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Abstract
The so-called black swans, COVID-19 and the invasion in Ukraine, have led to an 
unprecedented increase in electricity prices. Since 2021, after lockdowns, the elec-
tricity price has started to increase due to economic recovery, rising prices of the 
tCO2 and other primary sources that become unavailable or at much higher prices. 
In this context, we noticed that the variation of electricity prices in one country can 
be explained by the price fluctuations of the previous day in the neighboring coun-
tries. For instance, the prices for the current day (d) in the Romanian Day-Ahead 
Market is strongly correlated with the prices of the previous day (d−1) on DAMs 
of its neighboring countries. It is worth mentioning that the target can be switched 
by the rest of the variables. Not only the price in Romania can be estimated using 
the proposed Electricity Price Forecast (EPF) method, but also the prices in other 
neighboring countries can be a target for prediction because the regional prices on 
similar markets contain most of society’s distress. Another interesting aspect is that 
the proposed forecasting methodology is robust, as proved by testing it on a var-
ied and longer time interval (from January 2019 to August 2022). Furthermore, the 
proposed price forecasting methodology includes the adjustment of training interval 
according to the price standard deviation and weighing the results of the five indi-
vidual Machine Learning (ML) algorithms to further improve the prediction perfor-
mance. The set consists of data collected between 1st of January 2019—one year 
before COVID-19 pandemic outburst and 31st of August—several months after the 
war has started in the Black Sea region.

Keywords  Black swan · Electricity price forecast · Regional day-ahead markets · 
ML algorithms

List of Symbols
Variable	� Description
h	� Time of the historical records used for train-

ing and testing [hours]

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-023-10416-0&domain=pdf


2526	 A. Bâra et al.

1 3

d	� Day
T 	� Time interval for the training and testing of 

the ML algorithms [hours]
Wd	� Day of the week
RMSE,R2,MAPE,MAE	� Evaluation indicators for ML algorithms
Qh

RO
	� Traded quantity of electricity on DAM in 

Romania [MWh]
Ph
RO

	� Hourly electricity price on DAM in Roma-
nia [Euro/MWh]

Qh
HU

	� Traded quantity of electricity on DAM in 
Hungary [MWh]

Ph
HU

	� Hourly electricity price on DAM in Hun-
gary [Euro/MWh]

Qh
SR

	� Traded quantity of electricity on DAM in 
Serbia [MWh]

Ph
SR

	� Hourly electricity price on DAM in Serbia 
[Euro/MWh]

Qh
BG

	� Traded quantity of electricity on DAM in 
Bulgaria [MWh]

Ph
BG

	� Hourly electricity price on DAM in Bul-
garia [Euro/MWh]

Ph
SK

	� Hourly electricity price on DAM in Slova-
kia [Euro/MWh]

Ph
CZ

	� Hourly electricity price on DAM in Czech 
[Euro/MWh]

Flowh
RO−HU

	� Electricity flow from Romania to Hungary 
[MWh]

Flowh
HU−RO

	� Electricity flow from Hungary to Romania 
[MWh]

�Pd−1	� Mean price of the previous day [Euro/
MWh]

Pd−1
max

,Pd−1
min

	� Maximum and minimum price of the previ-
ous day [Euro/MWh]

�Pd−1, �2Pd−1	� Standard deviation and variance of the price 
of the previous day [Euro/MWh]

P̃d−1	� Median of the price of the previous day 
[Euro/MWh]

Pd−1
range

	� Range price of the previous day [Euro/
MWh]

Pd−1
ratio

	� Ratio price index of the previous day
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yh	� Actual target variable of the ML algorithms 
[Euro/MWh]

ŷh
i
, i ∈ {RF, LGBR,HGBR,XGB,VR}	� Output of the ML models [Euro /MWh]

̂
P
hf

RO
	� Forecast of the hourly electricity price in 

Romania [Euro/MWh]
�i	� Weights for adjusting the output of the ML 
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1  Introduction

Variation in the cost of energy, in recent years, in the global markets, can be seen 
as the result of several major factors. Among these factors, we mention, in relative 
order of decreasing impact: the conflict in Ukraine, the COVID-19 pandemic, the 
significant changes in direction of US energy policy, the massive fluctuations in 
OPEC oil production, and the significant seasonal variations in renewable energy-
based generation. Two of these factors, the Ukrainian crisis and the COVID-19 pan-
demic are worth mentioning because they have had a significant influence, which 
can be easily detected by comparing the state of the energy markets before the 
occurrence of the respective factors and at the present time. The war in Ukraine can 
be considered perhaps the most impacting factor that has considerably influenced the 
evolution of prices, directly for electricity and indirectly for the resources normally 
used in the European economy for electricity production—natural gas, oil, and some 
of its derivatives, coal, uranium (Butler, 2022; Elliot, 2022; Kolaczkowski, 2022; 
Menon, 2022; Thompson, 2022a; Tolefson, 2022).

The share of energy products in the total energy used, in 2020, in the European 
Union (EU) was: total petroleum products—34.5%, natural gas—23.7%, renewable 
energy—17.4%, nuclear energy—12.7%, solid fossil fuels (coal)—11.5%, other—
0.2% (Eurostat, 2020b). In 2020, 57.5% of the total used energy was coming from 
imports, in various forms—35.8% of solid fossil fuels (coal), 83.6% of natural gas, 
96.2% of crude oil, and 99.8% of uranium (Edmond, 2022; Eurostat, 2020a; Supply 
Agency of the European Atomic Energy Community, 2021). For the entire EU, in 
2020, 22.9% of energy imports, 45% of gas imports, 29% of crude oil imports, and 
20% of uranium imports were coming from the Russian Federation (Jakob Feveile 
Adolfsen et  al., 2022). Taking into account the above-mentioned percentages, we 
can roughly estimate that the price for more than 50% of the total energy used in 
the EU was directly and indirectly controlled by the Russian Federation, and the 
price for another 30% or more of the total energy used in the European Union was 
dramatically influenced as the entire global energy market reacted to the Ukrain-
ian crisis. Even energy-producing technologies which, at first glance, should not be 
affected (various types of renewable energy sources) would somehow be influenced, 
as some of them are using resources partially provided by the Russian Federation 
(e.g., lithium, rare-earth elements, etc.). The result is that the prices for energy and 
for all the resources used for generating energy raised abruptly—for example the 
European Energy benchmark price averaged 191 €/MWh in the second quarter of 
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2022, which is 181% higher than the second quarter of 2021 according to (European 
Commission, 2022).

Some other energy markets are also highly dependent on the fossil fuel prices 
(Bernal et al., 2019). Li and Leung (2021) discussed how access to reliable energy 
services is increasingly seen as a prerequisite for well-being and human develop-
ment. The article examined the relationship between fossil fuel dependence and 
energy insecurity and how this dependence can lead to energy insecurity and vulner-
ability. It also explored the potential of renewable energy sources to reduce energy 
insecurity and vulnerability. Mayer (2022) proposed a study that examines how 
natural resource dependence, measured as oil and coal production, impacts energy 
security at the country level. The study used entropy-balanced fixed effects models 
to analyze data from 137 countries over 15 years. The study found that fossil fuel-
producing nations do not have better energy security outcomes than non-producing 
nations and may suffer from a natural resource curse or paradox of plenty. The study 
suggested that fossil fuel-producing nations should implement policies that would 
allow them to retain more wealth from fossil fuel production and invest in electric 
grid infrastructure. It also highlighted the need for energy justice and sustainabil-
ity in the global energy system. Thompson (2022b) argued how energy researchers 
must grapple with the lessons of history to navigate the long road to net zero. The 
article explored the geopolitics of fossil fuels and renewables and how they reshape 
the world. It also examined the challenges and opportunities that lie ahead as the 
world transits to a low-carbon future.

The second significant influence on the evolution of energy markets was the 
COVID-19 pandemic. At the beginning of the pandemic, an immediate drop in oil 
prices was felt, which was particularly pronounced. For example, the price of Brent 
crude oil fell by 75% between February and April 2020, whereas the Dutch TTF gas 
price fell by 44%. After the initial timing, oil and gas prices recoiled, with gas prices 
reaching pre-pandemic levels in September 2020 and oil prices doing so around 
February 2021. Gas price growth was high in the second half of 2021 and intensified 
further in the first half of 2022—European gas prices increased by 145% compared 
to July 2021 levels, while oil prices increased by 46% over the same period. Both oil 
and gas prices have risen well above pre-pandemic levels, and European gas prices 
have reached a record high, in turn contributing to record-high wholesale electricity 
prices (Friderike Kuik et al., 2022). However, assuming the temporal overlap of the 
two factors (war in the Black Sea region and COVID-19 pandemic), it can be said 
that it is not possible to determine the exact contribution of each of the two factors 
to both the total change in energy prices and the change in the structure of energy 
consumption by component. Furthermore, massive fluctuations in energy prices, 
such as those described above, make it particularly difficult, if not impossible, to 
predict market developments with any degree of accuracy at such times.

Regardless the two major unpredictable influences, the electricity price forecast 
is a challenge for both researchers and operational planners as it traditionally relies 
on generation and consumption, meteorological parameters, power system contin-
gencies, bids, and offers strategies of market players, renewables generation share 
(Lu et al., 2022), etc. However, it was proven that these features change their impor-
tance in time. More features have to be considered and analyzed, such as economic 
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growth, inflation, interest rate, prices of the certificates for CO2 emissions, tie-lines 
flows, available capacity, and prices of previous day in neighboring markets. These 
last features have not been analyzed yet. Moreover, the recent intervals that encoun-
tered random events as pandemic and conflict in Ukraine have not been considered 
in the scientific research. The importance of the electricity price forecasting is indu-
bitable in the context of the digitalization and energy transition (Tian et al., 2022). 
It facilitates numerous applications, including optimization, scheduling (Busse 
& Rieck, 2022), business strategies for market players (such as traders, suppliers, 
producers) to approach DAM and other electricity markets (Hubicka et al., 2019), 
investment strategies in generation technologies, operational planning, macroeco-
nomic policies design (Lehna et al., 2022), etc.

The impact of the increasing share of variable Renewable Energy Sources (RES), 
especially wind power plants and electricity load on the short-term electricity mar-
kets (day-ahead, intra-day and balancing markets) was investigated in (Spodniak 
et al., 2021) emphasizing on the Nordic case (namely, Denmark, Sweden and Fin-
land) for an interval between 2015 and 2017. Vector autoregressive (VAR) models 
were applied to study the relationship between prices and wind and load forecast 
accuracy, proving that markets closer to the real time are trading more energy due 
to the increasing share of RES. Another recent study that consider the spot prices in 
Nordic and Baltic countries and RES between 2013 and 2020 is (Solibakke, 2022). 
It further pointed out that RES forecasts considerably influence the spot prices. Such 
findings can improve the spot price forecast and reduce the confidence interval sig-
nificantly. However, these studies analyzed time intervals before the COVID-19 pan-
demic and were unable to catch the effects of the restrictions or embargo imposed 
on Russia. Furthermore, the impact of RES or load forecast becomes less relevant in 
the current context.

A day-ahead electricity price prediction using a Long Short-Term Memory 
(LSTM) model, that approaches the nonlinear and complex issues in processing 
time series data, and feature selection algorithms taking into account market cou-
pling was proposed in (Li & Becker, 2021). The influence of market coupling effects 
on electricity price forecast on Nordic DAM was investigated. The results demon-
strated that feature selection and moreover features from other integrated markets 
have an essential impact on price forecast. For example, the German market prices 
are significant in the price forecast for the Nordic market. Out of numerous research 
studies and papers that approach the electricity price forecasting, (Tschora et  al., 
2022) is among the first papers that consider the history of the prices of the neigh-
boring countries as input for the ML algorithms, such as random forest, support vec-
tor regressor, deep and convolution neural networks. They demonstrated the benefits 
of the contribution of each feature in the electricity price forecasting using Shap-
ley values.1 The authors also included production and consumption forecasts that 
may introduce additional error. However, they target Western European countries 
(France, Germany, Belgium, Netherlands, Spain, Switzerland). To support (Tschora 
et  al., 2022), we strengthen on the fact that historical prices from neighboring 

1  https://​en.​wikip​edia.​org/​wiki/​Shapl​ey_​value

https://en.wikipedia.org/wiki/Shapley_value
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countries are relevant. But in comparison, we provide a more reliable method that is 
based on adjusting training interval and weighting the results of the ML algorithms.

The contribution of this paper consists of the following:

•	 Targeting the East-European market region, tie-line flows and day-ahead mar-
kets in several neighboring countries that are closer to the conflict in the Black 
Sea: Romania, Bulgaria, Serbia, Hungary, Slovakia, and the Czech Republic;

•	 Identifying and extracting historical prices from national market operators 
and building up a new relevant data set that can be further used in an open 
research approach. Using these features, we aim to perform estimation in the 
context of random events or black swans such as COVID-19 pandemic and 
conflict in Ukraine, near the Black Sea region;

•	 Analyzing a longer and more recent interval, from January 2019 to August 
2022, in which two major events took place. The interval is considerably gen-
erous, as it catches the context before and after the two major events;

•	 Proposing a forecasting methodology that includes the creation of new fea-
tures by aggregation or derivation of the variables in order to capture the price 
fluctuations and spikes. The methodology also consists of adjusting the train-
ing interval for prediction, rotating the dependent variables, and weighting the 
results of the five individual ML algorithms to further improve the prediction 
performance;

•	 Adjusting the training interval based on empirical observation of the results in 
relation to the standard deviation of prices recorded in the previous month of the 
forecasting interval. By adjusting the training interval versus fixed training inter-
val, a sensitivity analysis demonstrates the capacity of the proposed forecasting 
methodology;

•	 Rotating the dependent variable as the correlation among prices in the Eastern-
European region is strong. The rest of the exogenous variables are shifted to the 
known values of day to d−1. This trait shows the capacity of the proposed meth-
odology to obtain accurate results;

•	 Weighting the results of the five individual ML algorithms using two regressors 
to further improve the performance;

•	 Testing the methodology for stable and more turbulent intervals demonstrated its 
robustness though the results in disruptive years (2021, 2022) are slightly higher;

•	 Depicting interesting findings and insights related to the East-European market 
region in the current context and filling the obvious gap as most of the research is 
focusing on the Western-European market (Germany, Austria) (Busse & Rieck, 
2022) and Australia, (Lu et al., 2022).

Our motivation to pursue with this study and propose a price forecasting method-
ology for DAM is related to the significant research gap. It consists in (a) the lack of 
studies using recent data sets that cover interval before and after major events (such 
as COVID-19 pandemic and war in the Black Sea region); (b) lack of studies that 
focus on the East-European region as most of the published papers concentrate on 
the Western or Nordic countries; (c) lack of the available recent data sets that allow 
price prediction—in this regard, we extracted and collected the variables from open 
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data sources and merged them to build up a relevant data set that can be further uti-
lized to achieve more insights in an open research approach.

Considering the above-mentioned contribution, we notice that the existing 
approaches in terms of variables of the data sets focus on total consumption, RES 
share, economic features, and less on the adjacent markets that operate in a cou-
pling mode. We also notice that the existing electricity price forecast methodologies 
do not consider the cumulative steps proposed in the current paper, namely correla-
tion among prices in neighboring markets, adjusting the training interval based on 
the price standard deviation, rotating variables and weighting the results of the ML 
algorithms to enhance the output. Therefore, taking into account the research gap 
and the above exposed motivation, we propose an electricity price forecasting meth-
odology that is relevant and robust for both stable and disruptive economic contexts.

The remaining of the paper is structured as follows: in the next section, a brief 
literature survey of the most recent and relevant research is presented; in Sect.  3, 
the input data is analyzed to understand the price evolution on DAM in the East-
European region, the trend and its characteristics from January 2019 to the end of 
August 2020; the proposed methodology is depicted in Sect. 4, results in Sect. 5, 
and conclusion in Sect. 6.

2 � Literature Review

The European market coupling started in 2006, when Belgium, France, and the 
Netherlands coupled their day-ahead markets for the first time to increase the trading 
potential of the market players and maximize the usage of the tie-lines capacity. It 
combines previously separated trading transactions and allocation of tie-lines capac-
ity into an integrated electricity market. After four years, Germany and Luxembourg 
joined them and formed the Market Coupling Western Europe (MCWE) that involve 
both market operators and Transmission System Operations (TSOs). In parallel, 
in 2007, Spain and Portugal DAM started to operate as an integrated market. Also 
in 2007, Nordic countries were connected to Germany and since 2011 to Nether-
lands. Austria also joined the MCWE Group in 2013 and Switzerland became an 
observer.2 The Price Coupling of Regions (PCR) is a system created in 2010 by the 
European countries that decided to couple their electricity markets and implement a 
single market algorithm (Van den Bergh et al., 2016).

In 2014, 15 European countries benefited from PCR, including the Baltic States, 
Great Britain, Nordic countries and Poland that joined the MCWE. One year later, 
Italy coupled its market to France, and in 2016 Austria and Slovenia also coupled 
their markets. These 19 countries represent 85% of the European electricity con-
sumption. Furthermore, in 2019, Romania, Hungary, Czech Republic and Slovakia 
started to join this group and now their market operators are part of the Nominated 
Electricity Market Operator (NEMO) to use the same algorithms and secure the 

2  https://​www.​next-​kraft​werke.​com/​knowl​edge/​market-​coupl​ing#​miles​tones-​on-​the-​way-​to-​the-​europ​
ean-​single-​market

https://www.next-kraftwerke.com/knowledge/market-coupling#milestones-on-the-way-to-the-european-single-market
https://www.next-kraftwerke.com/knowledge/market-coupling#milestones-on-the-way-to-the-european-single-market


2532	 A. Bâra et al.

1 3

operation of the market coupling mechanisms in Europe together with the TSOs, 
market players and regulatory authorities (Lam et al., 2018).

Electricity price forecasting is important for maximizing economic benefits and 
mitigating power market risks. Electricity prices are highly volatile and depend on 
a range of variables, such as electricity demand and feed-in from renewable energy 
sources. Accurate electricity price forecasting can help to make informed decisions 
about energy consumption and production, and can help to reduce energy costs. 
Some of the benefits of using electricity price forecasting methods include: improved 
energy management, better decision making, reduced energy costs, improved energy 
efficiency, reduced carbon footprint.

The following scientific papers comment on the benefits of EPF and discuss vari-
ous approaches:

–	 Alkawaz et  al. (2022) proposed a new hybrid machine learning method for a 
day-ahead Electricity Price Forecasting (EPF) which involves linear regression 
Automatic Relevance Determination (ARD) and ensemble bagging Extra Tree 
Regression (ETR) models;

–	 Naumzik and Feuerriegel (2021) offered a machine learning-based approach to 
forecast electricity prices. The authors used a time series of electricity prices 
and weather data to train a machine learning model to predict electricity prices. 
The authors also performed a sensitivity analysis to identify the most important 
predictors of the model. The authors conclude that their machine learning-based 
approach outperforms traditional time series models in terms of forecast accu-
racy;

–	 Castelli et al. (2020) proposed a novel genetic programming approach to improve 
electricity price forecasting accuracy. The authors used a time series of electric-
ity prices and weather data to train a machine learning model to predict elec-
tricity prices. The authors concluded that their machine learning-based approach 
outperforms traditional time series models in terms of forecast accuracy;

–	 Schnürch and Wagner (2020) employed machine learning algorithms to forecast 
German electricity spot market prices. The authors used bid and ask order book 
data from the spot market as well as fundamental market data like renewable feed 
and expected total demand to train a neural network model to predict electricity 
prices. The authors concluded that their machine learning-based approach out-
performs traditional time series models in terms of forecast accuracy.

–	 Different time-horizons were considered for analyzing the electricity prices 
for DAM from ultra-short-term (4-h forecast horizon), short-term (day-ahead) 
(Zhang et  al., 2022), and mid-term from one to four weeks (Busse & Rieck, 
2022) to long-term approach (Gabrielli et al., 2022). Most of the research in elec-
tricity price forecasting—more than 50 were published in 2022—focuses on the 
traditional fundamental variables such as consumption, primary resource costs, 
transmission and distribution costs other fees (Dragasevic et al., 2021), genera-
tion, its breakdown, the level of integration of renewables in the power system 
(Maciejowska et al., 2021), buying and selling strategies, and various forecasting 
methods reviewed by (Lago et al., 2021), etc.



2533

1 3

From the East‑European Regional Day‑Ahead Markets to a Global…

–	 The electricity price forecasting is approached from the spikes point of view 
using classification algorithms to detect normal and spikes. (Fragkioudaki et al., 
2015) proposed a method to predict regular electricity prices on DAM and spikes 
in developing countries by means of classification and regression trees, using the 
historical prices of the European electricity markets and transmission capacities.

–	 -Keles et al. (2016) proposed a methodology based on Artificial Neuronal Net-
works (ANN) to forecast the electricity prices. They reinforced the idea that the 
selection and preparation of fundamental variables (such as load, wind, and solar 
generation, available capacities) have a significant impact on the price forecast. 
The selection and preparation of input variables were partially performed by 
means of several cluster algorithms. However, the proposed forecasting model 
was tested for a shorter interval with almost no random event from January to 
September 2013.

–	 A model that integrates four components: the improved empirical mode decom-
position, exponential generalized autoregressive conditional heteroscedasticity, 
autoregressive moving average with exogenous terms, and adaptive network-
based fuzzy inference system is proposed (Zhang et  al., 2019) using the elec-
tricity price and demand from Spain and Australia for 2013–2016. Furthermore, 
(Ziel & Steinert, 2016) considered the auctioning data, using dimension reduc-
tion and lasso based estimation methods. They combined traditional features, 
such as renewables generation and the bidding structure for the day-ahead elec-
tricity prices in Germany and Austria. The main drawback is that the individ-
ual bids and offers are not open data. Additionally, the investigated interval was 
limited to November 2014—April 2015. From the performance point of view, 
we outperformed the analyzed similar works, especially we compared the results 
with the most recent and relevant ones (Ziel & Steinert, 2016), (Zhang et  al., 
2019), (Maciejowska et al., 2021) and (Tschora et al., 2022).

–	 -Gabrielli et al. (2022) proposed a market data-driven model for the long-term 
prediction of electricity prices using Fourier analysis. It decomposed the price 
into two components: base evolution depicted by its amplitudes of the main fre-
quencies of the Fourier series, and spikes or high price volatility that are pre-
dicted with a regression model using the electricity generation, prices, and 
demands. The data sets were collected from Eurostat, British Petroleum, Depart-
ment for Business, Energy & Industrial Strategy BEIS, European Commission 
and National Grid, and the analyzed interval spanned from 2015 to 2019. Elec-
tricity demand, generation, imports, generation mix, wind, solar, biomass, hydro, 
geothermal, nuclear, natural gas, oil, coal generation, fossil fuel prices, natural 
gas, oil, coal, carbon price are the fundamental features, and the forecast is per-
formed for the United Kingdom, Germany, Sweden, and Denmark.

–	  A comparison between time series and neural network models with external 
regressors in order to estimate the day-ahead electricity prices is provided in 
(Lehna et al., 2022). The German electricity price is predicted using the Seasonal 
Integrated Auto-Regressive Moving Average (SARIMA) model and Long-Short 
Term Memory (LSTM) neural network models, Convolutional Neural Network-
LSTM and Vector Auto-Regressive model (VAR), including external variables, 
such as: consumption, fuel and CO2 emission prices, average solar radiation and 
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wind speed. The data set spanned from October 2017 to September 2018 and 
the forecast horizons are variate from one day and seven days to one month. The 
LSTM model was the best on average, but VAR follows closely, being better for 
shorter forecasting horizons. The authors found that a combination of both types 
of forecasting methods outperforms individual models.

–	 Lu et  al. (2022) proposed conditioning time series generative adversarial net-
works on external factors to estimate the electricity prices on the Australian 
DAM for a large interval 2000–2020. By changing the dimensionality of ran-
dom noise input, the model was transformed into a probabilistic price forecasting 
model. The proposed model is compared with other models, such as ARIMA, 
LSTM, LASSO, etc. The Australian National Electricity Market provided as data 
input the historical prices, reserve capacity, consumption, renewables propor-
tion, and tie-line flow from January to December 2019. A Multivariate Logistic 
Regression was proposed (Liu et al., 2022), which was compared with the Multi-
Layer Perceptron (MLP) and Radical Basis Function neural network. An efficient 
forecasting solution consists of combining the extreme learning machine and 
building a hybrid model (Zhang et al., 2022). It was tested to predict the electric-
ity prices of Australia from December 2019 and March 2020 and Spanish DAMs 
from August 2019 and March 2020.

Compared to the above papers, this paper proposes a machine learning-based 
approach to EPF, as can be seen in other similar papers, some of them highlighting 
the advantages of using ML over conventional prediction processes. But the pro-
posed methodology has several contributions highlighted in the previous section.

Another element of novelty is that, to the best of our knowledge, the East-Euro-
pean market region was not analyzed for such longer interval from January 2019 
to August 2022, that faced the pandemic, lockdowns, the economy slowdowns and 
acceleration after restrictions, and the conflict in Ukraine. Most of the studies ana-
lyzed data sets that spanned up to March 2020, but exactly the following months led 
to higher fluctuations and electricity price soring. In addition, interesting insights 
and conclusions for both researchers, planners and decision makers are underlined 
in the current paper. It provides a robust method for electricity price forecast that is 
reliable for both more stable years (2019, 2020) in terms of random events and tur-
bulent ones (2021, 2022).

3 � Input Data

At the beginning of 2021, when most of the lockdowns were finished, the economic 
activities sharply increased in intensity and people started to travel and compa-
nies make business in an attempt to recover the wasted time and losses during the 
pandemic. This was also doubled by the increasing drought in European countries 
and the strategies to replace polluting technologies (thermal power plants based on 
coal) with sustainable ones. The prices for CO2 certificates increased imposing a 
supplementary burden on the electricity price. Furthermore, the transition to new 
green technologies implies costs that give an impetus to the increase in prices. In 
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Figs.  1 and 2, the price evolution from January 2019 to August 2022 is depicted 
for Romania and its neighboring countries. These countries are very close to the 
conflict and were similarly affected in terms of the electricity prices in DAM. The 
data was extracted from the market operators of Romania (OPCOM),3 Hungary 
(HUPX),4 Bulgaria (IBEX)5 and Serbia (SEEPEX).6 To extract data sets for Roma-
nia and Serbia, web scraping (using BeautifulSoup and Selenium Python libraries) 
was necessary as a download or APIs were not an option. In Fig. 3, the input varia-
bles are presented in a heatmap. The prices (in Romania, Serbia, Hungary, Bulgaria, 
Slovakia and Czech Republic); traded quantities (in Romania, Bulgaria and Serbia); 
flows RO-HU and HU-RO are depicted from the Pearson correlation point of view. 
Similarities can be noticed among the electricity price evolution on DAM in the four 
countries.

The much higher demand for goods and services led to inflation. This con-
text was favorable for an accelerated increase in electricity prices in Romania 
from an average of 39.06 in 2020 to 112.15 Euro/MWh in 2021. This trend was 
also noticed in electricity DAMs of the neighboring countries, the stress of the 
pandemic and the conflict in Ukraine affected the entire region regardless the 
affiliation of the country to the integrated market coupling system. The prices 
further increase to an average of 266.62 Euro/MWh up to August 2022 (as in 
Fig. 4). Furthermore, an impressive deviation of the Romanian electricity prices 
took place in 2021 and 2022. It increased from 17.4 in 2020 to 80.14 in 2021 and 
144.96 in 2022 (as in Fig. 5).

The electricity prices on DAMs are strongly correlated. Additionally, the elec-
tricity price in the Romanian DAM for day d is strongly correlated with prices of 
neighboring countries recorded in the previous day. With these coefficients (as 
in Table 1), we could rotate the target and predict the electricity price for each 
DAM.

Fig. 1   Daily prices from 2019 to 2022 in Romania and its neighboring countries

3  https://​www.​opcom.​ro/​pp/​grafi​ce_​ip/​rapor​tPIPs​iVolu​mTran​zacti​onat.​php?​lang=​ro
4  https://​hupx.​hu/​en/​market-​data/​dam/​histo​rical-​data
5  https://​ibex.​bg/​marke​ts/​dam/​day-​ahead-​prices-​and-​volum​es-​v2-0-​2/
6  http://​seepex-​spot.​rs/​en/​market-​data/​day-​ahead-​aucti​on

https://www.opcom.ro/pp/grafice_ip/raportPIPsiVolumTranzactionat.php?lang=ro
https://hupx.hu/en/market-data/dam/historical-data
https://ibex.bg/markets/dam/day-ahead-prices-and-volumes-v2-0-2/
http://seepex-spot.rs/en/market-data/day-ahead-auction
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However, the results indicate that the random events are impacting the prices and 
reflect the distress of the society in terms of rising prices and scarcity of primary 
resources. As the tests indicated, no additional variable such as price index, inter-
est rate, or power system parameters (such as total consumption, generation, or its 
breakdown) is necessary for the prediction process.

4 � EPF Methodology

The proposed EPF method relies on a methodology that consists in several steps that 
first extract, prepare and configure the input data of the ML models and then train them, 
compute the individual and average forecast, evaluate the accuracy of the models, and 
then compute the weighted forecast using linear regression and decision tree regressor 
to adjust the individual forecast and weight it to further improve the results. For train-
ing, the interval is adjusted considering an empirical notice that the higher the deviation 
in the previous month, the shorter the interval. For all the five ML techniques described 
in a following section, we followed the usual approach for machine learning: Design 

Fig. 2   Distribution of electricity prices in DAM (2019–2022) in Romania and neighboring countries
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a specific question based on the available data and the required analysis; Convert the 
data into the required format; Search for noticeable anomalies and missing data points; 
Create the machine learning model; Set the desired baseline model; Train the data 
machine learning model; Provide an insight into the model with test data; Compare 
the performance metrics of both the test data and the predicted data from the model; 
Model improvement, if required; Data interpretation and report. ML techniques were 
previously successfully used in previous works in related fields (Irfan et al., 2021; Mas-
saoudi et al., 2021; Punmiya & Choe, 2019; Wang et al., 2019).

4.1 � ML Algorithms Configuration and New Features

The input of the ML algorithms is initially composed of the 14 raw features that rep-
resent the recorded hourly values of the previous day ( h − 24 ∈ d − 1 ). The weekday 
( Wd ) and the hour ( h ) are also extracted from the date and added to the input variable to 
capture the time variations.

The input is filled with 13 more engineered features obtained by aggregating 
the previous day’s hourly prices and by determining the range and variations of 
the current prices versus the previous day’s prices.

(1)
Xh =

[

Qh−24
RO

,Qh−24
HU

,Ph−24
HU

,Qh−24
SR

,Ph−24
SR

,Qh−24
BG

,Ph−24
BG

,Ph−24
SK

,Ph−24
CZ

,Flowh−24
RO−HU

,Flowh−24
HU−RO

,Wd
, h
]

Fig. 3   Heatmap of the input variables
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The following six variables are calculated for the previous day (d−1): mini-
mum and maximum price, mean price, variance, and standard deviation, and 
median of the previous day’s prices.

These variables are added to the initial input Xh:

(2)Pd−1
min

= min
h|h∈d−1

Ph
RO
; Pd−1

max
= max

h|h∈d−1
Ph
RO

(3)�Pd−1 =
1

24

∑

h|h∈d−1

Ph
RO

(4)�2Pd−1 =
1

24

�

h�h∈d−1

�

Ph
RO

− �Pd−1
�2
; �Pd−1 =

√

�2Pd−1

(5)P̃d−1 = median
h|h∈d−1

Ph
RO

(6)Xh = [Xh,Pd−1
min

,Pd−1
max

,�Pd−1, �2Pd−1, �Pd−1, P̃d−1]

Fig. 4   Monthly average prices in Romania from 2019 to August 2022
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Based on the aggregated values of the previous day, in this step, seven new variables 
are calculated and added to the model. Range price is obtained in Eq. (7) as the differ-
ence between the maximum and the minimum price of the previous day:

The ratio price index is obtained in Eq. (8) as the ratio between the maximum and 
the average price of the previous day:

(7)Pd−1
range

= Pd−1
max

− Pd−1
min

(8)Pd−1
ratio

=
Pd−1
max

�Pd−1

Fig. 5   Monthly standard deviation of the electricity prices on DAM in Romania from 2019 to August 
2022

Table 1   Correlation coefficients 
between the electricity price of 
Romania and its neighbors

RO_price SR_price BG_price HU_price

RO_price 1
SR_price 0.941106 1
BG_price 0.915517 0.952917 1
HU_price 0.937248 0.984877 0.96055 1
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Previous hourly prices with a lag of 24–168 h are also calculated by shifting the 
prices: Ph−24

RO
 , Ph−48

RO
 , Ph−72

RO
 , Ph−96

RO
 , Ph−120

RO
 , Ph−144

RO
 , Ph−168

RO
 . The averages of the previ-

ous hourly prices for 3 and 7 consecutive days are calculated using Eq. (9):

The hourly variations of the previous prices for the last 3  days are determined 
using Eq. (10):

Finally, the input of the ML algorithms is completed with the above-calculated 
features:

The actual electricity hourly prices constitute the target variable ( yh = Ph
RO

 ) of the 
ML algorithms.

4.2 � Training and Evaluation of the ML Algorithms

The following five ML algorithms were used: Random Forest (RF), Light Gradi-
ent Boosting Regressor (LGBR), Histogram-Based Gradient Boosting Regressor 
(HGBR), eXtreme Gradient Boosting (XBR), and Voting Regressors (VR). We used 
the following ML packages for Python: SciKit Learn (sklearn),7 XGBoost,8 and 
LightGBM9 (both XGBoost and LightGBM are wrapper interfaces for Scikit-Learn 
API).

Random Forest (RF) is an ensemble technique capable of performing both regres-
sion and classification tasks using multiple decision trees and a technique called 
Bootstrap and Aggregation, which is also commonly known as bagging. The basic 
idea behind this is to combine multiple decision trees in determining the final result, 
rather than relying on individual decision trees. RF has multiple decision trees as 
basic learning models. Random row sampling and feature sampling from the dataset 
forming sample datasets are performed for each model. This part is called Bootstrap 

(9)�Ph3 =

∑

i∈{24,48,72} P
h−i
RO

3

(10)�Ph7 =

∑

i∈{24,48,72,96,120,144,168} P
h−i
RO

7

(11)Δ = Ph1 = 100 −
Ph−24
RO

Ph−48
RO

× 100; ΔPh2 = 100 −
Ph−48
RO

Ph−72
RO

× 100

(12)Xh = [Xh,Ph−24
RO

,Ph−48
RO

,Ph−72
RO

,Ph−96
RO

,Ph−120
RO

,Ph−144
RO

,Ph−168
RO

,Pd−1
range

,Pd−1
ratio

]

(13)Xh = [Xh,�Ph3 ,�Ph7 ,ΔPh1 ,ΔPh2 ,ΔPh3 ]

7  https://​scikit-​learn.​org/
8  https://​xgboo​st.​readt​hedocs.​io/​en/​stable/​index.​html
9  https://​light​gbm.​readt​hedocs.​io/​en/​latest/​index.​html

https://scikit-learn.org/
https://xgboost.readthedocs.io/en/stable/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
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(Brownlee, 2020a; GeeksforGeeks, 2022; Great Learning, 2022). The purpose of 
these two randomizations is to decrease the variance of the forest estimator—the 
injected randomness in forests yields decision trees with somewhat decoupled pre-
diction errors, which can be canceled out by taking an average of the predictions. 
Random forests achieve a reduced variance by combining diverse trees, sometimes 
at the cost of a slight increase in bias. In practice, the variance reduction is often sig-
nificant, hence yielding an overall better model (SciKit, 2022). For our data analysis, 
we used the RandomForestRegressor class from sklearn.10 In contrast to the original 
proposal, (Breiman, 2001), the scikit-learn implementation combines classifiers by 
averaging their probabilistic prediction, instead of letting each classifier vote for a 
single class (SciKit, 2022).

Gradient Boosting Decision trees (GBDT) are popular ML algorithms, although 
they are not very performant—each feature should scan all the various data instances 
to make an estimate of all the possible split points which is very time-consuming 
and tedious. To solve this problem, the Light Gradient Boosting Model (LGBM) 
is used. It uses two types of acceleration techniques. One of them directly replaces 
GBDT with the more efficient GOSS (Gradient-based One-Side Sampling), which 
will exclude the significant portion of the data part that has small gradients and only 
use the remaining data to estimate the overall information gain. The data instances 
that have large gradients actually play a greater role in the computation of informa-
tion gain. GOSS can get accurate results with significant information gain despite 
using a smaller dataset than other models. The other one is Exclusive Feature Bun-
dling (EFB), which puts the mutually exclusive features along with nothing but it 
will rarely take any non-zero value at the same time to reduce the number of fea-
tures. This affects the overall result for an effective feature elimination without com-
promising the accuracy of the split point (Guolin Ke et al., 2017; Mondal, 2021). 
LGBR seems to be the first algorithm (chronologically) in a set of several competing 
techniques, all attempting to improve in various ways (mostly by binning) over the 
original GBDT algorithms. Two other algorithms working on the same principle, 
HGBR, and XBR, are used for this study and presented further. For our data analy-
sis, we used the LGBMRegressor class from LightGBM.11

Scikit-learn 0.21 introduced two new implementations of gradient boosting 
trees, which are named HistGradientBoostingClassifier and HistGradientBoostin-
gRegressor (HGBR). These histogram-based estimators are estimated to be orders 
of magnitude faster than GradientBoostingClassifier and GradientBoostingRe-
gressor when the number of samples is larger than tens of thousands of samples. 
These fast estimators first bin the input samples X into integer-valued bins (typi-
cally 256 bins), which greatly reduces the number of splitting points to consider 
and allows the algorithm to leverage integer-based data structures (histograms) 
instead of relying on sorted continuous values when building the trees. The API 
of these estimators is slightly different than that of GradientBoostingClassifier and 
GradientBoostingRegressor, and some of the old features are not yet supported, 
for instance, some loss functions (SciKit Learn, 2022a). For our data analysis, we 

10  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​ensem​ble.​Rando​mFore​stReg​ressor.​html
11  https://​light​gbm.​readt​hedocs.​io/​en/​latest/​pytho​napi/​light​gbm.​LGBMR​egres​sor.​html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html
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used the HistGradientBoostingRegressor class from sklearn.12eXtreme Gradient 
Boosting (XBR) is an optimized distributed gradient boosting library designed to 
be highly efficient, flexible, and portable. It implements ML algorithms under the 
Gradient Boosting framework. XBR provides a parallel tree boosting (also known 
as GBDT, GBM) that solves many data science problems in a fast and accurate way. 
The same code runs on some major distributed environments (Hadoop, SGE, MPI), 
and can solve problems with very large data sets (millions to billions of rows) (dmlc 
XGBoost, 2022). XBR gained significant favor in the last few years as a result of 
helping individuals and teams win virtually every Kaggle structured data competi-
tion (Vidia, 2022). While LGBR was the first to be introduced, and HGBR followed, 
XBR, the last to appear, is sought to be the most performant of the three algorithms 
(but in our study, due to the reasonable amount of data, there were no noticeable 
differences on this aspect). For our data analysis, we used the XGBRegressor class 
from XGBoost.13

A Voting Regressor (VR) is an ensemble meta-estimator that fits several base 
regressors, each on the whole dataset. Then it averages the individual predictions to 
form a final prediction. The idea behind VR is to combine conceptually different ML 
regressors and return the average predicted values. Such a regressor can be useful 
for a set of equally well-performing models in order to balance out their individual 
weaknesses (SciKit Learn, 2022b, c). A voting ensemble may be considered a meta-
model, a model of models. As a meta-model, it could be used with any collection 
of existing trained ML models and the existing models do not need to be aware that 
they are being used in the ensemble. A voting ensemble is appropriate when two or 
more models, that perform well on a predictive modeling task, are used. The mod-
els used in the ensemble must mostly agree on their predictions (Brownlee, 2020b), 
which is true for our research, as proven by the results shown in Sect. 5. For our data 
analysis, we used the VR class from sklearn.14

4.2.1 � Adjusting the Training Interval and Weighing the Results of the Individual ML 
Algorithms

The over standard deviation evolution in time made us consider adjusting the trading 
interval T according to Eq. (14). If the deviation in the previous month was less than 
25, the training interval was set to 75 days, while if the deviation is greater than 100, 
it was set to 20 days. Thus, the higher the deviation, the shorter the training interval.

(14)T =

⎧

⎪

⎨

⎪

⎩

75, if𝜎Pm−1 < 25

45, if𝜎Pm−1 ∈ [25, 50]

30, if𝜎Pm−1 ∈ [51, 99]

20, if𝜎Pm−1 ≥ 100

13  https://​xgboo​st.​readt​hedocs.​io/​en/​stable/​python/​python_​api.​html#​xgboo​st.​XGBRe​gress​or
14  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​ensem​ble.​Votin​gRegr​essor.​html

12  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​ensem​ble.​HistG​radie​ntBoo​sting​Regre​ssor.​
html

https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
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The ML algorithms are trained on the T  interval and provide for the next 24 h an 

individual forecast denoted by 
̂̂

y
hf

i
,∀hf ∈ d + 1, i ∈ {RF, LGBR,HGBR,XGB,VR} . 

These estimations are further weighted with a set of weights ( �i ) and used as input 
for another weighting ML algorithm that adjusts ̂yhf

i
 of the initial five ML models in 

order to forecast the hourly electricity price for the next 24 h and several days:

The ML algorithm determines the weights using Linear Regression (LR) or Deci-
sion Tree (DT) regressor by minimizing the sum of the squared errors during the 
training interval ( T  ) using Eq. (16):

4.2.2 � Rotation of the Variables

The strong correlation among DAM prices in the Eastern-European region indicates 
a potential to rotate variables and rely on their reciprocal influence. Therefore, the 
dependent variable could be any of the prices in the region. For example, in our case 
study, the dependent variable was the Romanian price ( Ph

RO
 ), and the other prices 

(exogenous) were shifted to the previous day ( Ph−24
HU

,Ph−24
SR

 , Ph−24
BG

 , Ph−24
CZ

,Ph−24
SK

 ). But 
we may consider estimating the electricity price on DAM in Hungary ( Ph

HU
 ). There-

fore, it will be kept for day d ( ∀h ∈ d ) and the rest of the prices are shifted to day 
d-1(∀h − 24 ∈ d − 1 ). The new input is transformed as in Eq. (17):

Replacing Ph
RO

 with Ph
HU

 in Eqs. (2–11), the final input Xh becomes:

The target of the ML algorithms also changes and becomes yh = Ph
HU

.

4.2.3 � Evaluation of the Accuracy of the Models

To evaluate the accuracy of the ML models, the following metrics are calculated for the 
training and testing process: Root-Mean Squared Error (RMSE), coefficient of deter-
mination ( R2 ), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error 
(MAE):

(15)
̂
P
hf

RO
=
∑

i

�i ×
̂
y
hf

i

(16)�i = argmin
�i

∑

h∈T

(

Ph
RO

−
∑

i

�i × ŷh
i

)2

(17)
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]
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,Ph−72
HU

,Ph−96
HU

,Ph−120
HU

,Ph−144
HU

,Ph−168
HU

,Pd−1
range

,Pd−1
ratio

]

(19)Xh = [Xh,�Ph3 ,�Ph7 ,ΔPh1 ,ΔPh2 ,ΔPh3 ]
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5 � Results

5.1 � Romanian DAM Price Forecasting Case Study

After splitting the data set as usual into training (80%) and testing (20%), the algo-
rithms provided the results that are graphically presented for four consecutive days 
in March (from 16 to 19) for each year 2019–2022 as in Figs. 6, 7, 8, and 9. It is 
worth noting that the proposed method (the blue curve RO_price_PF) is compared 
with the individual (P1–P5) and an average forecast of the five ML algorithms (the 
red curve RO_price_F). P1–P5 represent the predictions obtained with the five ML 
algorithms.

The prediction is very good; both spikes and valleys are approximated with an 
individual estimation of the ML algorithms and also with the average and weighted 
forecast. Very small deviations from the actual curves were observed for days in 
March 2019, but on average the estimation was performant. Furthermore, in 2020, 
the prediction for the same four consecutive days is accurate.

Small deviations were recorded on 16 of March 2020. In 2021, for four consecu-
tive days (but also for the rest of the year), the results are promising, and the predic-
tion is almost perfect. The EPF has not encountered obstacles in estimating spikes 
and valleys. Higher deviations between actual prices and predictions were recorded 
in 2022 for two days out of the six consecutive days (19, 20 March), but on average 
the estimation is good.

One can notice that each of the five algorithms provides the best results at certain 
intervals. Moreover, it is difficult to follow and chose one of the five curves that 
are the predicted prices obtained with the ML algorithms. Thus, two approaches to 
mediate the results are considered: average and weighting the results of the five algo-
rithms. In Figs. 10, 11, 12, and 13, three curves are depicted: the actual prices—the 
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1

T

T
∑
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(

yh − ŷh
i

)2
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i
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Fig. 6   Hourly RO price forecast in Euro/MWh for 4 consecutive days in March 2019

Fig. 7   Hourly RO price forecast in Euro/MWh for 4 consecutive days in March 2020
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Fig. 8   Hourly RO price forecast in Euro/MWh for 4 consecutive days in March 2021

Fig. 9   Hourly RO price forecast in Euro/MWh for 4 consecutive days in March 2022
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Fig. 10   Average (red) and weighted results of ML algorithms (blue) for 4 days in March 2019 with DT. 
(Color figure online)

Fig. 11   Average (red) and weighted results of ML algorithms (blue) for 4 days in March 2019 with LR. 
(Color figure online)
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Fig. 12   Average (red) and weighted results of the ML algorithms (blue) for 4 days in March 2021 with 
DT. (Color figure online)

Fig. 13   Average (red) and weighted results of ML algorithms (blue) for 4 days in March 2021 with LR. 
(Color figure online)
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purple curve, the average prediction—the red curve and the weighted curve—the 
blue curve. Out of the interval 2019–2022, two years are chosen: 2020—as more 
stable and 2021 as more turbulent, when the prices started to increase.

In Figs.  10, 11, 12, and 13, the average (red) and weighted results of the ML 
algorithms (blue) for the four consecutive days (from 16 to 19) in March 2020 and 
the same 4 consecutive days in March 2021, using Decision Tree (DT) regressor and 
Linear Regression (LR) for weighting the results of the individual ML algorithms 
(using Eqs.  15, 16) are graphically showcased. The DT regressor performs better 
than LR that is smoother, and it is chosen to calculate the performance indicators in 
Table 2. We tested the proposed method for the entire interval, from January 2019 
to August 2022. To benchmark, we compare our method with the classic approach 
using ML algorithms (baseline), but without feature engineering, no adjustment of 
the training interval (fixed interval of 45 days) and no weighting of the individual 
estimations of the ML algorithms.

On average, all metrics improved with EPF. MAE enhances by 62.5% in 2019 
and 2020, respectively by 37 and 44% in 2021 and 2022, whereas MAPE improves 
by 72 and 62% in 2019 and 2020, respectively by 64 and 59% in 2021 and 2022. It 
is obvious that the EPF is more efficient for peaceful intervals, but by adjusting the 
training intervals based on standard deviation of the prices in the previous month as 
in Eqs. (14)–(16) and inserting new features that consider price variations and high 
spikes, EPF proved efficient for more hectic years like 2021 and 2022.

The following performance indicators are obtained (as in Table 2) revealing that 
the proposed method (EPF) is superior to the classic approach or baseline.

5.2 � Hungarian DAM Price Forecasting and Other Case Studies

Rotating the variables, we estimate the electricity prices on DAM in Hungary. Prices 
in Hungary are kept for day d and the previous prices in neighboring countries are 
shifted to d−1. Therefore, the exogenous variables are the prices for the previous 
day that are known on day d.

The graphical results are presented in Figs. 14 and 15 for six consecutive days 
in March 2019 and 2021. 2019 is chosen as a quieter interval, whereas 2021 is a 
more turbulent one. The training intervals are adjusted considering Eq. (14) and 
monthly standard deviations as in Fig. 16.

Table 2   Performance indicators for 2019—August 2022

Metric/Year 2019 2020 2021 2022

Scenario Baseline EPF Baseline EPF Baseline EPF Baseline EPF

R2 0.88 0.98 0.89 0.98 0.74 0.95 0.71 0.93
MAE 6.89 2.58 7.24 2.71 8.34 5.25 10.83 6.03
RMSE 14.32 3.82 13.22 3.67 17.12 4.55 21.65 24.12
MAPE 10.98 3.11 8.98 3.37 13.94 5.05 17.01 6.89
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In March 2019, except the prediction for Hungary on 17-03-2019 from the 
analyzed interval, the rest of the five predictions are very closed to the actual val-
ues. On 17-03-2019, the morning peak and afternoon valley were lower than the 
predicted curves, but the evening peak overlaps the predictions. In March 2021, 
except the last two days from the analyzed interval, the predictions for Hungary 
are very close to the actual values. On 20-03-2022 and 21-03-2021, a similar 
issue occurred: the morning peak noon valley are slightly under the prediction 
curves, whereas the evening peak is much closer.

From Fig. 16, one can notice numerous similarities among the price standard 
deviations in the four analyzed countries. The highest standard deviations were 
recorded in the summer months (July and August) in 2022 when they went up to 
160. A higher standard deviation was also recorded closer to the winter holidays 
in 2021.

Fig. 14   HU hourly price forecast in Euro/MWh for 6 consecutive days in March 2019
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The training interval is variable as in Eq.  (14), and the forecasting hori-
zon spans to six days, providing the estimation at hourly resolution for short- 
and mid-run intervals. As resulted from Figs.  14 and 15, excellent results are 
obtained for Hungary DAM prices. On average, the performance of the estima-
tion is better with 1.5–2% compared with the results obtained in Table 2. Addi-
tionally, the Serbian and Bulgarian DAM forecasting price case studies are ana-
lyzed. In case of Serbian DAM, the performance metrics are lower by 2–3% in 
comparison with the Romanian DAM forecasting prices case. The errors are rea-
sonable and far from the baseline case, but they are probably generated because 
the Serbian market is not operating in coupling mode.

Fig. 15   HU hourly price forecast in Euro/MWh for 6 consecutive days in March 2021



2552	 A. Bâra et al.

1 3

6 � Conclusions

Numerous changes took place in the last three years and a half. The most unex-
pected ones were COVID-19 pandemic and war in Ukraine, events that competed 
to increase prices on the electricity markets in the European countries. The tradi-
tional features that impacted prices lost their influence, but other features such as 
prices in neighboring countries became more correlated. Lockdowns influenced 
economies and business sector whereas the conflict in the Black Sea region had 
great influence on the prices of other energy resources such as gas and oil. The 
prices for certificates paid for CO2 emissions were increasing to unprecedented 
levels and the drought in Europe also led to expensive generation based on coal, 
gas and oil. The prices for commodities also increased due to the rapid economy 
recovery and higher demand occasioned by the war necessities. In this context, 
the conventional tools for prediction based on deterministic methods and classical 
features are not useful due to the fact that the dynamics of the economies drasti-
cally changed.

This paper proposes a machine learning-based approach to EPF. The main nov-
elty elements are as follows:

–	 The paper comparatively analyzes the effects of applying five different ML tech-
nologies to EPF. These methods are compared and analyzed from various points 
of view, including sensitivity.

–	 According to the authors’ knowledge, this is the first paper that scrutinizes the 
Eastern European market for a longer time span, a span that includes the period 
of the pandemic and the conflict in Ukraine, with the significant market fluctua-
tions induced by these two significant events.

Fig. 16   Monthly standard deviations in Romania, Hungary, Serbia, and Bulgaria 2019–2022
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This paper provides interesting insights into the correlation between electricity 
prices in Eastern-European neighboring countries. Despite some markets being cou-
pled (Romania, Hungary, Slovakia, Czech, Bulgaria) and others not (Romania, Ser-
bia), the prices for electricity in these countries are strongly correlated. This aspect 
is important because any electricity price can be considered as a target or dependent 
variable and the others as exogenous. Simulations were carried out for Romanian or 
Hungarian electricity prices as targets for the entire interval between January 2019 
and August 2022, and very good results were obtained in both cases. This is espe-
cially relevant because most research studies and scientific papers focus on Nordic 
or Western European countries or Australia. Furthermore, previous studies analyzed 
historical data up to March 2020, while our study goes further and approaches the 
more feverish intervals starting from 2019 to August 2022. The results indicate that 
the proposed method is robust for both the stable intervals and the more turbulent 
intervals characterized by random events or by the so-called black swans (such as 
the COVID-19 pandemic and the conflict in Ukraine).

Moreover, this paper proposes a robust method for predicting electricity prices, 
since the price on the DAM has been increasing tremendously and showing more 
fluctuations year by year starting from 2019. The proposed method proved to accu-
rately estimate hourly prices for both stable years (like 2019 and 2020) and more 
turbulent ones (2021 and 2022). Traditional variables do not ensure the quality of 
the prediction, especially in intervals with higher fluctuations. Therefore, the prices 
on DAMs in neighboring countries and flows on the tie-lines are considered as input 
variables.

We noticed that there is a very strong direct correlation among electricity prices 
on DAM in the neighboring countries, therefore, we checked the hypothesis that 
one price series can be the target at a time and proposed the rotating variables con-
cept. The first case study aims to predict the electricity price on the Romanian DAM 
using the prices recorded on the previous day (d–1) in adjacent countries (Hungary, 
Bulgaria, and Serbia). We also considered the flows on the line with Hungary, as 
the two countries are integrated, and even more regional prices from the neighbor-
ing countries of Hungary (Slovakia and the Czech Republic). Apart from that, fea-
ture engineering, which consists of aggregated features and derivatives, substantially 
increased the performance of the estimation.

The prices fluctuations have to be carefully analyzed as they influence the training 
interval. In this sense, we noticed that the best training interval can be obtained con-
sidering the price standard deviation of the previous month. The standard deviation 
of electricity prices in Romania varied from 17 in 2020 to 145 in 2022, indicating 
large fluctuations, especially in 2021 and 2022. Consequently, we proposed to adjust 
the training intervals, considering an empirical observation, from 20 to 75  days 
based on the previous month’s deviation. The higher the deviations, the shorter the 
training interval. The concept of adjusting the training interval stems from the fact 
that in more disruptive intervals when the deviation exceeds a certain threshold, it 
is better to shorten the training interval to capture the speculative effect of random 
events on the DAM. Therefore, the training interval is variable, and the forecasting 
horizon spans to six days, providing performant estimation at an hourly resolution 
for short- and mid-run intervals.
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Also, a rotation of the variables (i.e., prices on DAMs) was performed as a sec-
ond case study. The initial target variable, or the electricity price on DAM in Roma-
nia, was replaced by the price in Hungary, and the exogenous variables (including 
Romanian hourly prices) were shifted accordingly to the previous day’s known val-
ues. The results proved that the electricity price forecast on the Hungarian market 
is also reliable. Therefore, we tested the proposed method for several years, from 
January 2019 to August 2022, and obtained very good results in terms of MAE, 
MAPE, and other performance indicators for both DAMs in Romania and Hungary. 
The results in the Romanian DAM were compared to the no feature engineering and 
fixed training interval case (baseline). The EPF proved to be more efficient not only 
for more peaceful intervals but even so, on average, the MAE diminished by 37% in 
2021 and 44% in 2022.

To enlarge the sensitivity analyses, the hourly prices in Serbia are also considered 
the target for prediction whereas the other prices are shifted by 24 h. We perform 
the price forecast for Serbian DAM to check the hypothesis that the variables can 
be rotated with reliable results. The performance for Serbian DAM was 2–3% lower 
in terms of MAE, but the results are better than the baseline and somehow expected 
as the Serbian DAM is not operating in coupling mode with the analyzed countries. 
Also, prediction for Bulgaria is performed and the results in terms of accuracy are 
0.5% lower than accuracy obtained for Romanian price prediction. However, the 
best prediction on average was obtained for Hungary using the proposed adjusted 
training interval and building new features to capture the spikes.
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