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Abstract
The stochastic volatility in mean (SVM) model proposed by Koopman and Uspen-
sky (J Appl Econ 17:667–689, 2002) is revisited. This paper has two goals. The 
first is to offer a methodology that requires less computational time in simulations 
and estimates compared with others proposed in the literature as in Abanto-Valle 
et al. (Q Rev Econ Financ 80:272–286, 2021) and others. To achieve the first goal, 
we propose to approximate the likelihood function of the model applying Hidden 
Markov Models machinery to make possible Bayesian inference in real-time. We 
sample from the posterior distribution of parameters with a multivariate Normal dis-
tribution with mean and variance given by the posterior mode and the inverse of the 
Hessian matrix evaluated at this posterior mode using importance sampling. Fur-
ther, the frequentist properties of estimators are analyzed conducting a simulation 
study. The second goal is to provide empirical evidence estimating the SVM model 
using daily data for five Latin American stock markets, USA, England, Japan and 
China. The results indicate that volatility negatively impacts returns, suggesting that 
the volatility feedback effect is stronger than the effect related to the expected vola-
tility. This result is similar to the findings of Koopman and Uspensky (J Appl Econ 
17:667–689, 2002), where the respective coefficient is negative but non statistically 
significant. However, in our case, all countries (except Peru and China) presents 
negative and statistically significant effects. Our results are similar to those found 
using Hamiltonian Monte Carlo (HMC) and Riemannian HMC methods based on 
Abanto-Valle et al. (Q Rev Econ Financ 80:272–286, 2021).
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1 Introduction

Stochastic volatility (SV) models initially proposed by Taylor (1982, 2008), com-
pose a well-known class of models to estimate volatility. These models have gained 
attention in the financial econometrics literature because of their flexibility to cap-
ture the nonlinear behavior observed in financial time series returns1. Unlike the 
GARCH models, the SV models define volatility as truly contemporaneous such that 
their measure of volatility includes not only expected volatility but also unexpected 
volatility. According to Melino and Turnbull (1990) and Carnero et al. (2004), an 
appealing aspect of the SV model is its close association to financial economic the-
ories and its ability to capture the stylized facts often observed in daily series of 
financial returns in a more appropriate way.

The daily asymmetrical relation between equity market returns and volatility has 
received a lot of attention in the financial literature; see for instance, Black (1976), 
Campbell and Hentschel (1992), and Bekaert and Wu (2000). Asymmetric equity 
market volatility is important for al least three reasons. First, it is an important char-
acteristic of the market volatility dynamics, has asset pricing implications and is a 
feature of priced risk factors. Second, it plays an important role in risk prediction, 
hedging and option pricing. Finally, asymmetric volatility implies negatively skewed 
returns distributions, i.e. it may help explain some of the market’s chances of losing.

On the other hand, the relation between expected returns and expected volatility 
have been extensively examined in recent years. Overall, there appears to be stronger 
evidence of a negative relationship between unexpected returns and innovations to 
the volatility process, which French et al. (1987) interpreted as indirect evidence of 
a positive correlation between the expected risk premium and ex ante volatility. If 
expected volatility and expected returns are positively related and future cash flows 
are unaffected, the current stock index price should fall. Conversely, small shocks to 
the return process lead to an increase in contemporaneous stock index prices. This 
theory, known as the volatility feedback theory hinges on two assumptions: first, 
the existence of a positive relation between the expected components of the return 
and volatility process and second, volatility persistence. An alternative explanation 
for asymmetric volatility where causality runs in the opposite direction is the lev-
erage effect put forward by Black (1976), who asserted that a negative (positive) 
return shock leads to an increase (decrease) in the firm’s financial leverage ratio, 
which has an upward (downward) effect on the volatility of its stock returns. How-
ever, French et  al. (1987) and Schwert (1989) argued that leverage alone cannot 
account for the magnitude of the negative relationship. For example, Campbell and 
Hentschel (1992) found evidence of both volatility feedback and leverage effects, 
whereas Bekaert and Wu (2000) presented results suggesting that the volatility 

1 The other important branch of the literature is GARCH models where time-varying variance is mod-
eled as a deterministic function of past squared perturbations and lagged conditional variances. Details 
and explanations of the extensive GARCH literature may be found in Bollerslev et al. (1992, 1994) and 
Diebold and Lopes (1995). On the other hand, SV models are reviewed in Taylor (1994), Ghysels et al. 
(1994), and Shephard (1996); among others.
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feedback effect dominates the leverage effect empirically. Frequently, the volatility 
of daily stock returns has been estimated with SV models, but the results have relied 
on an extensive pre-modeling of these series to avoid the problem of simultaneous 
estimation of the mean and variance. Koopman and Uspensky (2002) introduced 
the SV in mean (SVM) model to deal with this problem. In the SVM setup, the 
unobserved volatility is incorporated as an explanatory variable in the mean equa-
tion of the returns under the normality assumption of the innovations. Moreover, 
they derived an exact maximum likelihood estimation based on Monte Carlo simu-
lation methods. Abanto-Valle et al. (2012) extended the SVM model to the class of 
scale mixture of Normal distributions and developed a Markov Chain Monte Carlo 
(MCMC) algorithm to sample parameters and the log-volatilities from a Bayesian 
perspective. Recently, Abanto-Valle et  al. (2021) apply Hamiltonian Monte Carlo 
(HMC) and Riemann Manifold HMC (RMHMC) methods within the MCMC algo-
rithm to update the log-volatilities and parameters of the SVM model, respectively. 
However, the resulting MCMC algorithms has some undesirable features. In particu-
lar, the procedure is quite involved, requiring a large amount of computer-intensive 
simulations. In addition, the computational cost increases rapidly with the sample 
size.

This paper has two objectives. The first is to offer an algorithm that requires less 
computational time in simulations and estimates even when the sample increases as 
compared with MCMC algorithms as proposed in Abanto-Valle et  al. (2021). For 
this, this article applies an alternative approximate Bayesian estimation method to 
the SVM model considered by Abanto-Valle et  al. (2012) and Abanto-Valle et  al. 
(2021). First, we approximate the likelihood function by integrating out the log-vol-
atilities as suggested by Langrock (2011), Langrock et al. (2012) and Abanto-Valle 
et al. (2017). Second, we get the maximum a posteriori by using a numerical opti-
mization routine, and third, we use importance sampling to sample from the poste-
rior distribution of the parameters using a multivariate normal distribution where 
the mean and variance are given by the maximum a posteriori and the inverse of the 
Hessian matrix evaluated at the maximum a posteriori, respectively.

The second objective is to provide empirical evidence estimating the SVM model 
using daily data for five Latin American stock markets. Time-varying volatility for 
developed economies’ financial variables have been studied extensively; see for 
instance, Liesenfeld and Jung (2000), Jacquier et al. (2004) and Abanto-Valle et al. 
(2010). However, empirical studies of the volatility characteristics of the financial 
markets in Latin America are very scarce and are far from being thoroughly ana-
lyzed despite their growth in recent years, see Abanto-Valle et al. (2011), Rodríguez 
(2016, 2017a, 2017b), Lengua Lafosse and Rodríguez (2018), Alanya and Rodríguez 
(2019). Moreover, Abanto-Valle et al. (2021) use HMC amd RMHMC methods to 
analyse the SVM model using Latin American markets. For this reason, we per-
form a detailed empirical study of five Latin American indexes: MERVAL (Argen-
tina), IBOVESPA (Brazil), IPSA (Chile), MEXBOL (Mexico) and IGBVL (Peru) in 
the context of the SVM model using the HMM approach. We also include the S&P 
500 (USA), FTSE 100 (England), NIKKEI 225 (Japan) and SZSE (China) returns 
in order to perform some comparisons. All the results are in line with Abanto-Valle 
et al. (2021).
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The remainder of this paper is organized as follows. Section 2 describes the SVM 
model, the approximated likelihood of the SVM model based on hiden Markov mod-
els (HMM) techniques and the Bayesian inference procedure. In Sect. 3, we conduct 
a simultation study to verify the frequentist properties of estimators compared to the 
methods used in Abanto-Valle et al. (2021) including computational time intensity. 
Section 4 is devoted to the application of the proposed methodology to five indexes 
of Latin American countries, the S&P 500 (USA), FTSE100 (England), NIKKEI 
225 (Japan) and SZSE (China). Finally, some concluding remarks and suggestions 
for future developments are given in Sect. 5.

2  The Stochastic Volatility in Mean (SVM) Model

The inclusion of variance as one of the determinants of the mean facilitates the 
examination of the relationship between returns and volatility. The SVM model is 
defined by 

where yt and ht are, respectively, the compounded return and the log-volatility at 
time t, for t = 1,… , T  . We assume that |𝛽1| < 1 , |𝜙| < 1 , i.e., that the returns and the 
log-volatility process are stationary and that the initial value h1 ∼ N(�,

�2
�

1−�2
) . Fur-

thermore, the innovations �t and �t are assumed to be mutually independent and nor-
mally distributed with mean zero and unit variance. The SVM model incorporates 
the unobserved volatility as an explanatory variable in the mean equation in such 
way that the parameter �2 measures the volatility-in-mean effect. In other words, 
when estimating the �2 parameter in the SVM model, it measures the ex-ante rela-
tion between returns and volatility and the volatility feedback effect.2

2.1  Likelihood evaluation by iterated numerical integration and fast evaluation 
of the approximate likelihood using HMM techniques

To formulate the likelihood, we require the conditional pdfs of the random vari-
ables yt , given ht and yt−1 ( t = 1,… , T ), and of the random variables ht , given ht−1 

(1a)yt = �0 + �1yt−1 + �2e
ht + e

ht

2 �t,

(1b)ht+1 = � + �(ht − �) + ��t,

2 The �
2
 coefficient then measures not only the relationship between the expected components of returns 

and volatility, but also between the unexpected components. Following Koopman and Uspensky (2002), 
the �

2
 parameter includes two factors: h

t|t−1 which represents the conditional variance at time t given 
information at time t − 1 ; and h

t
 - h

t|t−1 which denotes the unexpected shock to the volatility process that 
is not related to predictable components. This is known as the volatility feedback effect. The first effect 
is expected to be positive (as a rational investor will require more returns when there is greater volatility) 
while the second effect should be negative.
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( t = 2,… , T ). We denote these by p(yt ∣ yt−1, ht) and p(ht ∣ ht−1) , respectively. The 
likelihood of the SVM model defined by equations (1a) and (1b) can then be derived as

Hence, the likelihood is a high-order multiple integral that cannot be evaluated ana-
lytically. Through numerical integration, using a simple rectangular rule based on m 
equidistant intervals, Bi = (bi−1, bi) , i = 1,… ,m , with midpoints b∗

i
 and length b, the 

likelihood can be approximated as follows:

This approximation can be made arbitrarily accurate by increasing m, provided 
that the interval (b0, bm) covers the essential range of the log-volatility process. We 
note that this simple midpoint quadrature is by no means the only way in which the 
integral can be approximated (cf. Langrock et al., 2012). The numerical evaluation 
of approximate likelihood given in (2) will usually be computationally intractable 
since it involves mT summands. However, it can be evaluated numerically using the 
tools well-established for HMMs, which are the models that have exactly the same 
dependence structure as the stochastic volatility in mean models, but with a finite 
and hence discrete state space (cf. Langrock, 2011, Langrock et  al., 2012). In the 
given scenario, the discrete states correspond to the intervals Bi , i = 1,… ,m , in 
which the state space has been partitioned. A fundamental property of HMM, which 
we exploit here, is that the likelihood can be evaluated efficiently using the so-called 
forward algorithm, a recursive scheme which iteratively traverses forward along the 
time series, updating the likelihood and the state probabilities in each step (Zucchini 
et al., 2016). Under the HMM, to apply the forward algorithm results in a conveni-
ent closed-form matrix product expression for the likelihood. For the SVM model is 
given by:

Note that, in equation (3), the m × m-matrix � =
(
�ij
)
 plays the role of the transition 

probability matrix in case of an HMM, defined by �ij = p(ht = b∗
j
∣ ht−1 = b∗

i
) ⋅ b , 

which is an approximation of the probability of the log-volatility process changing 
from some value in the interval Bi to some value in the interval Bj ; this conditional 
probability is determined by (1b). The vector � is the analogue to the Markov chain 

L =∫ …∫ p(y1,… , yT , h1,… , hT ∣ y0)dhT … dh1

=∫ …∫ p(y1,… , yT ∣ y0, h1,… , hT )p(h1,… , hT )dhT … dh1

=∫ …∫ p(h1)p(y1 ∣ y0, h1)

T∏

t=2

p(yt ∣ yt−1, ht)p(ht ∣ ht−1)dhT … dh1.

(2)

L ≈ bT
m∑

i
1
=1

…

m∑

iT=1

p(h
1
= b∗

i
1

)p(y
1
∣y

0
, h

1
= b∗

i
1

)

×

T∏

t=2

p(yt∣yt−1, ht = b∗
it
)p(ht = b∗

it
∣ht−1 = b∗

it−1
) = Lapprox

(3)Lapprox = �P(y1)�P(y2)�P(y3)⋯�P(yT−1)�P(yT )1
� .
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initial distribution in case of an HMM. It is defined such that �i is the density of the 
N(�,

�2
�

1−�2
)-distribution –the stationary distribution of the log-volatility pro-

cess– multiplied by b. Furthermore, P(yt) is an m × m diagonal matrix with the ith 
diagonal entry p(yt ∣ yt−1, ht = b∗

i
) determined by (1a). Finally, 1′ is a column vector 

of ones. Using the matrix product expression given in (3), the computational effort 
required to evaluate the approximate likelihood is linear in the number of observa-
tions, say T, and quadratic in the number of intervals used in the discretization, say 
m. In other words, the likelihood can be calculated in a fraction of seconds, even for 
high values of T and m. Furthermore, the approximation can be arbitrarily accurate 
by increasing m (potentially widening the interval [b0, bm]).

Although we are using the HMM forward algorithm to evaluate the (approximate) 
likelihood, the specifications of � , � and P(xt) given above do not define precisely an 
HMM. In general, the row sums of � will be only approximately equal to one, and the 
vector components � will only approximately sum to one. If desired, this can be rem-
edied by scaling each row of � and the vector � to total 1.

2.2  Bayesian Inference for the SVM Model

Because we have some constraints in the original parametric space of the SVM model 
(|𝛽1| < 1, |𝜙| < 1, 𝜎𝜂 > 0) , we consider the transformations for the following parame-

ters: � = log

(
1+�1

1−�1

)
 , � = log

(
1+�

1−�

)
 , and � = log(�) . Let � = (�0, � , �2,�,� ,�)� and 

p(�) be the prior distribution of � . As the likelihood function is invariant to 1:1 trans-
formations, from equation (3), we obtain the posterior distribution up to a normaliza-
tion constant, namely:

where yT = (y1,… , yT )
� . Suposse we wish to calculate an expectation 

Ep(�∣y0,yT )
[h(�)] , which can be calculated by using the importance density q(�) as 

follows:

where �(�) = p(�∣y0,yT )

q(�)
 and Eq[.] denotes an expected value with respect to the impor-

tance density q(�) . Therefore a sample of independent draws �1,… ,�m from q(�) 
can be used to estimate Ep(�∣y0,yT )

[h(�)] by

(4)p(� ∣ y0, yT ) ∝ p(�)Lapprox(�),

(5)

Ep(�∣y0,yT )
[h(�)] =

∫ h(�)p(� ∣ y0, yT )d�

∫ p(� ∣ y0, yT )d�

=
∫ h(�)p(�∣y0,yT )

q(�)
q(�)d�

∫ p(�∣y0,yT )

q(�)
q(�)d�

=

Eq(�)

[
h(�)�(�)

]

Eq(�)

[
�(�)

] ,
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It is shown that using one sample �′
i
s in estimating the ratio in (5) is more effi-

cient than using two samples (one for the numerator and another for denomi-
nator); see Chen et  al. (2008). It follows from the strong law of large num-
bers that h̄ → Ep(𝜃∣y0,yT )

[h(�)] as m → ∞ almost surely; see Geweke (1989). 
In the same way, a variance of h̄(�) can be consistenly estimated by ∑m

i=1
�(�i)

2[h(�i) − h̄]2∕[
∑m

i=1
�(�i)]

2.

2.3  Forecasting

Using HMMs approach offers a convenient method to obtain forecast distributions 
for SVM models. One of the advantages is the ease of finding the cumulative dis-
tribution function of the one-step-ahead forecast distribution on day t − 1 for the 
approximating HMM. This represents the conditional distribution of the return on 
day t, given all previous observations. The expression for this is as follows:

where �i is the i − th entry of the vector �t−1∕�t−11
� , obtained from the forward 

probabilities:

where � , P(yk ) and � are defined as in subsection 2.1. Moreover, the forecast dis-
tribution provided in equation (7) can be utilized for model checking through the 
examination of residuals (Kim et  al., 1998). The one-step-ahead forecast pseudo-
residual (or quantile residual) can be expressed as follows:

for t = 1,… , T  . If the model is correctly specified, the rt follows a standard normal 
distribution (Kim et  al., 1998; Smith, 1985). Therefore, forecast pseudo-residuals 
can be employed to detect extreme values and assess the adequacy of the model. This 
can be done by utilizing techniques such as qq-plots or formal tests for normality.

3  Simulation Study

To assess the performance of the methodology described in the previous Sec-
tion, we conducted some simulation experiments. All the calculations were per-
formed using stand-alone code developed by the authors using the Rcpp inter-
face inside the R package. First, we simulated a data set comprising T = 6000 
observations from the SVM model, specifying � = (0.14, 0.03,−0.10)� , 

(6)h̄ =

∑m

i=1
h(�i)�(𝜃i)∑m

i=1
�(𝜃i)

.

(7)F(yt ∣ y0, y1,… , yt−1) =

m∑

i=1

�iF(yt ∣ yt−1, ht = b∗
i
)

�t = �P(y1)�P(y2)�⋯�P(yt)

(8)rt = Φ−1(F(yt ∣ y0, y1,… , yt−1))
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� = 0.3 , � = 0.98 , �� = 0.2 and y0 = 0.2 , which correspond to typical val-
ues found in daily series of returns; see for example Leão et  al. (2017) and 
Abanto-Valle et  al. (2017). The resulting transformed true parameter vector 
� = (�0, � , �2,�,� ,�)� = (0.14, 0.06,−0.10, 0.30, 4.5951,−1.6094)� . Figure  1 
shows the resulting artificial data set. We set the priors distributions as follows: 
(�0, � , �2) ∼ N3(��, 100I3) , � ∼ N(0, 100) , � ∼ N(4.5, 100) and � ∼ N(−1.5, 100) , 
where Nr(., .) and N(., .) denote the r−variate and univariate normal distribu-
tions and 0r and Ir are the r × 1 vector of zeros and the r × r the identity matrix, 
respectively.

In order to investigate the influence of the choice of m on the accuracy of the like-
lihood approximation in the posterior distribution, and of the sample size T on the 
computing time, we fitted the SVM model using m = 50, 100, 150, 200 (i.e., different 
levels of accuracy), bm = −b0 = 4 , to subsamples of length T = 1500, 3000, 6000 of 
the original simulated series. Table 1 reports the results of the maximum a posteriori 
(MAP). In general, we observe that all MAP estimates approach their true values as 
we go from T = 1500 to T = 6000 . This convergence is faster and clearer for � and 
� . In the case of � , the MAP estimates are different for T = 1500 observations but 
they converge to their true value rapidly when sample size increases. In particular, 
the MAP for �2 approaches its true value when T = 6000 . The log likelihood value 
is fairly stable for any value of m and sample size. Most of MAP estimates obtained 
by numerical maximization become stable for values of m around 100, for all the 
sample sizes considered here. However, when T = 6000 , we observe that stabiliza-
tion is reached for m = 150 or more. Therefore, we recommend to use m = 150, 200 
in empirical applications.

Next, the multivariate normal distribution with mean and covariace matrix being 
the MAP and the inverse of the Hessian matrix evaluated at the MAP is used as 
an importance density. We draw a sample of size 1000 using sampling importance 

Fig. 1  Simulated data set from the SVM model with � = (0.14, 0.03,−0.10)� , � = 0.3 , � = 0.98 and 
� = 0.2 . The vertical dotted lines (red) indicate the sample size T = 1500, 3000 and 6000, respectively
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resampling. Based on it, we calculate the expected value (posterior mean) and the 
standard deviation in the original escale using equation (6). The results are reported 
in Table 2. In all the cases the posterior credibility intervals of 95% contain the true 
value of the parameters. Considering a time series of size 6000, the proposal meth-
odology spend 174.18 seconds to simulate and report the results, making useful our 
proposal in real time applications.

We also investigated the influence of the choice of b0 and bm (the results are 
not presented here for space reasons). Overall, we observe that the estimator per-
formance is not affected much. However, when these values are chosen either too 
small (not covering the support of the log-volatility process, e.g., bm = −b0 = 2 ) or 
too large (leading to a partition of the support into unnecessarily wide intervals and 
poor approximation of the likelihood, e.g. m = 50 and bm = −b0 = 15 ), the estima-
tor performance could be affected. In practice, it can easily be checked post-hoc if 
the chosen range, specified by b0 and bm , is adequate, by investigating the stationary 
distribution of the fitted log-volatility process.

The second simulation experiment studies the properties of the estimators of the 
SVM model parameters. We generated 300 datasets from the SVM model, speci-
fying � = (0.14, 0.03,−0.10)� , � = 0.98 , � = 0.2 , � = 0.30 . For each generated 
data set, we fitted the SVM model using m = 50, 100, 150, 200 and bm = −b0 = 4 , 
for T = 1500 , T = 3000 and T = 6000 , respectively. Tables  3, 4 and 5 report the 
sample mean, the mean relative bias (MRB), the mean relative absolute devia-
tion (MRAD) and the mean squared error (MSE) of the parameter estimates for 
T = 1500, 3000, 6000 , respectively.

For all the sample sizes, i.e., T = 1500 , T = 3000 , and T = 6000 , higher val-
ues of MRAD are found for the estimator of �1 and � , while none of the other 
estimators exhibited a notable bias. The bias found for � does not substantially 

Table 1  SVM Model, simulated data set: Maximum a Posteriori of the parameters and computing times 
in seconds for the HMM method ( b

m
= −b

0
= 4).

True values of the parameters: � = (�
0
, � , �

2
,�,� ,�)� = (0.1400, 0.0600,−0.1000, 0.3000, 4.5951,

−1.6094)�

Size m log p(� ∣ y
T
) �0 � �2 � � � Time

1500 50 − 2339.82 0.1037 0.0322 − 0.0248 − 0.0135 4.4144 − 1.4568 3.75
100 − 2339.82 0.1038 0.0325 − 0.0249 − 0.0139 4.4141 − 1.4562 8.76
150 − 2339.82 0.1038 0.0325 − 0.0249 − 0.0140  4.4141 − 1.4562 15.33
200 − 2339.82 0.1038 0.0325 − 0.0249 − 0.0140  4.4141 − 1.4456 23.02

3000 50 − 5197.48  0.1196 0.0485 − 0.0710 0.4390 4.4783  − 1.4421 8.01
100 − 5197.49  0.1210 0.0544 − 0.0718 0.4201 4.4496 − 1.4439 18.40
150 − 5197.49 0.1210 0.0544 − 0.0718 0.4201 4.4496 − 1.4439 35.65
200 − 5197.49 0.1210 0.0544 − 0.0718 0.4201 4.4496 − 1.4439 65.06

6000 50 − 9934.81 0.1231 0.0592 − 0.0800 0.3116 4.6130 − 1.5051 14.75
100 − 9934.80 0.1232 0.0589 − 0.0802 0.3133 4.6103 − 1.5050 31.43
150 − 9934.80 0.1230 0.0596 − 0.0800 0.3082 4.6034 − 1.5028  62.41
200 − 9934.80 0.1230 0.0596 − 0.0800 0.3082 4.6034 − 1.5028  89.45
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affect the resulting model and its performance in forecasting, since it merely 
indicates a minor shift of the volatility process. It is important to stress that the 
MSEs are smaller for the larger sample size, as presumed. The obtained results 
for m = 50 are similar to those using higher values of m. Consequently, a more 
acceptable approximation of the likelihood is achieved.

Overall, it can be concluded that the use of the HMM machinery to maximize 
the approximate posterior distributions of SVM models numerically leads to a 
good estimator performance, considering a modest computational effort.

Table 3  SVM Model: Simulaton 
study results based on 300 
replicates using the HMM 
method ( b

max
= −b

min
= 4 and 

T = 1500).

We report the Sample Mean, the Mean Relative Bias (MRB), the 
Mean Relative Absolute Deviation (MRAD) and the Mean Squared 
Error (MSE), respectively

Parameter True value Mean MRB MRAD MSE
m = 50

 �
0

0.14 0.1340 − 0.0428 0.2208 0.0015
 �

1
0.03 0.0288 − 0.0387 0.7322 0.0008

 �
2

− 0.10 − 0.0983 − 0.0172 0.1976 0.0007
 � 0.30 0.3079 0.0263 0.6619 0.0647
 � 0.98 0.9732 − 0.0069 0.0083 0.0001
 � 0.20 0.2395 0.1974 0.2018 0.0022
m = 100

 �
0

0.14 0.1344 − 0.0397 0.2193 0.0015
 �

1
0.03 0.0285 − 0.0492 0.7219 0.0008

 �
2

− 0.10 − 0.0984 − 0.0158 0.1974 0.0007
 � 0.30 0.3094 0.0312 0.6582 0.0632
 � 0.98 0.9732 − 0.0069 0.0084 0.0001
 � 0.20 0.2391 0.1958 0.2013 0.0022
m = 150

 �
0

0.14 0.1348 − 0.0401 0.2210 0.0015
 �

1
0.03 0.0286 − 0.0409 0.7316 0.0008

 �
2

− 0.10 − 0.0988 − 0.0182 0.1975 0.0007
 � 0.30 0.3205 0.0305 0.6703 0.0662
 � 0.98 0.9735 − 0.0068 0.0083 0.0001
 � 0.20 0.2389 0.1956 0.2006 0.0022
m = 200

 �
0

0.14 0.1340 − 0.0372 0.1436 0.0015
 �

1
0.03 0.0288 − 0.0443 0.7313 0.0008

 �
2

− 0.10 − 0.0983 − 0.0124 0.1965 0.0007
 � 0.30 0.3079 0.0685 0.6948 0.0695
 � 0.98 0.9732 − 0.0067 0.0083 0.0001
 � 0.20 0.2395 0.1943 0.1987 0.0022
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4  Empirical Application

We consider the daily closing prices of five Latin American stock markets: MER-
VAL (Argentina), IBOVESPA (Brazil), IPSA (Chile), MEXBOL (Mexico) and 
IGBVL (Peru). We use the S&P 500 (USA), FTSE 100 (England), NIKKEI 225 
(Japan) and SZSE (China) in order to compare the behavior of the results with 
Latin American stock markets. The data sets were obtained from the Yahoo 
finance web site available to download at http:// finan ce. yahoo. com. The period 
of analysis is from January 6, 1998, until December 30, 2016. Stock returns are 
computed as yt = 100 × (logPt − logPt−1) , where Pt is the (adjusted) closing 
price on day t.

Table 4  SVM Model: Simulaton 
study results based on 300 
replicates using the HMM 
method ( b

max
= −b

min
= 4 and 

T = 3000).

We report the Sample Mean, the Mean Relative Bias (MRB), the 
Mean Relative Absolute Deviation (MRAD) and the Mean Squared 
Error (MSE), respectively

Parameter True value Mean MRB MRAD MSE

m = 50

 �
0

0.14 0.1368 − 0.0225 0.1436 0.0006
 �

1
0.03 0.0296 − 0.0134 0.5113 0.0003

 �
2

− 0.10 − 0.0990 − 0.0104 0.1349 0.0003
 � 0.30 0.3097 0.0326 0.4465 0.0293
 � 0.98 0.9772 − 0.0028 0.0046 0.00004
 � 0.20 0.2201 0.1006 0.1077 0.0007
m = 100

 �
0

0.14 0.1369 − 0.0221 0.1446 0.0006
 �

1
0.03 0.0293 − 0.0232 0.5047 0.0003

 �
2

− 0.10 − 0.0990 − 0.0103 0.1349 0.0003
 � 0.30 0.3097 0.0324 0.4463 0.0281
 � 0.98 0.9772 − 0.0028 0.0047 0.00004
 � 0.20 0.2200 0.0998 0.1074 0.0007
m = 150

 �
0

0.14 0.1371 − 0.0206 0.1439 0.0006
 �

1
0.03 0.0294 − 0.0216 0.5014 0.0003

 �
2

− 0.10 − 0.0990 − 0.0094 0.1348 0.0003
 � 0.30 0.3205 0.0333 0.4520 0.0297
 � 0.98 0.9772 − 0.0028 0.0047 0.00004
 � 0.20 0.2199 0.0997 0.1069 0.0007
m = 200

 �
0

0.14 0.1369 − 0.0218 0.1436 0.0006
 �

1
0.03 0.0294 − 0.0185 0.5074 0.0003

 �
2

− 0.10 − 0.0990 − 0.0095 0.1350 0.0003
 � 0.30 0.3053 0.0179 0.4571 0.0303
 � 0.98 0.9772 − 0.0028 0.0046 0.00004
 � 0.20 0.2199 0.0994 0.1067 0.0007

http://finance.yahoo.com
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Table  6 shows the number of observations and summary descriptive statistics. 
The sample size differs between countries due to holidays and stock market non-
trading days. According to Table  6, the IGBVL and S&P 500, FTSE 100, NIK-
KEI 225 and SZSE returns are negatively skewed whereas the rest are positively 
skewed. The IGBVL returns are the most negatively skewed with −0.3915 and the 
IBOVESPA returns the most positively skewed with 0.5313. Regarding the kurtosis, 
all the daily returns are leptokurtic (all kurtosis coefficients are higher than 3). Bra-
zil, Peru, and Chile are the markets with the highest degree of kurtosis with the USA 
near Chile’s value. The SZSE returns showed the lowest kurtosis. Although there 
are high differences between the minimum and maximum values, the most outstand-
ing values correspond to Argentina and Brazil.

Table 5  SVM Model: Simulaton 
study results based on 300 
replicates using the HMM 
method ( b

max
= −b

min
= 4 and 

T = 6000).

We report the Sample Mean, the Mean Relative Bias (MRB), the 
Mean Relative Absolute Deviation (MRAD) and the Mean Squared 
Error (MSE), respectively

Parameter True Value Mean MRB MRAD MSE

m = 50

 �
0

0.14 0.1396 − 0.0038 0.1432 0.0003
 �

1
0.03 0.0293 − 0.0211 0.3412 0.0002

 �
2

− 0.10 − 0.0994 − 0.0063 0.0959 0.0001
 � 0.30 0.3101 0.0336 0.3382 0.0156
 � 0.98 0.9787 − 0.0013 0.0027 0.00001
 � 0.20 0.2098 0.0488 0.0637 0.0002
 m = 100

 �
0

0.14 0.1396 − 0.0025 0.0940 0.0003
 �

1
0.03 0.0294 − 0.0181 0.3407 0.0002

 �
2

− 0.10 − 0.0993 − 0.0062 0.0970 0.0001
 � 0.30 0.3110 0.0366 0.3431 0.0160
 � 0.98 0.9786 − 0.0013 0.0027 0.00001
 � 0.20 0.2097 0.0485 0.0637 0.0002
m = 150

 �
0

0.14 0.1396 − 0.0031 0.0935 0.0003
 �

1
0.03 0.0295 − 0.0166 0.3398 0.0002

 �
2

− 0.10 − 0.0993 − 0.0067 0.0958 0.0001
 � 0.30 0.3113 0.0378 0.3401 0.0159
 � 0.98 0.9787 − 0.0013 0.0027 0.00001
 � 0.20 0.2097 0.0484 0.06346 0.0002
m = 200

 �
0

0.14 0.1396 − 0.0027 0.0930 0.0003
 �

1
0.03 0.0294 − 0.0196 0.3400 0.0002

 �
2

− 0.10 − 0.0993 − 0.0066 0.0960 0.0001
 � 0.30 0.3107 0.0358 0.3391 0.0156
 � 0.98 0.9782 − 0.0012 0.0027 0.00001
 � 0.20 0.2097 0.0485 0.0637 0.0002



 C. A. Abanto-Valle et al.

1 3

Ta
bl

e 
6 

 S
um

m
ar

y 
st

at
ist

ic
s f

or
 d

ai
ly

 st
oc

k 
re

tu
rn

s d
at

a

IN
D

EX
M

ER
VA

L
IB

O
V

ES
PA

IP
SA

M
EX

BO
L

IG
BV

L
S&

P 
50

0
FT

SE
 1

00
N

IK
K

EI
 2

25
SZ

SE

Si
ze

46
51

46
98

47
37

47
59

45
97

47
77

47
95

46
96

45
98

M
ea

n
0.

07
01

0.
03

76
 0

.0
29

6
 0

.0
46

4
0.

04
78

0.
01

77
0.

00
66

0.
00

53
0.

01
86

S.
 D

2.
21

25
2.

02
62

 1
.0

69
5

 1
.4

27
6

1.
41

11
1.

24
18

1.
22

10
1.

55
12

1.
82

07
M

in
im

um
−

 1
4.

28
96

−
 1

7.
20

82
 −

 7
.6

38
1

 −
 1

0.
34

10
−

 1
3.

29
08

−
 9

.4
69

5
−

 9
.2

64
6

−
 1

2.
11

10
−

 9
.7

50
0

M
ax

im
um

16
.1

16
5

28
.8

32
5

11
.8

03
4

 1
2.

15
36

12
.8

15
6

 1
0.

95
72

9.
38

42
13

.2
34

6
9.

52
99

Sk
ew

ne
ss

 0
.2

09
1

 0
.5

31
3

0.
13

72
 0

.1
45

8
−

 0
.3

91
5

 −
 0

.2
08

6
−

 0
.1

44
5

−
 0

.3
29

1
−

 0
.2

50
6

K
ur

to
si

s
 7

.3
41

8
 1

6.
80

94
11

.6
86

6
8.

74
49

13
.5

71
5

 1
0.

65
76

8.
40

29
8.

60
86

6.
37

50
Re

tu
rn

s
𝜌
1

0.
05

50
0.

01
30

0.
18

40
0.

09
10

0.
18

90
−

 0
.0

70
0

−
 0

.0
24

0
−

 0
.0

38
0

0.
05

20
𝜌
2

 0
.0

02
0

−
 0

.0
18

0
0.

02
20

−
 0

.0
30

0
0.

00
80

−
 0

.0
45

0
−

 0
.0

52
0

−
 0

.0
12

0
−

 0
.0

26
0

𝜌
3

 0
.0

24
0

 −
 0

.0
39

0
 −

 0
.0

19
0

 −
 0

.0
30

1
 0

.0
68

0
 0

.0
10

0
−

 0
.0

67
0

−
 0

.0
09

0
0.

03
50

𝜌
4

 0
.0

07
0

 −
 0

.0
32

0
 0

.0
25

0
 −

 0
.0

03
0

 0
.0

64
0

 −
 0

.0
08

0
 0

.0
45

0
 −

 0
.0

33
0

0.
04

60
𝜌
5

 −
 0

.0
09

0
 −

 0
.0

17
0

 0
.0

27
0

 −
 0

.0
15

0
 0

.0
25

0
 −

 0
.0

46
0

 −
 0

.0
50

0
 −

 0
.0

06
0

−
 0

.0
03

0
Q

(1
2)

 3
3.

37
 4

4.
51

 1
90

.5
2

 5
4.

57
 2

40
.5

3
 6

6.
95

 7
4.

31
 1

9.
22

 1
9.

22
49

.2
5

Sq
ua

re
d 

re
tu

rn
s

𝜌
1

 0
.2

58
0

0.
19

90
 0

.2
32

0
0.

14
30

0.
42

10
0.

20
40

0.
23

20
0.

26
00

0.
15

90
𝜌
2

 0
.2

16
0

0.
16

40
 0

.2
13

0
 0

.1
78

0
0.

38
90

0.
37

20
0.

28
70

0.
34

90
0.

17
80

𝜌
3

 0
.1

78
0

 0
.1

86
0

0.
17

20
0.

25
40

0.
39

20
0.

19
20

0.
30

40
0.

32
50

0.
18

20
𝜌
4

0.
16

60
0.

11
70

0.
15

50
0.

13
00

0.
28

40
0.

28
80

0.
27

80
0.

20
50

0.
15

70
𝜌
5

0.
21

30
0.

09
90

0.
29

10
0.

24
20

0.
21

40
0.

32
20

0.
33

50
0.

22
00

0.
13

90
Q

(1
2)

17
63

.4
10

69
.3

20
86

.0
21

47
.1

39
60

.2
46

43
.7

36
42

.2
5

33
30

.0
9

11
42

.6
8



1 3

Approximate Bayesian Estimation of Stochastic Volatility…

We further observe that the IGBVL and IPSA returns show the highest level of 
first-order autocorrelation. These values decrease fast for the other orders of auto-
correlation. In the case of returns, high first-order autocorrelation reflects the effects 
of non-synchronous or thin trading. The squared returns show high level of autocor-
relation of order one, which can be seen as an indication of volatility clustering. 
We further observe that high-order autocorrelations for squared returns are still high 
and decrease slowly.3 The Q(12) test statistic, which is a joint test for the hypothesis 
that the first twelve autocorrelation coefficients are equal to zero, indicates that this 
hypothesis has to be rejected at the 5% significance level for all returns and squared 
returns series.

We set the priors distributions as follows: (�0, � , �2) ∼ N3(��, 100I3) , 
� ∼ N(0, 100) , � ∼ N(4.5, 100) and � ∼ N(−1.5, 100) , where Nr(., .) and N(., .) 
denote the r−variate and univariate normal distributions and 0r and Ir are the r × 1 
vector of zeros and the r × r the identity matrix, respectively. We use the procedure 
described in Sect. 2 by using bm = −b0 = 4 and m = 200 , to ensure numerical sta-
bility in the results. We use the multivariate normal distribution with mean and vari-
ance being the mode and the inverse of the Hessian matrix evaluated at the mode 
as importance density. To compare our methodology, we use the MCMC procedure 
based on HMC and RMHMC algorithms as described in Abanto-Valle et al. (2021) 
based on 30000 iterations and discarding the first 10000, only every 10-th values of 
the chain are stored.

Table 7 summarizes these results for the five Latin American stock market and 
the S&P 500 and Table 8 summarizes the results for the FTSE 100, NIKKEI 225 
and SZSE returns using our proposal and MCMC methods based on Abanto-Valle 
et al. (2021). It is important to note that all the estimates are similar for all markets 
considered here. The estimated values using the two approaches are practically iden-
tical. Volatility persistence estimates (values of �) are all highly significant and quite 
similar among all markets (ranging from 0.9523 for Argentina to 0.9851 for Mexico) 
with the HMM aproach. The MEXBOL, IBOVESPA, FTSE 100 and S&P 500 are 
more persistent than the other markets. The main difference between the results is 
the case of Brazil, where the posterior mean of � is 0.9841 with the HMM approach 
and 0.9730 with MCMC.

The posterior mean estimates of � show that all returns have similar estimates in 
the range from 0.1330 to 0.2757. The higest value is 0.2757 for the IGBVL jointly 
with the estimate of � indicates that IGBVL is the most volatile stock market index 
in the region. Regarding the posterior mean of � , we found that the estimates are sta-
tistically significant for the MERVAL, IBOVESPA, IPSA, NIKKEI 225 and SZSE 
markets. For the MEXBOL, IGBVL, S&P 500 and FTSE 100 markets, the param-
eter � is not significant because the credibility interval contains the null value.

3 This behavior has suggested that the literature considers that there is long memory in the volatility of 
returns, as well as the possibility that infrequent level shifts cause such behavior. For a discussion on 
this, see Diebold and Inoue (2001) and Perron and Qu (2010), among others. For applications to different 
financial markets in Latin America, see Rodríguez (2017a) and the references mentioned therein.
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We observe that, with the exception of SZSE returns, the posterior mean 
parameter �0 is always positive and statistically significant for all series of returns. 
The value of �1 that measures the correlation of returns is as expected, small and 
very similar to the first-order autocorrelation coefficients reported in Table 6. The 
estimates of �1 are statistically significant for Argentina, Chile, Mexico, Peru and 
USA and not significant for Brazil, England, Japan and China. Although in the 
cases of Chile and Peru these values are 0.1876 and 0.1873, respectively, these 
values indicate a weak persistence with a rapid mean reversion.

Regarding the parameter of interest ( �2 ), this is more negative in the cases of 
USA, Brazil and Chile. Intermediate values are observed in Argentina and Mex-
ico, while Peru presents the smallest value in absolute terms. England, Japan and 
USA have similar negative values, which is interesting since they represent the 
three most developed markets in the sample with high volumes of transactions. 
Moreover, while all countries have a credibility interval that excludes the zero 
value, this does not happen in the case of Peru and China, so it is difficult to 
argue for an uncertainty effect in these markets. It is important to note that the 
right side of the credibility interval is very close to zero in all markets except the 
USA, England and Japan. Therefore, the posterior mean of �2 parameter, which 

Table 8  Estimation of the SVM Model using HMC and HMM machinery with Importance Sampling

Parameter HMM MCMC

Mean 95% interval Mean 95 % interval

FTSE 100 (England)
� − 0.0873  (− 0.3400,0.1820) − 0.0990 (− 0.3800,0.1862)
� 0.9832  (0.9758,0.9894) 0.9814 (0.9741,0.9884)
� 0.1701  (0.1417,0.1974) 0.1750 (0.1485,0.1994)
�
0

0.0852  (0.0536,0.1211) 0.0850 (0.0511,0.1189)
�
1

− 0.0249  (− 0.0502,0.0049) − 0.0243 (− 0.0535,0.0056)
�
2

− 0.0538  (− 0.0843,− 0.0197) − 0.0535 (− 0.0860,− 0.0222)
NIKKEI 225 (Japan)
� 0.5262  (0.3484,0.7039) 0.5189 (0.3366,0.7015)
� 0.9713  (0.9609,0.9803) 0.9649 (0.9521,0.9752)
� 0.1824  (0.1578,0.2176) 0.2013 (0.1738,0.2325)
�
0

0.1608 (0.1062,0.2178) 0.1642 (0.1041,0.2206 )
�
1

− 0.0274  (− 0.0562,0.0014) − 0.0266 (− 0.0597,0.0040)
�
2

− 0.0666  (− 0.1000,− 0.0360) − 0.0683 (− 0.1005,− 0.0365)
SZSE (China)
� 0.8087  (0.5932,1.0643) 0.8027 (0.5850,1.0182)
� 0.9748  (0.9635,0.9839) 0.9697 (0.9583,0.9794)
� 0.1910  (0.1573,0.2237) 0.2083 (0.1787,0.2388)
�
0

− 0.0031  (− 0.0639,0.0578) 0.0015 (− 0.0630,0.0605)
�
1

0.0293  (− 0.0006,0.0602) 0.0290 (− 0.0035,0.0584)
�
2

0.0066  (− 0.0175,0.0298) 0.0051 (− 0.0204,0.0303)
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measures both the ex ante relationship between returns and volatility and the vol-
atility feedback effect, is negative for all series and statistically significant for all 
the series with the exception of Peru and China. These findings are very similar 
and consistent with those found by Abanto-Valle et al. (2021).

Following Koopman and Uspensky (2002), the volatility feedback effect (nega-
tive) dominates the positive effect which links the returns with the expected volatil-
ity. Our estimates are more negative compared to those of Koopman and Uspensky 
(2002) where the hypothesis that �2 = 0 can never be rejected at the conventional 
5% siginificance level. Therefore, the volatility feedback effect is clearly dominant 
in our results (except for Peru and China) in comparison to those of Koopman and 
Uspensky (2002). Our results are similar to those found using Hamiltonian Monte 
Carlo (HMC) and Riemannian HMC methods based on Abanto-Valle et al. (2021). 
These results confirm the hypothesis that investors require higher expected returns 
when unanticipated increases in future volatility are highly persistent.

It is important to stress that these findings are consistent with higher values of 
� combined with larger negative values for the in-mean parameter; see the cases of 
Brazil and USA, for example. We have indirect evidence of a positive intertemporal 
relation between expected excess market returns and its volatility as this is one of 
the assumptions underlying the volatility feedback hypothesis.

Figures 2 and 3 show -for all the series analyzed- the returns in absolute value 
(full gray line), the estimates of e

ht

2  of the SVM and SV models (dotted red and green 
lines) obtained with the HMM approximation and the smoothed mean of e

ht

2  of SVM 
and SV models (black and blue solid lines) obtained with MCMC. Some comments 
can be extracted from both figures: (i) a great similarity is observed between the 
results for both methods since they all follow the evolution of the returns in absolute 
value; (ii) there are high volatility clusters that are common to all markets and corre-
spond to international financial crises that have had a global effect, such as the Rus-
sian/Brazilian crisis (1998) and the great global financial crisis of 2007–2008; (iii) 
some other smaller high volatility clusters correspond to domestic events that have 
altered certain markets but with limited effect at the national level. For example, in 
the case of the IGBVL (Peru), there are periods of financial stress in 2006, 2011 and 
somewhat smaller in 2016, all of which correspond to presidential elections where 
the possibility of success for candidates from the political left has affected the stock 
market. In the case of Argentina, there are small clusters of high volatility linked 
to problems with different exchange rate adjustment systems. In the case of Brazil, 
except for the 1998 crisis and the global financial crisis, the rest seem to be calm 
periods, just like Chile. In the case of the S&P 500, a long cluster of high volatility 
can be observed between 1998–2001 and a shorter one in 2011, although of reduced 
size compared to the global financial crisis. The period between 1998 and 2001 is 
related to the dot.com bubble that affected the S&P 500, FTSE 100 and to a lesser 
extent the NIKKEI 225 and SZSE markets.

From a practitioners’ viewpoint, implementing the MCMC procedure developed 
in Abanto-Valle et al. (2021) requires to write about 800 lines of C++ code. In stark 
contrast, the approach discussed in the present paper is easily implemented using 
Rcpp inside R, writing less than 200 lines of code. In all the applications considered 
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here the MCMC procedure takes about 40  min and our HMM procedure takes 
about 20 min, for all the countries. Therefore, from the practical viewpoint, there 
is substantial merit in considering the HMM approach as an alternative to MCMC 
schemes.

To compare the in-sample fit of the SVM model, we fit the basic SV model for 
each of the indexes considered in this study. Subsequently, we calculate the Log-Pre-
dictive Score (LPS, Delatola and Griffin, 2011) and the Deviance Information Crite-
ria (DIC, Spiegelhalter et al., 2002). In both cases, the best model is determined by 
the smallest LPS (DIC) value. Table 9 exhibits the LPS and DIC values for all the 
indexes considered. According to both criteria, the SVM model demonstrates the 
best fit for each dataset.

Now, we perform an out-of-sample analysis of forecast performance for the mod-
els covered in Table 9. We consider a validation sample from January 3, 2017, until 
January 31, 2019. Jarque-Bera test has been applied to the pseudo-residuals obtained 

Table 9  Model comparison 
criteria.

Values in bold indicate the best model according to both criteria
Log-predictive score (LPS) and Deviance information criterion 
(DIC)

INDEX / MODEL LPS DIC

SV SVM SV SVM

MERVAL 2.0731 2.0720 19293.51 19285.50
IBOVESPA 1.9729 1.9720 18543.70 18540.66
IPSA 1.2936 1.2931 12265.85 12262.62
MEXBOL 1.5878 1.5875 15122.51 15121.16
IGBVL 1.4944 1.4942 13750.03 13749.80
S&P 500 1.4150 1.4134 13528.69 13516.47
FTSE 100 1.4304 1.4293 13724.02 13715.63
NIKKEI 225 1.7362 1.7340 16190.46 16173.12
SZSE 1.8812 1.8811 17305.01 17306.91

Table 10  p-values of Jarque-
Bera test applied to one-step-
ahead forecast pseudo residuals

INDEX Model

SV SVM

MERVAL 0.261 0.306
IBOVESPA 0.061 0.066
IPSA 0.049 0.057
MEXBOL 0.071 0.080
IGBVL 0.110 0.132
S&P 500 0.004 0.008
FTSE 100 0.002 0.002
NIKKEI 225 0.003 0.004
SZSE 0.003 0.004
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from different indexes for the SV and SVM models; the corresponding p−values are 
listed in Table 10. The Jarque-Bera test does not reject the hypothesis of normality 
of the residuals under the two models at the 5% level for the MERVAL, BOVESPA, 
IPSA, MEXBOL, IGBVL and rejects for the S&P 500, FTSE 100, NIKKEI 225 
and SZSE, respectively. Figures 4 and 5 show the QQ-plots of the residuals. Fig-
ures reveal a poor fit in the left tail for all the series. The indicated mis-specification 
could be caused by the presence of correlation between the perturbation terms of the 
returns and volatility or the presence of fat-tails which, of course, are not modeled in 
this paper since they are not part of the central objective and could be considered as 
a future avenue of research.

The previous discussions on plots and tests are valuable for evaluating the 
overall fit of a model. However, when it comes to assessing the risk associated 
with a share or index, particular attention is given to the extreme left tail of the 
forecast distribution. This tail region is crucial for determining the value-at-risk 
(VaR), which represents the maximum potential loss of a portfolio at a given con-
fidence level over a specified period. For instance, the 1-day 1% VaR corresponds 
to the 0.01-quantile of the one-day-ahead forecast distribution (see Table 11). An 
exception is said to have occurred when the return falls below that quantile. If 
the forecasting model is accurate, the number of exceptions, denoted as X, over 

Table 11  Violation rate (VR) 
as a percentage in n one-day-
ahead forecast, P−values of the 
unconditional coverage test at 
the 1% and 5% levels

Level

0.01 0.05

Index Model n VR (%) P VR(%) P

MERVAL SV 507 0.012 0.688 0.045 0.628
SVM 507 0.014 0.416 0.053 0.740

IBOVESPA SV 513 0.006 0.306 0.031 0.036
SVM 513 0.008 0.604 0.035 0.102

IPSA SV 514 0.006 0.304 0.033 0.061
SVM 514 0.008 0.601 0.035 0.100

MEXBOL SV 524 0.013 0.465 0.048 0.810
SVM 524 0.013 0.465 0.050 1.000

IGBVL SV 523 0.004 0.105 0.048 0.575
SVM 523 0.006 0.288 0.055 0.575

S&P 500 SV 523 0.023 0.011 0.048 0.817
SVM 523 0.023 0.011 0.046 0.662

FTSE 100 SV 527 0.011 0.763 0.063 0.200
SVM 527 0.019 0.065 0.074 0.018

NIKKEI 225 SV 512 0.012 0.707 0.037 0.162
SVM 512 0.016 0.238 0.041 0.336

SZSE SV 507 0.016 0.228 0.045 0.628
SVM 507 0.016 0.228 0.045 0.628
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n days follows a Binomial(n, �) distribution, where � represents the confidence 
level. This distributional result allows for backtesting, which involves comparing 
the observed number of exceptions with the corresponding theoretical distribu-
tion to assess the adequacy of the time series model. An established approach to 

Fig. 2  MERVAL, IBOVESPA, IPSA, MEXBOL, IGBVL and S&P 500 returns data sets: absolute returns 
(full gray line), e

ht

2  estimator of the SVM model usign HMM machinery (dotted red line), e
ht

2  estima-
tor of the SV model usign HMM machinery (dotted green line), posterior smoothed mean of e

ht

2  of the 
SVM model using MCMC (black solid line) and posterior smoothed mean of e

ht

2  of the SV model using 
MCMC (blue solid line)

Fig. 3  FTSE 100, NIKKEI 225 and SZSE returns data sets: absolute returns (full gray line), e
ht

2  estimator 
of the SVM model usign HMM machinery (dotted red line), e

ht

2  estimator of the SV model usign HMM 
machinery (dotted green line), posterior smoothed mean of e

ht

2  of the SVM model using MCMC (black 
solid line) and posterior smoothed mean of e

ht

2  of the SV model using MCMC (blue solid line)
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Fig. 4  QQ-plots of the forecast pseudo-residuals for SV (left) and SVM (right) models for the MERVAL, 
IBOVESPA, IPSA, MEXBOL and IGBVL, respectively
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test the accuracy of VaR forecasts is to evaluate the violation rate, estimated as 
�̂� = X∕n . To examine the accuracy of VaR forecasts, we adopt the unconditional 
coverage test introduced in Kupiec (1995), which employs a likelihood ratio test 
with a test statistic distributed as a �2

1
:

The null hypothesis states that the observed violation rate is equal to the predeter-
mined nominal probability � . Further details can be found in Kupiec (1995). Based 

LRuc = 2
{
log

[
�̂�x(1 − �̂�)n−x

]
− log

[
𝛼x(1 − 𝛼)n−x

]}
.

Fig. 5  QQ-plots of the forecast pseudo-residuals for SV (left) and SVM (right) models for the S &P 500, 
FTSE 100, NIKKEI 225 and SZSE, respectively
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on the results of the unconditional coverage test, we do not reject the null hypothe-
sis, indicating that the achieved violation rate is equal to 5% for all returns under the 
SVM model, except for the FTSE 100 index. Similarly, for the SV model, we do not 
reject the null hypothesis for all indexes, except for the IBOVESPA index. However, 
we reject the null hypothesis that the achieved violation rate is 1% only for the S&P 
500 index under both the SV and SVM models.

5  Discussion

This paper has two objectives. The first is to show gains in computational time 
using HMM methods versus MCMC methods developed and used, for example, in 
Abanto-Valle et al. (2021). The second objective is to empirically estimate the effect 
of the volatility in the mean (SVM model) using five Latin American stock markets 
and the S&P 500, FTSE 100, Nikkei 225 and SZSE markets comparing with the 
results obtained by Koopman and Uspensky (2002)4 and Abanto-Valle et al. (2021). 
Regarding, the first goal, this article introduces an approximate Bayesian inference 
via importance sampling, of the SVM model proposed by Koopman and Uspensky 
(2002). The likelihood function of the SVM model is approximated using HMMs 
machinery. The empirical application reveals similar results between our proposal 
methodology and the MCMC methods used by Abanto-Valle et  al. (2021). How-
ever, our proposal is less time-consuming, which is very important in real time 
applications.

The SVM model allows us to investigate the dynamic relationship between 
returns and their time-varying volatility. Therefore, concerning the second goal, 
we illustrated our methods through an empirical application of five Latin American 
return series and the S&P 500, FTSE 100, Nikkei 225 and SZSE returns. The �2 
estimate, which measures both the ex-ante relationship between returns and volatil-
ity and the volatility feedback effect, was negative and significant for all the indexes 
considered here except for the IGBVL and SZSE. The results are in line with those 
of French et al. (1987), who found a similar relationship between unexpected vola-
tility dynamics and returns and confirm the hypothesis that investors require higher 
expected returns when unanticipated increases in future volatility are highly persis-
tent. This fact is consistent with our findings of higher values of � combined with 
larger negative values for the in-mean parameter.

Future research considers extending the model and algorithm to include time-var-
ying parameters, including the in-mean parameter. This fact would allow us a com-
parison with other algorithms, such as the one proposed in Chan (2017). Another 
extension is to incorporate heavy-tails as in Abanto-Valle et al. (2012) or skewness 
and heavy-tails simultaneously, as in Leão et al. (2017).

4 Koopman and Uspensky (2002) used in their analisys the UK Financial Times All Share Index, the US 
Standard and Poor’s Composite stock index and the Japanese Topix. The first two indexes series cover 
the period 1 January 1975 to 31 December 1998 whereas the third series starts on 1 January 1988 and 
ends at 31 December 1998.
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