate.

An agent with endowment z, if he chooses to produce good projects will earn 
income f � (kt+1)zmwt , repay rt+1(m − 1)zwt to the financial market and consume the 
difference. The same agent, if he chooses to invest in the financial market, will con-
sume rt+1zwt . Thus, as long as,

an agent endowed with z units of labor will invest in good projects. Let z∗
t
 denote the 

level of endowment such that the agent is indifferent between the two options.
Market clearing in financial markets requires that

The evolution of the capital/labor ratio will depend on whether or not there is invest-
ment in bad projects and if there is such investment whether or not is constrained. 
The exact form will be given below.

(1)f
�

(kt+1)zmwt − rt+1(m − 1)zwt ⩾ rt+1zwt + u

(2)∫
z̄

z∗
t+1

(m − 1)zwtg(z)dz + V
(
kt+1

)
= ∫

z∗
t+1

z

zwtg(z)dz

1 With heterogeneus agents the financial constraint avoids corner solutions where all funds would have 
been lent to the agent with the highest endowment.
2 One way to interpret the model is that investments in financial markets can take the form of bonds to 
corporations or CDOs. The first type of investment is more likely to enhance capital formation. Further-
more, it is also reasonably to assume that derivatives are more likely to be offered by well-developed 
financial markets.
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Bad Projects Are Not Available
For sufficient low levels of the capital/labor ratio bad projects will not be available. 

In this case, Vt+1 = 0 , and the capital/labor ratio at t + 1 is given by wages at t:

Investment In Bad Projects Is Unconstrained
Arbitrage will force the interest rate to be equal to the return of bad projects, 

rt+1 = B . Then, from (1) holding with equality we have

The evolution of capital is

(4) and (5) together solve for kt+1 and z∗
t+1

 . We write the solution for the evolution of 
the capital/labor ratio as

with H�(kt) > 0.
To prove this, rearranging (4) we have

and from (5) we can write

The two equations in (7) and (8) form a system with z∗
t+1

 and kt+1 as variables, given 
kt and the parameter B, u and m. Taking the total derivative with respect to kt+1 , z∗t+1 
and kt of (7) results in

where Z1 =
−u

mW(kt)(z∗t+1)
2

1

d2 f (kt+1)
dk2
t+1

> 0 and W1 =
−u

m(W(kt))
2
z∗
t+1

dW(kt)
dkt

d2 f (kt+1)
dk2
t+1

> 0.

The total derivative of (8) is

where Z2 = −mW
(
kt
)
z∗
t+1

g(z∗
t+1

) < 0 and W2 =
dW(kt)
dkt

⋅ m ⋅ ∫ z̄

z∗
t+1

zg(z)dz > 0.
Solving (9) and (10) results in

(3)kt+1 = mW
(
kt
) ≡ F(kt).

(4)z∗
t+1

=
u

W(kt)
(
f
�
(kt+1) − B

)
m
.

(5)kt+1 = ∫ z̄

z∗
t+1

mzW(kt)g(z)dz

(6)kt+1 ≡ H(kt).

(7)f
�

(kt+1) = B +
u

z∗
t+1

⋅W
(
kt
)
⋅ m

(8)kt+1 = ∫ z̄

z∗
t+1

mzwtg(z)dz = W
(
kt
)
⋅ m ⋅ ∫ z̄

z∗
t+1

zg(z)dz

(9)dkt+1 = Z1 ⋅ dz∗
t+1

+W1 ⋅ dkt

(10)dkt+1 = Z2 ⋅ dz∗
t+1

+W2 ⋅ dkt

(11)
dkt+1

dkt
=

W2Z1 −W1Z2

Z1 − Z2
= SlopeH > 0
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Investment In Bad Projects Is Constrained
From (2) we have

Further, due to the constraint, the evolution of the capital/labor ratio is given by

3  The Dynamics of the Model

3.1  Functional Forms

The resulting map (see Fig. 1) has three branches and involves two thresholds that 
are the points of intersection between the functions F and G and between G and H, 
also called kink points, where the map changes its definition with continuity, kFG 
and kGH:

For the dynamic analysis, we specify the following functional forms: 

1. We use F(kt) = C
√
kt , where C is a parameter.

2. Without strong alternatives, we assume a linear specification for G(kt)

(12)ẑ = m∫ z̄

ẑt+1
zg(z)dz +

V
(
kt
)

W
(
kt
)

(13)kt+1 =
(
W
(
kt
)
− V̂

(
kt+1

)) ≡ G(kt).

(14)kt+1 =

⎧⎪⎨⎪⎩

F(kt) if 0 ≤ kt ≤ kFG

G(kt) if kFG < kt < kGH

H(kt) if k
GH ≤ kt

G(kt) = �(kt − kFG) + F(kFG)

Fig. 1  Map k
t+1 = T(k

t
)
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 with kFG and � as parameters.
  There are a couple of alternative economic interpretations of these two param-

eters. In Matsuyama et al. (2016) investment in bad projects is financially con-
strained. The representative agent’s wealth (measured by per capita capital) must 
reach a certain threshold value, captured by kFG , before agent’s can borrow funds 
to invest in bad projects. Then, the value of � captures how fast these constraints 
are relaxed. In Bougheas et al. (2022) banks invest in bad projects and their avail-
ability depends on the level of financial innovation. In turn, it takes a certain level 
of economic development, captured by the threshold value kFG , before financial 
innovation takes off. Then, the value of � captures the speed of financial innova-
tion. Below we assume that 𝛿 < 0 reflecting a relatively fast availability of bad 
projects, implying a substitution of bad for good projects for kt > kFG.

3. We also linearize H(kt) based on the following two observations:
  First, there exists a threshold for the capital stock kFH , beyond which bad pro-

jects are more profitable than good projects.
  Second, the adjustment along the two margins implies that capital invested in 

good projects increases even if investment in bad projects is unconstrained, we 
introduce the parameter 𝜀 > 0 to capture this effect. At the same time, investment 
in bad projects imply that 𝜀 < 1 . Assuming that the first effect exists, but is not 
very strong, leads to 0 < 𝜀 << 1 . Thus, we use: 

 with kFH and � as parameters.

The analysis proceeds with this system kt+1 = T(kt):

where kGH denotes the intersection point of the two straight lines G(kt) and Hl(kt). 
We summarize the conditions on the five parameters:

For the sake of notational convenience, we define

so that we have the one-dimensional map

(15)Hl(kt) = �(kt − kFH) + F(kFH)

(16)T(kt) ∶=

⎧⎪⎨⎪⎩

F(kt) = C
√
kt if 0 ≤ kt ≤ kFG

G(kt) = 𝛿(kt − kFG) + F(kFG) if kFG < kt < kGH
Hl(kt) = 𝜀(kt − kFH) + F(kFH) if kGH ≤ kt

(17)C > 0, kFG > 0, kFH ∈ (0, kFG), 𝛿 < 0, 0 < 𝜀 << 1

(18)

NG = [C
√
kFG − �kFG] , NH = [C

√
kFH − �kFH] , kGH =

1

� − �
[NG − NH]
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that is continuous and piecewise smooth with two kink points ( kFG and kGH) at 
which the map changes its definition. Map T has a maximum in the point kFG, given 
by F(kFG) = C

√
kFG, and the iteration on the positive axis kt ≥ 0 are mapped into 

the interval [0,C
√
kFG] , so that the map is bounded. We mention here that the fixed 

point k∗ = 0 always exists and is repelling, and we do not consider it further, since 
the trajectory of points on the right side of k∗ = 0 are mapped into an absorbing 
interval.

Note that the model - although similar in spirit to Matsuyama et al. (2016) - is differ-
ent from an analytical perspective: Matsuyama et al. (2016) use a more general specifi-
cation of the F function; in their model, linearity of the G function is a special case; and 
their H function is always horizontal, whereas in our case by introducing heterogeneity, 
it has a positive slope. Finally, our analysis focuses on the role of different parameters. 
We study how the availability of bad projects affects the dynamics. In the map, this is 
reflected by the properties of the G function, namely by kFG and � . We are interested in 
the symbolic sequences on the cycles. In addition, we are interested in the implications 
of the heterogeneity and the two margins of adjustment. In the map, this is reflected by 
the (positive) slope of the Hl function, i.e. by the parameter �.

3.2  Dynamic Properties

In this section we focus on how the availability of investments in bad projects affects 
the asymptotic dynamics; the related parameters are kFG and � . In a first, more technical 
step we determine the possible equilibria of the model, the related bifurcations, and the 
conditions under which the map can be ultimately delimited in some absorbing interval 
involving only two branches of the map or all the three branches.

For T(kFG) < kFG the map has the only fixed point related to the function F,  given 
by k∗

F
= C2.

For T(kFG) > kFG and T(kGH) < kGH the map has the only fixed point k∗
G
=

NG

1−�
 

related to the function G, while for T(kGH) > kGH the map has the only fixed point, 
k∗
H
=

NH

1−�
 related to the function Hl. When the condition T(kFG) = kFG holds, it is the 

border collision of the two fixed points with the first kink point, k∗
F
= k∗

G
= kFG, while 

when T(kGH) = kGH holds, it is the border collision of the two fixed points with the sec-
ond kink point, k∗

G
= k∗

H
= kGH .

Since 𝜀 < 1 the last branch of the map, related to the function Hl either is below the 
diagonal (for T(kGH) < kGH ), or it leads to the globally attracting fixed point k∗

H
 (for 

T(kGH) > kGH ) where globally means for any kt > 0.

For T(kGH) > kGH , that is, for 𝜀kGH + NH > kGH leading to

(19)kt+1 = T(kt), T(kt) =

⎧
⎪⎨⎪⎩

F(kt) = C
√
kt if kt ≤ kFG

G(kt) = 𝛿kt + NG if kFG < kt < kGH

Hl(kt) = 𝜀kt + NH if kGH ≤ kt

(20)(1 − 𝜀)NG < (1 − 𝛿)NH
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we have the range

or also

in which the fixed point k∗
H

 exists and is globally attracting. We can so define the 
curve of border collision (at which k∗

G
= k∗

H
= kGH) ∶

For T(kFG) < kFG, that is, for kFG > C2, the fixed point k∗
F
= C2 exists and is globally 

attracting, since the slope of F in the fixed point is 1/2,  and we can define the curve 
of border collision (at which k∗

F
= k∗

G
= kFG) ∶

For parameters such that kFG < k∗
G
=

NG

1−𝛿
< kGH (or equivalently for param-

eters between the two curves �H and �F) the fixed point k∗
G
=

NG

1−�
 exists, and for 

−1 < 𝛿 < 0 it is globally attracting (since it attracts all the points between the two 
kink points, kFG and kGH , and from outside a trajectory must enter that interval). 
At � = −1 it undergoes a degenerate flip bifurcation (for the degenerate bifurcations 
see Sushko and Gardini, 2010), the result of which depends on the parameters of 
the other two functions of the map. If the fixed point k∗

G
 is closer to kFG (than to 

kGH ) then at the bifurcation value the segment [F2(kFG),F(kFG)] is filled with cycles 
of period 2, the last of which 

{
F2(kFG),F(kFG)

}
 also undergoes a border collision 

bifurcation, and since the slope of the function F at the kink point kFG is smaller 
than 1, the result of the bifurcation for 𝛿 < −1 is an attracting 2-cycle with periodic 
points in the F and G branches. Similarly, if the fixed point k∗

G
 is closer to kGH (than 

to kFG ) then at the bifurcation value the segment [Hl(k
GH),H2

l
(kGH)] is filled with 

cycles of period 2, the last of which 
{
Hl(k

GH),H2
l
(kGH)

}
 also undergoes a border 

collision bifurcation, and since the slope of the function Hl at the kink point kGH is 
smaller than 1, the result of the bifurcation, for 𝛿 < −1 is an attracting 2-cycle with 
periodic points in the G and Hl branches. We have so proved the following

Proposition 1 Existence and stability properties of the fixed points. 

(i) For kFG > C2 the fixed point k∗
F
= C2 is globally attracting. A border collision 

occurs at the curve �F ( given in (24)).

(21)kFG < �kFG ∶=
1

4𝛿2

(
C −

√
C2 − 4𝛿

1 − 𝛿

1 − 𝜀
NH

)2

(22)𝛿 <
C(1 − 𝜀)

√
kFG − NH

(1 − 𝜀)kFG − NH

(23)�H ∶ kFG = k̃FG or � =
C(1 − �)

√
kFG − NH

(1 − �)kFG − NH

(24)�F ∶ kFG = C2
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(ii) For 𝛿 <
C(1−𝜀)

√
kFG−NH

(1−𝜀)kFG−NH

 (or equivalently kFG <
1

4𝛿2

(
C −

√
C2 − 4𝛿

1−𝛿

1−𝜀
NH

)2

) 

the fixed point k∗
H
=

NH

1−�
 is globally attracting. A border collision occurs at the curve 

�H ( given in (23), (21)).

(iii) For 1

4𝛿2

(
C −

√
C2 − 4𝛿

1−𝛿

1−𝜀
NH

)2

< kFG < C2 the only fixed point is 

k∗
G
=

NG

1−�
, globally attracting for −1 < 𝛿 < 0 . A degenerate flip bifurcation occurs at 

� = −1, leading to an attracting 2-cycle.

These regions in the parameter plane (�, kFG) lead to areas that are illustrated in 
different colors in Fig. 2a. The global stability of the fixed points is shown in differ-
ent yellow tonalities (bounded by the curves �H , �F and � = −1).

For kFG > C2 the fixed point k∗
F
 is globally attracting. The border collision bifur-

cation occurring at kFG = C2 will be commented below. So we consider the case 
kFG < C2 to determine the existing absorbing interval. This will also clarify the kind 
of 2-cycle appearing at the bifurcation � = −1. As remarked above, the degenerate 
flip bifurcation of the fixed point k∗

G
 leads to an attracting 2-cycle, and which one 

depends on the value of the other parameters. Before commenting the point (say 
P) on the line � = −1 leading to the two different dynamic results, we look for the 
regions of the parameters related to the absorbing intervals that the map can have. 
In fact, the asymptotic trajectories can belong to an absorbing interval with two 
branches only (F and G or G and Hl ), reducing to a unimodal map, or including all 
the three functions, so being characterized by a bimodal map. We have the following

Fig. 2  Two dimensional bifurcation diagram in the parameter plane (�, kFG) for C = 3 , kFH = 1 and 
� = 0.2. In a the fixed points and the 2-cycles have regions in yellow and pink, respectively, with differ-
ent tonalities, depending on the symbolic sequence. Red color corresponds to a 3-cycle, azure color to a 
4-cycle, green color to a 5-cycle, while white regions correspond to chaotic intervals. b The bifurcation 
curves are shown, and in the gray (resp. light blue) region the interval I

FG
 (resp. I

GH
 ) is absorbing, in the 

white region the interval J is related to three branches of map T 
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Proposition 2 Absorbing intervals. Let kFG < C2.

(i) For 𝛿 >
𝜀[kFG−C

√
kFG]

(1−𝜀)kFG−NH

 the interval IGH = [T(kGH),T2(kGH)] is invariant and 
absorbing, only the two branches with functions G and Hl are involved (azure region 
in Fig.2b).

(ii) For (1−𝜀)C
√
kFG−NH

kFG−C
√
kFG

< 𝛿 <
𝜀[kFG−C

√
kFG]

(1−𝜀)kFG−NH

 the interval IFG = [T2(kFG), T(kFG)] is 
invariant and absorbing, only the two branches with functions F and G are involved 
(gray region in Fig.2b).

(iii) For the remaining parameter points the interval  J = [T(kGH), T(kFG)]  is 
invariant and absorbing, all the three branches, with functions F,  G  and  Hl,  are 
involved (white region in Fig.2b).

Proof As long as it is T(kGH) ≥ kFG then only the two branches with functions G and 
Hl are involved in the absorbing interval, so that the interval IGH = [T(kGH), T2(kGH)] 
is invariant and absorbing. While for T(kGH) < kFG the absorbing interval of the map 
is J = [T(kGH), T(kFG)] and a smaller invariant interval IFG = [T2(kFG), T(kFG)] ⊂ J 
exists when it holds T(kFG) ≤ kGH , inside which the map involves only the two func-
tions F and G. While for T(kFG) > kGH the smallest absorbing interval is J, involv-
ing all the three branches of the map. Notice that the interval J = [T(kGH), T(kFG)] 
is absorbing because the map is increasing below it (for xt < T(kGH) ) and decreas-
ing above it (for xt > T(kFG) ), so that the trajectory of any point is mapped in J in 
a finite number of iterations (and the trajectory cannot escape from J). Similarly, 
when a smaller invariant absorbing interval exists (IFG or IGH) then the trajectory of 
any point is mapped in it in a finite number of iterations. The dynamics of the map 
in the smaller absorbing interval IGH is topologically conjugate to that of the skew 
tent map (since it is piecewise linear, we refer to Sushko et al., 2016, and Avrutin 
et al., 2019) for the related dynamics and bifurcations), while the map in the smaller 
absorbing interval IFG is unimodal and piecewise smooth, however, the border colli-
sion bifurcations related to the kink point kFG may be studied by using the skew tent 
map as a border collision normal form.

The transition of the dynamics from the invariant interval IGH to a different one 
occurs when the interval has a contact with the kink point kFG. Considering the 
equality T(kGH) = kFG we have

from which

�

� − �
[NG − NH] + NG − kFG = 0

(25)TGH ∶ � =
�[kFG − C

√
kFG]

(1 − �)kFG − NH
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The set TGH so obtained is shown in Fig. 2, below it the absorbing interval of the 
map is IGH and involves only two branches, G and Hl . This proves point (i).

For T(kGH) < kFG , as long as it is T(kFG) ≤ kGH the absorbing interval is IFG , so 
let us define the condition at which it holds T(kFG) = kGH . This condition leads to

that is

The set TFG so obtained is shown in Fig. 2, above it the absorbing interval of the 
map is IFG. This proves point (ii), and point (iii) is a consequence of (i) and (ii)   ◻

We end now the comments related to the bifurcations of the fixed points, in the 
following

Proposition 3 Bifurcations of the fixed points.

(i) Let P = (−1, k∗
P
), where

then the degenerate flip bifurcation of the fixed point k∗
G

 occurring at � = −1 for 
kFG < k∗

P
 (resp. kFG > k∗

P
) leads to an attracting 2-cycle with periodic points in the 

two branches G and Hl (resp. F and G).

(ii)  Crossing the border collision curve �F ( given in (24))  from above 
( kFG > C2 ) to below ( kFG < C2 ) the result of the border collision of the fixed point  
k∗
F
 depends on the value of the parameter �. For −1 < 𝛿 < 0 a persistence border 

collision occurs, leading to the globally attracting fixed point k∗
G

; for −2 < 𝛿 < −1 it 
leads to an attracting 2-cycle with periodic points in the two branches F and G;  for 
𝛿 < −2 we can have transition to chaotic intervals or to attracting cycles of period 
3, 4, 5.

(iii)  Crossing the border collision curve �H (given in (23), (21)),  from below 
( kFG < �kFG) to above (kFG > �kFG) the result of the border collision of the fixed point 
k∗
H

 depends on the value of the parameter �. For −1 < 𝛿 < 0 a persistence border 
collision occurs, leading to the globally attracting fixed point k∗

G
; for −1∕𝜀 < 𝛿 < −1 

it leads to an attracting 2-cycle with periodic points in the two branches G and Hl; 
for 𝛿 < −1∕𝜀 we can have a transition to chaotic intervals or to attracting cycles of 
higher period, depending on the values of the two parameters � and �.

C
√
kFG =

1

� − �
[NG − NH]

(26)TFG ∶ � =
(1 − �)C

√
kFG − NH

kFG − C
√
kFG

(27)k∗
P
=

1

4

(
�C +

√
(�C)2 + 4NH

)2
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Proof (i) Considering the flip bifurcation of the fixed point k∗
G

 for � = −1 both the 
conditions in (25) and in (26) lead to the same equation for kFG , that is:

from which we get the value k∗
P
 in (27), and the conditions T(kGH) = kFG and 

T(kFG) = kGH correspond to the existence of a 2-cycle with the two kink points {
kFG, kGH

}
 . That is, the two curves labelled TFG and TGH are intersecting in the point 

P = (−1, k∗
P
) on the bifurcation line � = −1. It follows that below (resp. above) the 

point P, the flip bifurcation of k∗
G

 leads to an attracting 2-cycle with periodic points 
in the two branches G and Hl (resp. F and G).

For (ii) the result of the border collision (for k∗
F
= k∗

G
= kFG ) only depends on 

the two slopes of the functions at the two sides of the fixed point. The slope of the 
function F at the border collision for k∗

F
= kFG is fixed at 1/2, while the slope of the 

function G is �, so that for −1 < 𝛿 < 0 it leads to persistence of attracting fixed point 
( k∗

G
 in the middle branch), when the product of the two slopes satisfies −2 < 𝛿 < −1 

the bifurcation leads to an attracting cycle of period 2, and so on, the value of � com-
pletely determine the result of the bifurcation (see Sushko et al., 2016, and Avrutin 
et al., 2019).

For (iii) the reasoning is similar, it occurs as for the border collision of the fixed 
point in the skew tent map, The slopes of the functions Hl and G at the border col-
lision (for k∗

G
= k∗

H
= kGH ) are � ( < 1 ) and �, so that for −1 < 𝛿 < 0 it leads to per-

sistence of attracting fixed point k∗
G

 , for −1∕𝜀 < 𝛿 < −1 the bifurcation leads to one 
attracting 2-cycle with symbolic sequence GH, while for 𝛿 < −1∕𝜀 we can have cha-
otic intervals or other attracting cycles.   ◻

In Fig.  2a we can see the result of the flip and border collision bifurcations 
commented above in the parameter plane (�, kFG) . Note that the figure illustrates 
the analytic result for specific parameter values. However, the equations of the 
bifurcation curves are analytically derived, and can be drawn for different con-
stellations of the remaining parameters.

Each point (�, kFG) denotes the result of the asymptotic behavior of the map 
at the specific values for the parameters. Recall that in the blue region of Fig. 2b 
related to a piecewise linear unimodal map in the absorbing interval IGH then 
the attracting set is necessarily unique. In the gray region of Fig.  2b related to 
a piecewise smooth unimodal map in the absorbing interval IFG in general the 
attracting set may be also not unique (two may coexist, one attracting the critical 
point and another attracting the kink point, see Sushko et al., 2005; 2006). How-
ever, in our case the local maximum is exactly at the kink point, so that we cannot 
have bistability, also in IFG the attracting set is necessarily unique. Differently, 
in the region (white region in Fig. 2b) in which the absorbing interval J includes 
the three branches of map T, with a local maximum and a local minimum, it is 
possible to have bistability, that is, the existence of two different attracting sets 
(examples are given below).

In Fig.  2a we highlight the result of the asymptotic behavior of the map with 
different colors, each color denotes a cycle of different period, while white regions 

(28)kFG − �C
√
kFG − NH = 0
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correspond to the existence of chaotic intervals as attractors. The yellow regions 
in different tonalities show the regions in which one of the fixed points is globally 
attracting. Crossing the stability region of the fixed point k∗

F
 , as it follows from Prop-

osition 3, the result can be an attracting cycle or a chaotic attractor, depending on 
the slope � and similarly crossing the stability region of the fixed point k∗

H
 the result 

can be an attracting cycle or a chaotic attractor, depending on the two slopes � and 
�. In both cases the transition occurs inside an absorbing interval with two functions 
(colored regions in Fig. 2b), so that, as commented above, the transition leads to a 
unique attractor.

As remarked in Proposition 3, we can have attracting cycles of period 2 with 
periodic points in different branches of the map. In Fig. 2a different pink tonal-
ities denote the existence of attracting period-2 cycles with different symbolic 
sequence (i.e. periodic points in different branches of the map). It is evident the 
region of the attracting 2-cycle marked FG, related to the flip bifurcation of k∗

G
 , 

that is the same region related to the border collision of the fixed point k∗
F
, and 

also the region of the attracting 2-cycle marked GH, related to the flip bifurcation 
of k∗

G
 , that is the same region related to the border collision of the fixed point k∗

H
 . 

Moreover, we have a third region related to an attracting 2-cycle marked FH, that 
appears as persistence border collision of the attracting 2-cycle marked GH,  but 
also as result of the degenerate flip bifurcation of the fixed point k∗

G
 at the particu-

lar point P = (−1, k∗
P
). In fact, in Proposition 3i we have commented the result of 

the flip bifurcation for kFG < k∗
P
 and kFG > k∗

P
 , but not at kFG = k∗

P
. That point is 

particular, since it is a point of multiple bifurcations as in it three bifurcations are 
merging (the flip bifurcation of the fixed point k∗

G
 and two border collision curves 

commented below). As already mentioned, when the parameters are in point P, 
then the fixed point k∗

G
 is exactly in the middle of the related branch of definition 

of the function G, at the same distance from the two kink points, and that branch 
is filled with 2-cycles. In particular, the extrema belong to the 2-cycle with the 
kink points 

{
kFG, kGH

}
 , which attracts the points from outside the interval. It fol-

lows that this 2-cycle can be considered as a 2-cycle at its border collision, and 
it can be considered the merging with the kink points of a 2-cycle with periodic 
points in any two of the three different branches of map T. Stated differently, from 
the point P, decreasing �, at a value 𝛿 < −1 and close to −1 , the result of the 
bifurcation, depending on the value of the other parameters (in Fig. 2a depend-
ing on kFG ), may be an attracting 2-cycle with periodic points in the branches F 
and H, or those marked FG or GH. It is possible to completely characterize also 
this bifurcation, that is, we can say exactly the result of the bifurcation, which 
depends on the other parameters. To this goal let us determine the existence 
region of the cycle FH.

Proposition 4 Existence and bifurcations of the 2-cycle FH.

The 2-cycle with points belonging to the branches F and Hl has periodic points 
given by 

{
k1, k2

}
 with k1 = k∗

P
 given in (27) and k2 = C

√
k∗
P
, and it exists for 

k1 < kFG and k2 > kGH .
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The bifurcation occurring at k1 = kFG corresponds to the border collision bifur-
cation curve 

leading, for kFG < k∗
P
, to attracting cycles or attracting chaotic intervals. 

The bifurcation occurring at k2 = kGH corresponds to the border collision bifur-
cation curve

where 

leading, for kFG > C
√
k∗
P
, to a different attracting set (a 4-cycle in the case shown in 

Fig.2a).

Proof We can determine the periodic points (k1, k2) of the 2-cycle FH considering 
k2 = F(k1) = C

√
k1 , then k1 = Hl(k2) = �k2 + NH leads to

and thus to

that exists for k1 < kFG and k2 > kGH , and its stability follows from its eigenvalue � , 
given by the product of the two derivatives � = F�(k1)H

�
l
= F�(k∗

P
)H�

l
 that is positive 

and 𝜆 < 1 since

this region is colored in dark pink in Fig. 2a.
Then, one bifurcation of this 2-cycle occurs when there is the merging of k1 with 

the kink point kFG and a second bifurcation occurs when there is the merging of k2 
with the kink point kGH . So, the border collision bifurcation occurring at k1 = kFG 
gives the bifurcation curve

(In Fig.  2a it corresponds to an horizontal straight line) and depending on the 
value of 𝛿 < −1 this border collision can have different results. At the collision the 

(29)�FH ∶ kFG = k∗
P

(30)�FH ∶ kFG =

(
1

2�

(
C −

√
C2 − 4�NG

))2

(31)NG = NH +
C(� − �)

2

(
�C +

√
(�C)2 + 4NH

)

(32)k1 − �C
√
k1 − NH = 0

(33)

k1 =
1

4

(
�C +

√
(�C)2 + 4NH

)2

( = k∗
P
) and k2 =

C

2

(
�C +

√
(�C)2 + 4NH

)
( = C

√
k∗
P
)

(34)𝜆 =
C𝜀

2
√
k∗
P

=
C𝜀

𝜀C +
√
(𝜀C)2 + 4NH

=
𝜀

𝜀 +
√
𝜀2 + 4NH∕C

2
< 1

(35)�FH ∶ kFG = k∗
P
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periodic point k1 = kFG is a fixed point of the second iterate of the map, so that the 
result of this border collision depends on the two slopes of map T2 at the kink point 
kFG. One slope (on the left side) is 𝜆 = F�(k∗

P
)H�

l
< 1 as given above in (34), and the 

other slope (on the right side) is 𝜇 = G�H� = 𝛿𝜀 < 0 (see an example in Fig.3a). For 
𝜇 > −1, (that is, − 1

𝜀
< 𝛿 < −1 ) we have persistence of attracting fixed point for T2 , 

that corresponds to persistence of an attracting 2-cycle GH for T (see the border of 
the bifurcation curve �FH related to this 2-cycle in Fig. 2a). For 𝜇 < −1 we certainly 
have an interval leading to an attracting 2-cycle for map T2, that corresponds to an 
attracting 4-cycle of map T with symbolic sequence FHGH (clearly visible in the 
azure region in Fig. 2a), and so on, the values of the two slopes � and � determine 
the result of the bifurcation (by using the skew tent map as the border collision nor-
mal form).

The second border collision bifurcation of the 2-cycle FH occurs for k2 = kGH , 
that is

(where NG = C
√
kFG − �kFG ) so that we have

Let NG = NH +
C(�−�)

2

�
�C +

√
(�C)2 + 4NH

�
, from �kFG − C

√
kFG + NG = 0 we 

get the border collision bifurcation curve:

C

2

(
�C +

√
(�C)2 + 4NH

)
=

1

� − �
[NG − NH]

(36)C
√
kFG − �kFG = NH +

C(� − �)

2

�
�C +

�
(�C)2 + 4NH

�

(37)�FH ∶ kFG =

(
1

2�

(
C −

√
C2 − 4�NG

))2

Fig. 3  � = −3 and the parameters as in Fig. 2. In a kFG = 4. b kFG = 5.05
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The result of this border collision of the 2-cycle FH depends on the two slopes at 
the colliding point k2 = kGH . On the left side of the kink point it is given by F�(k1)G

� 
and on the right side by F�(k1)H

�
l
. Since F�(k1) = F�(k∗

P
), this second one is positive, 

𝜆 = F�(k∗
P
)H�

l
< 1 as given in (34), and for the other one we have

(see an example in Fig. 3b). These two slopes, by using the skew tent map, deter-
mine the result of the bifurcation. In the case shown in Fig. 2a this bifurcation leads 
to an attracting 2-cycle for map T2, that corresponds to an attracting 4-cycle of map 
T with symbolic sequence FHFG (clearly visible in the azure region in Fig.  2a, 
above the curve �FH ).   ◻

An example is given in Fig. 3 at � = −3 and the parameters as in Fig. 2. In Fig. 3a 
the border collision of the 2-cycle FH with the first kink point (point on the bifurca-
tion curve (29)) and in Fig. 3b with the second kink point (point on the bifurcation 
curve (30)). A peculiarity of this cycle is that at a fixed value of � (varying only kFG) 
the map changes shape while the periodic points of the 2-cycle are the same (being 
k1 = k∗

P
 and k2 = C

√
k∗
P
).

An immediate consequence of Proposition 4 is that a complete characteriza-
tion of the degenerate flip bifurcation of the fixed point k∗

G
 at the particular point 

P = (−1, k∗
P
) is now possible. Considering a parameter value 𝛿 < −1 and close to −1 , 

then:

– for kFG between the two curves �FH and �FH the bifurcation leads to an attracting 
2-cycle FH,

– for kFG below the curve �FH the bifurcation leads to an attracting 2-cycle GH,
– while for kFG above the curve �FH the bifurcation leads to an attracting 2-cycle 

FG.

While the bifurcations associated with the 2-cycle FH are only the two border colli-
sions, the other two kind of cycles of period 2 (FG and GH) bifurcated from the flip 
bifurcation of k∗

G
 can on their turn undergo a flip bifurcation, that is, we can also see 

a loss of stability due to a smooth flip bifurcation or due to a degenerate flip bifurca-
tion, since the map is piecewise smooth, and the result of the bifurcation may be not 
the standard one (of period doubling). We prove the following

Proposition 5 Bifurcations of the 2-cycles FG and GH.

(i) The 2-cycle FG with points belonging to the branches F and G undergoes a 
flip bifurcation crossing the curve 

(38)F�(k1)G
� = F�(k∗

P
)𝛿 =

𝛿

𝜀 +
√
𝜀2 + 4NH∕C

2
< −1

(39)fFG ∶ � =
−2

3C2

�
kFG +

�
(kFG)2 + 3C3

√
kFG

�
.
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(ii) The 2-cycle GH with points belonging to the branches G and H undergoes a 
degenerate flip bifurcation crossing the curve

with different dynamic results depending on the parameters. (In the example of Fig.2 
in the region with absorbing interval IGH  the bifurcation leads to four chaotic inter-
vals, while in the region with absorbing interval J to an attracting 4-cycle)

Proof The 2-cycle FG bifurcated from the flip bifurcation of k∗
G

 has periodic points 
(�1, �2) obtained considering �2 = F(�1) = C

√
�1 and then �1 = G(�2) leading to

so that

and the flip bifurcation occurs when the eigenvalue of the 2-cycle, given by the 
product of the two derivatives, is −1. This condition is F�(�1)G

� =
C

2
√
�1
� = −1 lead-

ing to 2
√
�1 + C� = 0. Substituting and computing we get

and thus the flip bifurcation curve in (39), or equivalently:

Since in the present case the map is piecewise smooth, the fixed point of the sec-
ond iterate of the map belongs to a smooth arc, so that the flip bifurcation may be a 
standard one, in general in smooth systems it can be subcritical or supercritical, and 
a degenerate case is also possible. In our case we leave this analysis to future work. 
However, a few examples suggest that it is a degenerate bifurcation. At the flip bifur-
cation value the map has four segments filled with cycles of period 4, bounded by 
the periodic points of the 2-cycle (connecting two segments), the kink point closest 
to the 2-cycle and its three images, that is, the fourth iterate of the map, T4, has two 
segments exactly on the diagonal, filled with periodic points and the external kink 
point belongs to a 4-cycle at its border collision. To determine the result of the bor-
der collision we use the skew tent map as border collision normal form, considering 
the two slopes of the map T4 at this kink point.

In our system this result differs depending on the region to which the parameters 
belong. That is, the result depends on the kind of existing absorbing interval. For 
parameters in the region with interval IFG , in which only the branches F and G are 
involved (gray region in Fig. 2b), the two slopes are both higher than 1 in absolute 
value (an example is shown in Fig. 4a), and the result is 4 chaotic intervals, bounded 
by the images of the kink point kFG (an example is shown in Fig. 4b). The symbolic 

(40)fGH ∶ �� = −1

(41)�1 − �C
√
�1 − NG = 0

(42)2
√
�1 = �C +

�
(�C)2 + 4NG

3C2�2 + 4�kFG − 4C
√
kFG = 0

fFG ∶ kFG =
C2

4�2

�
1 −

√
1 − 3�3

�2
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sequences involved in this chaotic set are the occurrence of FGFG and FGGG  in an 
unpredictable way. Differently, for parameter in the region with absorbing interval J 
(white region in Fig. 2b), even if only the branches F and G are involved, the kink 
point on the boundary of the segments filled with 4-cycles is kGH (an example is 
shown in Fig. 5a) and one slope of map T4 at this kink point is smaller than 1 and 
the result is an attracting 4-cycle with periodic points FGFH (an example is shown 
in Fig. 5b).

Fig. 4  kFG = 8, and the parameters as in Fig. 2. In a � = −1.860758, on the diagonal are evidenced seg-
ments filled with 4-cycles;  b � = −1.9 there are four chaotic intervals evidenced in red

Fig. 5  kFG = 4.4 , and the parameters as in Fig. 2. a � = −1.344995 , on the diagonal the circles are evi-
dencing segments filled with 4-cycles; in b � = −1.4 , a 4-cycle is the attracting set, evidenced by the red 
points



 S. Bougheas et al.

1 3

The 2-cycle GH bifurcated from the flip bifurcation of k∗
G

 has periodic points 
(�1, �2) obtained considering �2 = G(�1) = ��1 + NG then �1 = Hl(�2) leads to

so that

The flip bifurcation occurs when the product of the two derivatives is −1 , that is:

In Fig.  2a � = −1∕� = −5 is a vertical segment. Since the two branches with 
the periodic points of the 2-cycle are linear, this flip bifurcation is necessarily 
degenerate.

At the bifurcation value the map has two segments including the 2-cycle that are 
filled with cycles of period 4, and the external one has a point in one kink point, the 
closest to the 2-cycle, which may be either kFG or kGH .

When the parameters belong to the area in which the map is restricted to the 
absorbing interval IGH (light blue region in Fig. 2b), then the result of the degener-
ate flip bifurcation of the 2-cycle involves the kink point kGH and the bifurcation 
leads to 4 chaotic intervals (an example is shown in Fig. 6a). Differently, when the 
parameters belong to the area in which the map is restricted to the absorbing interval 
J (white region in Fig.  2b), then the kink point kFG is involved and this bifurca-
tion leads to a period doubling, an attracting 4-cycle with symbolic sequence FHGH 
exists after the bifurcation (an example is shown in Fig. 6b).   ◻

(43)�1 = �(��1 + NG) + NH

(44)�1 =
�NG + NH

1 − ��
, �2 =

NG + �NH

1 − ��

fGH ∶ �� = −1

Fig. 6  � = −5.01, and the parameters as in Fig. 2. a kFG = 3.6, there are four chaotic intervals evidenced 
in red; in b kFG = 3.7 , a 4-cycle FHGH is the attracting set, evidenced by the red points
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As remarked above, in the parameter space there exists a wide region related to a 
bimodal map, involving all the three functions. We do not present a comprehensive 
analysis of this region, but highlight two properties that are interesting from an eco-
nomic point of view: 

1. In this region we have attracting cycles as well as attracting chaotic intervals. An 
example of the possible trajectories is shown in the one-dimensional bifurcation 
diagram as a function of � in Fig. 7

Fig. 7  kFG = 7 and the param-
eters as in Fig. 2

Fig. 8  kFG = 5.06, � = −5.85 and the parameters as in Fig. 2, there are coexisting attracting cycles, evi-
denced by the red points. a There is an attracting 7-cycle FGGFGFH;  in b a 3-cycle FGH is the attract-
ing set
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2. Clearly, in this parameter region, inside the absorbing interval J it is possible to 
have coexistence of attractors. An example is shown in Fig. 8.

4  Discussion of Results and Final Remarks

We presented a model in the spirit of Matsuyama’s model of endogenous financial 
cycles (Matsuyama et al., 2016), which we augmented by agents’s heterogeneity. We 
showed that in the resulting model old agents have two margins for adjusting their 
financial decisions: first they decide whether to become entrepreneur or not; second, 
they decide on the amount to invest in entrepreneurial projects. The corresponding 
map has three branches that correspond to three different regimes with respect to 
the investments in bad projects: on a first branch, bad projects are not available (and 
all investment goes to entrepreneurial, good projects); on a second, middle branch, 
investment in bad projects becomes increasingly available, and, finally, on a third 
branch, investment in bad projects is not limited anymore. We showed that - because 
of heterogeneity - the third branch is upward sloping. We specified the functional 
forms, linearized two branches, and described analytically important properties of 
the implied dynamics. We paid particular attention to the nature of business cycles, 
commenting not only on the movement of capital and output per capita, but also 
on the length of the business cycles and in particular also on the pattern of regime 
switches that are involved. In presenting the results, we focused on their dependence 
upon the availability of bad projects, i.e. on the parameter kFG (the lower kFG , the 
sooner bad projects become available) and � (the lower � the quicker the availability 
of bad projects increases with an increase in kt).

From an economic point of view, we would like to highlight the following results: 

1. The map involves three fixed points (one on each branch characterized by a spe-
cific regime) and we analytically describe the parameter space, in which these 
fixed points are stable. For low (high) values of kFG , the dynamics converges to 
the fixed point in which investment in bad projects is unlimited (not available). 
For intermediate values of kFG and for values of � between 0 and −1 , the dynamics 
converges to the fixed point, in which investment in bad projects are available, 
but limited.

2. We gave a full description of how the fixed points bifurcate into period-2 cycles. 
Importantly, we are able to analytically describe the parameter spaces with dif-
ferent symbolic sequences on the cycles (involving economically different regime 
switches): All two cycles occur for 𝛿 < −1 . If bad projects become available at 
a low threshold kFG , the cycle fluctuates between constrained and unconstrained 
investment in bad projects (which corresponds to the symbolic sequence GH). For 
intermediate values of kFG the dynamics switches between unconstrained and no 
investment in bad projects (symbolic sequence FH), whereas for high values of 
kFG the cycles are between constrained and no investment in bad projects (sym-
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bolic sequence FG). Thus, we are able to describe analytically regime switches 
over the cycle; as well as how the nature of period-2 cycles changes with varying 
parameters.

3. We have also fully described how the FH cycle bifurcates (Proposition 4). It 
does not only bifurcate into period-2 cycles with a different symbolic sequence 
(commented upon in the previous paragraph); in addition, we gave parameter 
conditions for which it bifurcates into period-4 cycles. Interestingly enough, these 
period-4 cycles may exhibit two different symbolic sequences: For a lower value 
of kFG a FHGH period-4 cycle appears, on which the cycle starts with no invest-
ment in bad projects, goes then into the regime with unconstrained investment 
in bad projects, enters the regime with constrained investment in bad projects 
and finally the regime with unconstrained investment in bad projects; then the 
cycle starts over again. Instead, for a higher value of kFG a FHFG period-4 cycle 
appears, on which the cycle starts with no investment in bad projects, goes then 
into the regime with unconstrained investment in bad projects, returns to the 
regime with no investment in bad projects and finally enters the regime with 
constrained investment in bad projects; then the cycle starts over again. Again, 
our model provides not only conditions for the change in cycle length, but also 
conditions on the nature of regime switches on cycles with the same cycle length.

4. The model is highly stylized and therefore it is difficult to take it directly to the 
data. However, it describes a mechanism that might be able to generate cyclical 
patterns similar to the ones found in data. From an economic perspective, it is 
interesting to note that the model does not only describe regular cycles of low 
periodicity that may appear as a not fully convincing description of reality (which 
always involves irregular fluctuations). As shown, the period-2 cycles may not 
only bifurcate into regular period-4 cycles, but also into attractors involving four 
chaotic intervals (see Proposition 5, on the bifurcations of the GH and the FG 
cycles, and Figs. 4b and 6a for examples of the attractors; and the one-dimen-
sional bifurcation diagram in Fig. 7, in which the attractors involving chaotic 
intervals are clearly visible). The dynamics on these attractors with four chaotic 
intervals resembles an irregular period-four cycle, which is a much more plausible 
pattern in an economic context.

5. Our model also involves coexisting attractors with totally different symbolic 
sequences. Figure 8 shows coexistence of a period-three cycle FGH with a period-
seven cycle, which—notably enough—does NOT involve the sequence FGH. The 
nature of regime switches and their sequence is sensitive upon initial conditions 
and may thus change abruptly after a shock.

6. Importantly, we would like to highlight the role of heterogeneity in our model. 
Without heterogeneity, the branch Hl(kt) is horizontal, � = 0 holds.

  First observe, the dynamics is not affected by heterogeneity, where IFG is the 
absorbing interval (i.e. where the map only involves the branches F(kt) and G(kt) , 
see the gray area in Fig. 2b) and the slope of the branch Hl(kt) is not involved.

  Second, in the other regions the dynamics involves also the third branch. With-
out heterogeneity it is flat and all cycles are superstable, which also implies that 
attractors involving chaotic intervals are not possible. This holds also for the 
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Flip bifurcation of the GH cycle. Introducing heterogeneity thus increases the 
economic plausibility of the implied dynamic patterns.

7. Finally, note that our analysis also leads into various policy questions. It highlights 
the importance of financial institutions for the generation of business cycles, for 
creating volatility, and shows the fragility of economic stability. Small insti-
tutional shocks may drastically change the economic development. Our analy-
sis also reveals additional challenges for economic policy. It does not suffice to 
observe the development of total output and income, since business cycles similar 
in income development may actually involve quite different pattern of regime 
switches and thus call for different policy responses. In addition, introducing 
heterogeneity also allows to study the impact of business cycles on occupational 
choice and income inequality, thus opening up further policy fields. However, for 
digging deeper into these questions our analytic approach has to be complemented 
by numerical analyses.

  We leave this and other applications to further research.
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