
Vol.:(0123456789)

Computational Economics (2023) 62:1919–1945
https://doi.org/10.1007/s10614-022-10325-8

1 3

Modeling Bitcoin Prices using Signal Processing Methods, 
Bayesian Optimization, and Deep Neural Networks

Bhaskar Tripathi1  · Rakesh Kumar Sharma1 

Accepted: 20 September 2022 / Published online: 28 October 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
Bitcoin is a volatile financial asset that runs on a decentralized peer-to-peer Block-
chain network. Investors need accurate price forecasts to minimize losses and maxi-
mize profits. Extreme volatility, speculative nature, and dependence on intrinsic and 
external factors make Bitcoin price forecast challenging. This research proposes a 
reliable forecasting framework by reducing the inherent noise in Bitcoin time series 
and by examining the predictive power of three distinct types of predictors, namely 
fundamental indicators, technical indicators, and univariate lagged prices. We begin 
with a three-step hybrid feature selection procedure to identify the variables with 
the highest predictive ability, then use Hampel and Savitzky–Golay filters to impute 
outliers and remove signal noise from the Bitcoin time series. Next, we use several 
deep neural networks tuned by Bayesian Optimization to forecast short-term prices 
for the next day, three days, five days, and seven days ahead intervals. We found 
that the Deep Artificial Neural Network model created using technical indicators 
as input data outperformed other benchmark models like Long Short Term Mem-
ory, Bi-directional LSTM (BiLSTM), and Convolutional Neural Network (CNN)-
BiLSTM. The presented results record a high accuracy and outperform all existing 
models available in the past literature with an absolute percentage error as low as 
0.28% for the next day forecast and 2.25% for the seventh day for the latest out of 
sample period ranging from Jan 1, 2021, to Nov 1, 2021. With contributions in fea-
ture selection, data-preprocessing, and hybridizing deep learning models, this work 
contributes to researchers and traders in fundamental and technical domains.
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1 Introduction

Bitcoin is a peer-to-peer virtual currency that runs on Blockchain technology. It was 
introduced by Satoshi Nakamoto in October 2008 to solve the problem of double-
spending without the need of any central authority (Nakamoto, 2008). Since 2013, 
Bitcoin has grown in popularity as a speculative asset. At present, Bitcoin is the 
most dominant among all other cryptocurrencies, which collectively reached a mar-
ket cap of over 3 trillion US Dollars in the peak of 2021. However, throughout its 
history, Bitcoin has been an extremely volatile asset. According to https:// coinm 
arket cap. com, accessed on November 6th, 2021, Bitcoin recently surpassed an all-
time high of $64,000 before falling over 30% in less than 24 h. These irregular price 
fluctuations expose traders and investors to risks that may result in severe financial 
penalties. Simultaneously, it also poses a challenging task for researchers to devise 
new price prediction approaches to deal with such volatility and accurately predict 
the prices. Another problem is the changing nature of the market. The cryptocur-
rency market has evolved through several market cycles and phases of bull-bear 
runs, public attention, technological advancements in Blockchain, speculation, and 
adoption, among other natural processions. As market phases evolve, the pricing 
factors that influenced one stage of the market no longer apply to the subsequent 
phase, creating anxiety among investors looking to buy the dip or sell at a profit.

In past, various studies have forecasted Bitcoin prices using econometric, statisti-
cal, and machine learning models. The preliminary studies mainly focused on apply-
ing statistical and econometric methods to understand better the factors influencing 
Bitcoin’s price development and fundamental characteristics (Cheung et al., 2015; 
Ji et al., 2018; Kristoufek, 2015; Szetela et al., 2016). More recently, the focus has 
shifted to machine learning models as they tend to perform well on non-linear data. 
Among machine learning models, Convolutional Neural Networks (CNN), recur-
rent neural networks (RNN) and Long Short-Term Memory (LSTM) models are the 
most effective in a range of financial forecasting studies. One important step in many 
methods is to reduce the signal noise. Example (Lahmiri & Bekiros, 2020) exam-
ined the LSTM and generalized regression neural networks (GRNN) performance 
in predicting the daily exchange rates of three virtual currencies: Bitcoin, Digital 
Cash, and Ripple. The strategy employed signal detrending techniques but exam-
ined just one data period and only used root mean square error (RMSE) as a metric, 
which is insufficient to determine the model’s robustness. Massaoudi et al., (2020) 
used a hybrid deep learning model for short-term load forecasting using CNN-BiL-
STM and Partial Least Square (PLS). The authors used the Savitzky–Golay filter to 
clean the variable signals and then fed the enhanced signal to the model. Mudas-
sir et al., (2020) examined Support Vector Machines (SVM), LSTM, and Artificial 
Neural Networks (ANN), as well as stacked-ANN approaches, for forecasting short, 
medium, and long-term prices using a high dimension dataset. The best model had 
a mean absolute error (MAE) of 39.50 for the next day’s forecast, and a root mean 
square error (RMSE) of 74.10. The forecast for the 7th-day horizon, on the other 

https://coinmarketcap.com
https://coinmarketcap.com
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hand, was lower, with an MAE of 16.32 and an RMSE of 37.32, roughly half of 
what was indicated for the next-day forecast. These findings contradict the scientific 
consensus that the farther we forecast, the more the uncertainties and the magnitude 
of error variations should grow as prediction horizons increase. One probable expla-
nation for this issue is that the time series in this work were shuffled before regres-
sion, introducing forward-peeking and overfitting. Hybridization of models can also 
enhance results. Mallqui and Fernandes (2019) used a recurrent neural network 
(RNN) based ensemble model to forecast the closing price of Bitcoin with an MAE 
of 14.32, RMSE of 25.47, and MAPE of 1.81% for their second interval. Adcock 
and Gradojevic (2019) demonstrated that ANNs can be superior to statistical and 
econometric models but did not consider the relative importance of varying inputs 
concerning each time interval.

Appropriate input data selection is equally critical for successful forecasting. It is 
based on the researchers’ domain expertise and previous studies. In terms of input 
data selection, previous studies can be grouped into two categories: (1) using his-
torical prices as inputs, and (2) using multivariate data as predictor factors. Certain 
works (Aggarwal et al., 2020; Faghih Mohammadi Jalali & Heidari, 2020; Gyam-
erah, 2020; Yao et al., 2018) have used univariate prediction models with lag values 
of closing price data. The univariate methods have their own advantages or limita-
tions. Past studies have shown that in general, multivariate models perform better 
than univariate prediction models (Miller & Kim, 2021). However, as advised by 
Iwok and Okpe (2016), univariate models have their inherent strength in their sim-
plicity, and it is always preferable to conduct a comparative analysis to determine 
which model works best for a given set of data.

Two primary strategies have been employed in multivariate forecasting. The first 
approach makes use of technical indicators as predictors. These predictors are con-
structed using price values for the Open, High, Low, and Close (OHLC) periods 
and trading volume. The second strategy uses fundamental predictors that form the 
intrinsic value of Bitcoin. Huang et al., (2019) used around 124 technical indicators 
to predict the Bitcoin daily returns of Bitcoin. These results indicated that owing 
to the highly speculative nature of Bitcoin; technical indicators were better predic-
tors of returns than fundamental indicators. Cohen (2020) used Darvas box strategy, 
linear regression methods and technical indicators to forecast Bitcoin price shifts. 
On the other hand, some works (Chen et al., 2020; Zhu et al., 2017) have utilized 
fundamental predictors variables, including Blockchain information, Google search 
interest, twitter sentiments data, global currency exchange ratios, and macroeco-
nomic variables to forecast the Bitcoin exchange prices. The evolution of Bitcoin’s 
volatile price was studied by Wang and Hausken (2022), who examined data from 
23 July 2010 to 21 June 2021. In order to forecast the future price of Bitcoin and the 
peaks of the bull market, the authors investigated five differential equation-based 
models using least squares and weighted least squares methods. The research used 
differential equations of different carrying capacities to analyze the pattern of Bit-
coin’s price increase. This work had a broader scope than prior research since it did 
not use predetermined short-term forecasting horizons but instead employed mul-
tiple-year forecasting horizons and five distinct differential equation-based growth 
models with dampened oscillations and lengthening cycles to identify many bear 
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market minimums and bull market maximums. According to the research, the price 
of Bitcoin will stay volatile until 2100, and its market capitalization may eventu-
ally overtake traditional financial assets such as gold, stocks, bonds, and other finan-
cial assets. Very few works have performed a comparative analysis on the predictive 
ability of deep learning models using fundamental indicators, technical indicators, 
and univariate closing prices as input data.

Robust feature selection methodologies, data pre-processing, transformation, and 
strong algorithms are vital to accurate forecasting. Chen et al., (2020) used Boruta 
method for feature selection to predict the short-term stock market price trends. Deep 
learning methods have achieved high accuracy rates and often outperformed super-
vised learning and statistical methods. Lamothe-Fernández et al., (2020) proposed 
a deep recurrent convolutional neural network to forecast Bitcoin prices with 29 
fundamental predictor variables. The model reported an accuracy of 94.42% accu-
racy on the out of sample data. Popular deep learning methods like LSTM, ANN, 
CNN and some hybrid models like CNN-LSTM are used by many recent studies to 
forecast Bitcoin prices (Chen et al., 2021; Huisu et al., 2018; Livieris et al., 2021; 
Mallqui & Fernandes, 2019; Mudassir et al., 2020; Wu et al., 2019). One common 
issue encountered by researchers while using deep learning models is optimizing 
the neural network hyperparameters. Bayesian Optimization (BO) has emerged as 
a viable solution in recent years to resolve this issue (Bakshy et al., 2018; Li et al., 
2021; Ranjit et al., 2019). BO employs the restricted sample to create a posteriori 
probability distribution for the black box function to determine its best solution. In 
BO, a proxy model maps hyperparameters to model generalization accuracy.

The purpose of this work is to construct a hybrid framework capable of consider-
ably improving Bitcoin price prediction and producing robust forecasts for a range 
of short-term prediction horizons. Keeping this in mind, we examine three distinct 
categories of input features, namely fundamental indicators, technical indicators, 
and lagged values of past Bitcoin prices, to identify the optimum Bitcoin price fore-
casting model for four distinct market stages. We use four deep learning models 
namely Deep Artificial Neural Network (DANN), LSTM, Bidirectional LSTM and 
a hybrid model CNN-BiLSTM to run our experiments. These models are optimized 
using Bayesian Optimization and regularization. Besides that, we address the issue 
of volatility and outliers in the Bitcoin time series and employ signal processing 
techniques to minimize noise interference.

The research’s major contributions may be summarized as follows: first, a novel 
three-step feature selection procedure is given to identify variables with strong pre-
dictive potential. Second, we suggest a hybrid data smoothing technique for remov-
ing Bitcoin data outliers and intrinsic noise. We pre-process the data using Hampel 
and Savitzky–Golay filters. To our knowledge, this hybrid method has never been 
applied in the financial literature for data pre-processing. Finally, we use fundamen-
tal, technical, and historical price predictors with the pool of deep learning algo-
rithms and optimize them with Bayesian Optimization to discover the model that 
produces the best multi-step ahead forecast. This kind of evaluation allows deter-
mining whether Bitcoin is a suitable hedging asset in the short period, resulting in 
more useful capital management.
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2  Methodology and Data

2.1  Proposed Forecasting Framework

In this research, we propose a Hybrid forecasting framework that uses signal pro-
cessing methods for data preprocessing and deep learning algorithms for predicting 
Bitcoin prices. Figure 1 describes the complete process used for solving the Bitcoin 
price prediction problem.

2.2  Dataset Description

The price of Bitcoin derives its value from multiple factors. We collected and pre-
pared three different data groups to train our models: (1) fundamental indicators 
such as Blockchain information, Google search interest, tweet data, global currency 
exchange ratios, and macroeconomic variables. (2) Technical indicators created 
using movements of the past price and trading volume of Bitcoin, (3) lagged close 
price values of past days for univariate price modeling.

All data were collected from April 1, 2013, to November 6, 2021, consisting of 
3142 daily observations. Since Bitcoin exchanges operate 24 h a day, seven days a 
week, and do not have standard daily Start and Close timings, we considered that the 
start of the day begins with the first trade after 00:00:00 Coordinated Universal Time 
(UTC) and ends at time 23:59:59 UTC for all Blockchain data. Tables 1 and 2 list 
the field information and description and previous financial forecasting sources for 
all data variables used as raw inputs. In Table 1, we gathered daily observations of 
Blockchain data classified by Group Ids 1–4, i.e., Blockchain wallet activity, Block-
chain network activity, Blockchain mining information, and Blockchain market sig-
nals, from https:// www. block chain. com/ charts# block chain. The daily Google search 
trends index for the keyword "Bitcoin" was retrieved from https:// trends. google. com 
(categorized as Group Id 4). The daily count of tweets with the hashtag "#Bitcoin" 
was acquired from https:// bitin focha rts. com/ compa rison/ tweets- btc. html# allti me 
(categorized as Group Id 4). Macro-economic indicators, and global currency ratios 
(categorized as Group Id 6–7) were extracted from https:// www. inves ting. com. All 
data from above websites was retrieved using custom written python scripts.

Fig. 1  Schematic architecture for the proposed forecasting framework

https://www.blockchain.com/charts#blockchain
https://trends.google.com
https://bitinfocharts.com/comparison/tweets-btc.html#alltime
https://www.investing.com
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In Table  2, we calculate all data using the Technical Analysis library (https:// 
www. ta- lib. org) from the Bitcoin daily closing price. Additionally, we use lagged 

Table 1  List of Fundamental indicators used as independent variables. All data categories are comprised 
of daily observations

Group Id Category Description References

1 Blockchain wallet 
activity

Newly registered wallets 
on blockchain.com, 
Total number of regis-
tered wallets

Aarhus et al. (2018), 
Chen et al. (2021), Jang 
and Lee (2018a), Nasir 
et al. (2019)

2 Blockchain network 
activity

Unique addresses used, 
confirmed transactions 
per day, Transaction 
rate per second, Output 
value per day, Mempool 
transaction count, 
Mempool size growth, 
Mempool size bytes, 
Unspent transaction 
outputs, Transactions 
excluding popular 
addresses, Estimated 
transaction value USD

Aarhus et al. (2018), 
Chen et al. (2021), 
Nasir et al. (2019)

3 Blockchain mining 
information

Total hash rate, Network 
difficulty, Miner’s 
revenue USD, Total 
transaction fees in US$, 
Fees per transaction 
USD, Cost percent of 
transaction volume Cost 
of transaction

Aarhus et al. (2018), 
Chen et al. (2021), Jang 
and Lee (2018a), Nasir 
et al. (2019)

4 Blockchain market 
signals

Market value to realized 
value (MVRV), Net-
work value to transac-
tions (NVT)

Chen et al. (2021) and 
Nasir et al. (2019)

5 Social Media and 
Search Trends

Google Search Index with 
the keyword "Bitcoin," 
and Twitter tweets per 
day that include the 
hashtag "#Bitcoin"

Mallqui and Fernandes 
(2019), Politis et al. 
(2021)

6 Macroeconomic & 
Financial Indicators

S&P 500 Index, NAS-
DAQ Index, Gold Price, 
WTI Crude Oil price, 
Dow Jones 100, US Fed 
Interest rates, US 10 
Year Treasury rate, US 
Initial Claims (unem-
ployment filing)

Chen et al. (2021) and 
Jang and Lee (2018a)

7 Global Currency/
USD Ratios

CNY/USD, EUR/USD, 
GBP/USD, RUB/USD

Chen et al. (2021) and 
Jang and Lee (2018b)

https://www.ta-lib.org
https://www.ta-lib.org
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close prices from the previous 1, 2, and 3 days as our third raw input dataset. We 
collect and clean the data for these indicators and divide them into four separate 
intervals. We segment the data into four distinct intervals so that we can examine 
how the drivers of Bitcoin’s price evolved overtime during each of these distinct 
market phases. We utilized the cubic spline interpolation method using polynomials 
of degree 3 to fill in any missing data for both Tables 1 and 2.

Three of these intervals are similar to prior state-of-the-art investigations (Adcock 
& Gradojevic, 2019; Mallqui & Fernandes, 2019; Mudassir et al., 2020) allowing 

Table 2  List of technical indicators used as independent variables for Bitcoin price prediction. All indi-
cators are calculated from Bitcoin’s daily closing price

Source: Authors calculations

# Category Description Source(s) Calculation(s)

1 Moving 
averages

1. SMA: 5, 10 period Simple Moving Average Yang Li et al. 
(2020), Mallqui 
and Fernandes 
(2019), Mudassir 
et al. (2020), Nta-
karis et al. (2020) 
and, Politis et al. 
(2021)

TA-Lib
2. VAMA: 9 period Volume Adjusted Moving 

Average
3. TEMA: 9 period Triple Exponential Moving 

Average
4. EMA: 9 period Exponential Moving Average
5. DEMA: 9 period Double Exponential Moving 

Average
Exponential moving averages attempt to remove 

the inherent lag associated to Moving Averages 
by placing more weight on recent values

2 Price–vol-
ume 
indica-
tors

VWAP: Volume Weighted Average Price is used 
to determine what the average price is based on 
both price and volume

Ntakaris et al. 
(2020) and Park 
et al. (2020)

TA-Lib

3 Momentum 
indica-
tors

1. MOM: Market Momentum measured by con-
tinually taking price differences for 10 periods

Li et al. (2020), 
Mudassir et al. 
(2020), Ntakaris 
et al. (2020), 
and Politis et al. 
(2021)

TA-Lib

2. MACD: Moving Average Convergence Diver-
gence measures the relationship between two 
price moving averages of security

3. PERCENT B: Percent B Oscillator (%B) 
reflects the closing price as a percentage of the 
lower and upper Bollinger Bands

4. Chaikin Oscillator: It measures the accumula-
tion/distribution line of the MACD

5. ROC: Rate of Change measures the percent 
change in price from one period to the next

6. SO: Stochastic Oscillator compares the closing 
price to the range of prices over a certain period 
of time (14 periods for this study)

4 Oscillators 1. TRIX: Triple exponential average indicator 
is used to identify oversold and overbought 
markets

Mallqui and 
Fernandes (2019), 
Mudassir et al. 
(2020) and Sun 
et al. (2020)

TA-Lib

2. Relative Strength Index (RSI): It measures the 
magnitude of recent price changes

3. Williams %R: Williams %R Oscillator shows 
the current closing price in relation to the high 
and low of the past N days
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us to assess the effectiveness of our proposed method. The fourth interval has not 
been investigated in the past literature and enables us to evaluate the most recent 
price movements. Table 3 describes the date ranges of all four data intervals con-
sidered for the experiments. We use all intervals to predict the next-day prices (time 
step t + 1). Additionally, interval 4 is also used to predict the Bitcoin prices of three, 
five, and seven days ahead time horizons (time steps  t + 3, t + 5, t + 7). Unlike the 
first three intervals, Interval 4 contains the most recent market trends that provide 
a forward-looking assessment. Therefore, following previous research (Mudassir 
et al., 2020), we utilize interval 4 to construct a multi-step ahead forecast in addition 
to the next step forecast.

2.3  Feature Selection

Feature selection is the technique of selecting the most relevant, coherent, and 
non-redundant data attributes for model development. While feature selection is 
not mandatory for neural network-based models, a well-designed feature selection 
approach and appropriate data pre-processing techniques can considerably reduce 
computation time, improve the generalization ability of Deep Learning models and 
minimize overfitting. We use a three-step feature selection approach for the input 
datasets presented in Tables 1 and 2. In the First step we use Random Forest based 
Boruta method for initial feature selection then filter out the highly correlated vari-
ables and remove multicollinearity. The resultant subset of features is features with 
high predictive power and free from multicollinearity and high correlation.

We select important features using the Boruta technique (Kursa & Rudnicki, 
2010) which improves the feature selection of Random Forest. All independent vari-
ables are duplicated and randomly shuffled in this procedure. These shuffled values 
are referred to as shadow features, and they are then combined with the original 
dataset. Following that, a Random Forest regressor is used to determine the vari-
able’s importance, followed by an iterative comparison of the original features’ 
importance to their shadow copies. The key premise is that if a variable is chosen 
over n-iterations only after comparison with its shadow feature, it is not the out-
come of randomness. On the other hand, if a shadow copy of a feature has more 
importance than the original feature then it can be deemed as noise. One of Boruta’s 
limitations is that it neglects cross-correlations and does not account for multicol-
linearity because Random Forest determines its variable importance. Therefore, we 
manually eliminate strongly correlated variables and filter out the variables with 
a Variance Inflation Factor ≤ 10 as proposed by previous studies (Mudassir et  al., 
2020). The final feature subset produced by this three-stage procedure contains the 
high importance variables with lower correlation and multicollinearity. We repeat 
this process for each of the intervals specified in Table 3 to ensure that each feature 
selected is local to each interval and is representative of the actual Bitcoin prices for 
that interval. Tables 4 and 5 present the final list of all selected features.
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2.4  Data Pre‑processing and transformation

A model’s forecasting performance can be enhanced by proper model design and 
data preprocessing, and the use of appropriate data, transformation, and feature engi-
neering approaches. Data pre-processing is critical in improving the model’s fore-
casting capabilities, as the model cannot be fitted directly to the raw data. According 
to Table 6, intervals 3 and 4 have an excess kurtosis greater than 3, indicating the 
presence of fat tails or extreme outlier occurrences in the data distribution. These 
outlier occurrences must be carefully treated.

The following steps are used to pre-process the data: (1) interpolating missing 
values, (2) eliminating outliers and reducing noise, and (3) transforming data to an 
appropriate scale. We use the cubic spline interpolation method to fill the missing 
observations, Hampel filter to detect and impute outliers, and Savitzky–Golay filter 
to minimize the noise in the Bitcoin time series. Following that, we apply a scaling 
pipeline to transform the data.

2.4.1  Hampel Filter for Removing Outliers

Outliers are anomalous observations whose values fall outside the expected range 
of data due to inherent random variability. Outlier detection and treatment is a 
vital step in enhancing data quality. We use the Hampel filter which is based on the 
Hampel identifier (Yao et al., 2019). The Hampel identifier is a reliable and efficient 
outlier detection technique that has been used in a variety of fields. The filter has 
a sliding window frame where each data observation is compared to the Median 
Absolute Deviation of the window (MAD). The central value in the local window is 
replaced with the median if the observation exceeds the MAD by ‘n’ times where ‘n’ 
is the threshold value. We choose a small window width of 15 and a MAD thresh-
old value of 3 based on the nature of our data, the number of observations, and the 
volatility of Bitcoin prices. A small window width helps to minimize the data loss 
during imputation by suppressing the effect of largest strength values for that win-
dow. Bitcoin markets tend to generate extreme returns and losses. In such a scenario, 
eliminating outliers would imply that critical information is disregarded. As a result, 
we do not remove detected outliers but rather impute them with rolling medians of 
the sliding window.

Table 3  Four different intervals 
considered for experimentation

Intervals Start date End date

Interval 1 April 1, 2013 July 31, 2016
Interval 2 April 1, 2013 April 30, 2017
Interval 3 April 1, 2013 December 31, 2017
Interval 4 April 1, 2013 November 6, 2021



1928 B. Tripathi, R. K. Sharma 

1 3

2.4.2  Savitzky–Golay Filter for Smoothing

Smoothing eliminates irregular oscillations from a signal and adjusts the data to 
minimize seasonal and cyclical components, resulting in a signal with less noise. We 
smoothen the data using Savitzky–Golay (SG) filter. The SG filter (Schafer, 2011) is 
a well-known method for reducing noise interference in signal processing. The pri-
mary benefit of the SG filter is that it retains the important characteristics of a sig-
nal, namely the area, phase, and amplitude of the signal spikes. The steps in the SG 
filtration method are as follows: (1) divide the signal into small time windows, (2) fit 
a polynomial of degree ’n’ to the signal values inside each window for curve fitting, 
(3) use the fitted curve’s midpoint as the new denoised data point, and (4) repeat the 

Table 4  The list of selected fundamental indicators from the three-stage feature selection process

Category Feature Interval 1 Interval 2 Interval 3 Interval 4

Search trends Google Search Trend Index ✓ ✓ ✗ ✓
Blockchain market signals Network value to transac-

tions
✗ ✓ ✗ ✓

Blockchain mining informa-
tion

Cost of transaction ✗ ✓ ✗ ✓
Cost percent of transaction 

volume
✓ ✗ ✗ ✓

Fees per transaction (US 
Dollar)

✓ ✗ ✓ ✓

Miners’ revenue (US 
Dollar)

✓ ✗ ✗ ✓

Total transaction fees (US 
Dollar)

✗ ✗ ✓ ✗

Output value per day ✓ ✓ ✓ ✓
Unique addresses used ✗ ✗ ✓ ✗

Macro-economic factors US Initial claims close 
value

✗ ✗ ✗ ✓

Table 5  The list of technical indicators selected from the three-stage feature selection procedure. These 
indicators are calculated from Bitcoin’s closing price

Category Feature Interval 1 Interval 2 Interval 3 Interval 4

Momentum indicator CHAIKIN oscillator ✓ ✓ ✗ ✗
Momentum indicator Market momentum (MOM) ✓ ✗ ✓ ✗
Oscillator TRIX ✓ ✓ ✓ ✗
Price volume indicator VWAP ✓ ✓ ✗ ✓
Momentum indicator MACD ✓ ✗ ✗ ✗
Oscillator RSI ✗ ✗ ✗ ✓
Oscillator PERCENT B ✗ ✗ ✗ ✓
Oscillator Williams %R ✗ ✗ ✗ ✓
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process for all data points in a sliding window. The assumption is that by applying 
this strategy, a lower degree polynomial can be used to produce a better fit.

We aim to smooth the Bitcoin price data and denote the smoothened value at kth 
time interval as Ē. This can be expressed as:

where m is the length of the window which must be an odd number, Ek+i is the noisy 
input signal at time k + i , Ci is the set of m convolution coefficients for i th smoothing 
and N is number of data points in smoothing window which must be equally spaced.

When the window length is increased, the cutoff frequency drops, resulting in 
a smoother signal and vice versa. A polynomial of a smaller degree, on the other 
hand, attenuates higher frequencies. The optimal window length should be deter-
mined by the type of data, and the extent of smoothing desired to avoid losing real 
signals. The degree (q) of the polynomial is chosen on the basis of its lowest error 
and best fit line. The criteria we employ in this study are consistent with prior work 
that focus on minimizing the Root Mean Square Error (RMSE) (Bi et al., 2020; Seo 
et al., 2018). We fixed the window size of m = 51 and after multiple trials of poly-
nomial degrees q = {1,3,5,7,9}, we choose a polynomial degree of 5 for our inves-
tigation as it yielded the least RMSE against the original signal. Table 7 shows the 
RMSE values for different polynomial degrees. It is worth noting that the mode 
controls the extension applied to the padded signal. We use mode = ’nearest,’ which 
indicates that the extension includes the input value closest to the current position.

2.4.3  Data Scaling and Transformation

After smoothing the data, we construct a pipeline in which we first apply zero mean 
and unit variance standard scaling. After that, we apply a robust scaler to remove the 
median and scale the data between the first and third quartiles, increasing the data’s 
tolerance for outliers. After pre-processing the data, we divided each interval into 
independent subsets for Training, Validation, and Testing in the ratio of 70:15:15. In 

(1)Ek =

m−1

2∑

i=
1−m

2

CiEk+i,
m + 1

2
≤ k ≤ N −

m − 1

2

Table 6  Descriptive statistics of Bitcoin’s daily closing prices

Interval Timestamp Min Count Max Mean Std Skewness Kurtosis

Interval 1 April 1, 2013 to 
July 31, 2016

68.40 1218 1237.60 381.34 212.61 0.96 0.94

Interval 2 April 1, 2013 to 
April 30, 2017

68.40 1491 1351.90 467.54 282.77 0.90 0.27

Interval 3 April 1, 2013 to Dec 
31, 2017

68.40 1736 19,345.50 1164.06 2342.75 4.60 24.37

Interval 4 April 1, 2013 to 
Nov 6, 2021

68.40 3142 65,979.10 8231.13 13,683.08 2.46 5.35
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general, there is no optimal strategy for deciding the data split ratio. There is usually 
no best strategy for determining the optimal split ratio amongst Train, validation, 
and test subsets. However, the training set must have sufficient number of samples to 
avoid a high variance during model training. The first 70% of the time series is uti-
lized for model training. The validation set (next 15% of the data) is used to evalu-
ate the model’s performance on the training data and reduce potential overfitting by 
adjusting the model’s hyperparameters. For reliable test dataset results, the hyper-
parameters must be fine-tuned on training and validation datasets. The remaining 
data is used as a test set to assess the predictive performance of the trained model on 
unseen data.

2.5  Prediction Models

2.5.1  Deep Artificial Neural Network

Deep Neural Networks (DANNs) are Artificial Neural Networks with three or more 
hidden layers between the input and output layers. DNNs are universal approxima-
tors (Hornik et al., 1989) for complicated non-linear interactions and can estimate 
any continuous function. Figure 2 shows the architecture of an ‘L’ layered DANN.

Each input is assigned a weight denoted by W = (�1, �2, …, �m) and then passed 
to a summation function that computes the weighted sum of all inputs. Then, a bias 
term bj is added to the weighted sum of network inputs to ensure that the activation 
function’s input is not zero, even if the input to the network and connections are 
zero. Therefore, each node in the hidden and output layers has a bias associated with 
it. If xj is the input to the node as the pre-activation at layer i can be expressed as:

(2)xj = x1�1,j + x2�2,j +⋯ + xm�m,j + bj =

m∑

k=1

xk�kj + bj

Table 7  Choice of an 
appropriate polynomial for 
Savitzky–Golay (SG) filter for 
noise reduction is based on 
lowest RMSE value

The values in bold represent the lowest error for the specified degree 
of the polynomial
The table shows the RMSE value of SG Filters with signals of dif-
ferent polynomial degrees while keeping a fixed window width of 51 
and mode = ’nearest’. Polynomial degree with lowest RMSE is cho-
sen
Source: Authors calculations

Polynomial degree (q) RMSE

1 1334.43
3 992.61
5 944.14
7 951.08
9 991.61
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where �kj denotes the connection strength between k and j, bj is the bias. The layers 
between input and output layers are not exposed to any external source, so they are 
called hidden layers. The activation function, δ takes xj as input and gives yj as out-
put. The output of the activation function that learns non-linear relations in the data 
is as follows:

This output is passed on to the other nodes of the neural network. In this study, 
the Bitcoin price data is given as an input to the DANN model with three hidden 
layers. The network output O with ( �1, �2, �3) and ( b1, b2, b3) as weights and biases 
of the network is calculated as follows:

The objective function we use for this study is Mean Square Error (MSE) which 
is defined as:

where  yk is the kth observation of y and ŷk is the predicted value, and n is the num-
ber of observations, r signifies the regularization used to avoid overfitting, and l 
denotes the neural network’s hyperparameters. The problem of training a DANN 
model on an input dataset can be described as follows:

where the objective is to minimize the training loss.

2.5.2  Long Short‑Term Memory

Long Short Term Memory (LSTM) algorithm was introduced as and solution 
to effectively learn long-time lag problems by addressing the vanishing gradients 
(Hochreiter & Schmidhuber, 1997).

(3)yj = δ
(
xj
)

(4)ŷi = O
(
𝜔
3
δ
(
𝜔
2
δ
(
𝜔
1x + b1

)
+ b2

)
+ b3

)

(5)MSE =
1

n

n∑

k=1

(
yk − ŷk

)2
+ r|l|2

(6)Minimize f
(
x⃗
)
= MSE

Fig. 2  Architecture of Deep Artificial Neural Network
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The visual representation of an LSTM network memory cell unit is depicted in 
Fig. 3.

An LSTM network is similar to a Recurrent Neural Network (RNN), except that 
memory blocks substitute the hidden layer’s summation units. The multiplicative gates 
of LSTM memory cells enable long-term storage and access of information, hence 
negating the issue of vanishing gradients. LSTM also maintains a memory cell ct and a 
hidden state vector ht. The LSTM can use the explicit gating mechanisms to read from, 
write to, or reset the cell at each time step. These gates referred to as input, output, and 
forget gates, are used to add or remove information in the network. A forward pass of 
an LSTM can be expressed by the following equations (Greff et al., 2017):

where ft is the forget gate that determines what information is retained from previous 
cell states and what is forgotten, �g is the sigmoid function, it is the activation vector 
of the input gate, ot is the output gate’s activation, ct is the memory cell state vector 
at time t, �c, �h denote the hyperbolic tanh functions, ht denotes the network’s output 

(7)ft = �g

(
Wf xt + Uf ht−1 + bf

)

(8)it = �g

(
Wixt + Uiht−1 + bi

)

(9)ot = �g

(
Woxt + Uoht−1 + bo

)

(10)ct = ft ∗ ct−1 + it ∗ �c

(
Wcxt + Ucht−1 + bc

)

(11)ht = ot ∗ �h

(
ct
)

Fig. 3  Basic structure of an LSTM neural network memory cell
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vector, W and U denote the weight and bias matrices for each gate. The symbol * 
denotes the elementwise product of the matrices.

2.5.3  Bi‑Directional LSTM

Bidirectional LSTM (BiLSTM) is an improved variant of LSTM network where the 
input sequence is encoded in both forward and backward directions. In a Bi-LSTM net-
work, following a forward pass, the input is reversed and fed into the LSTM network, 
enabling the network’s temporal structure to evaluate a two-way association of the 
input data. Figure 4 illustrates a BiLSTM with forward and backward layers. Forward 
layer is responsible for receiving past sequence data. The backward layer accepts future 
data from the input sequence. Finally, the outputs of both hidden layers are integrated.

The output of the BiLSTM model’s forward layer hft  and backward layer hr
t
 is given 

as follows (Liu et al., 2020):

where yt is the predicted value of tth sequence, where � and υ are the factors con-
trolling forward and backward LSTM, respectively. They adhere to the equivalence 
� + υ = 1. � is the softmax function.

2.5.4  CNN‑BiLSTM

CNN-BiLSTM is a neural network architecture that combines Convolutional Neural 
Networks (CNN) with Bi-LSTM. The input is sent to a convolutional layer in this 
model, which identifies the internal structures in the input sequence. Following that, 
a pooling layer decreases the data’s dimensionality. The pooling layer is connected 
to the Bi-LSTM and fully connected layers known as dense layers. The CNN-BiL-
STM model employed for this study is based on (Ju et al., 2019; Massaoudi et al., 
2020). The schematic architecture of a CNN-BiLSTM model is depicted in Fig. 5.

2.6  Hyperparameter Tuning

Following the identification of candidate models, the proper architecture for each 
model must be chosen. Manual network-tuning or conventional hyperparameter opti-
mization approaches such as Grid-Search and Randomized-Search are computation-
ally expensive and unfeasible in a multi-dimensional search space for real-world data.

We use Bayesian optimization technique (Snoek et al., 2012) to find the optimal 
configuration of hyper-parameters for all chosen models. Bayesian Optimization 
uses previously calculated hyperparameter values to guide the search for optimal 
parameters. We conduct the optimization experiments using Adaptive Experimenta-
tion library (AE) (Bakshy et al., 2018). AE is a well-known multi-objective optimi-
zation framework that has been used extensively within Facebook to conduct several 

(12)ht = �h
f

t + �hr
t

(13)yt = �
(
ht
)
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real-world online experiments. The primary benefit is its ability to cope successfully 
with black-box optimizations (those that lack mathematical expressions) and noisy 
functional evaluations. To identify the optimal network design, we optimize the fol-
lowing objectives concurrently: learning rate, dropout rate, number of hidden layers, 
neuron count per layer, batch size, activation function choice, and optimizer.

3  Experimental Settings

We conduct the experimentation using three types of inputs: (1) single feature input 
having close prices of lag 1,2, and 3, (2) input with fundamental indicators shown 
in Table 4, and (3) input with technical indicators listed in Table 5. We evaluate the 
following models to determine which is the best performer: DANN, LSTM, Bi-direc-
tional LSTM, and CNN-LSTM. These models are chosen after analyzing the perfor-
mance metrics and conducting multiple trials for each input type and model combina-
tion. We use DANN with technical and fundamental indicators as input data, LSTM 
with single feature input of lagged closing prices, and Bi-LSTM and CNN-LSTM with 
technical indicators as input data for our final experiment. We follow the same training 
approach for both next-day and multi-step price forecasts. We used early stopping and 
regularization to prevent overfitting. As a result, the results are stochastic. Therefore, 
we repeat the trials for 15 runs per model and average the results.

Fig. 4  Schematic diagram of a BiLSTM neural network

Fig. 5  Architecture of a CNN-BiLSTM neural network
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3.1  Parameter Settings

Table 8 shows the search space used in Bayesian Optimization to achieve the opti-
mum model configuration. We initially started with larger bounds in the search 
space but narrowed it down after running several pre-assessment experiments for 
model optimizations.

Table 9 summarizes the hyperparameters that Bayesian Optimization suggests for 
each model. After running Bayesian Optimization and getting the best performing 

Table 8  Bayesian Optimization parameters for search space exploration

Hyperpa-
rameter 
Name

Type Bounds Values Description

Learning 
rate

Range [0.00001, 
0.01]

– Learning rate to adjust the weights of the network

Dropout 
rate

Range [0.001, 
0.25]

– Dropout regularization rate to ignore randomly selected 
neurons

Number of 
Hidden 
Layers

Range [1, 5] – Number of hidden layers in the network

Neuron 
count per 
layer

Range [400, 
550]

– Number of neurons to be used in a layer

Batch size Choice – [8, 16, 32, 
64, 80]

Batch Size or the count of samples to be used in one pass

Activation 
function

Choice – [linear, 
relu]

Activation function for the network

Optimizer Choice – [rms, 
adam, 
adamx, 
sgd]

Optimizer for reducing the loss function

Table 9  Network architecture suggested by Bayesian Optimization

Source: Authors calculations

Hyperparameter DANN 
(fundamental 
indicators)

DANN 
(technical 
indicators)

BiLSTM 
(technical 
indicators)

LSTM (uni-
variate)

CNN-BiLSTM 
(technical 
indicators)

Learning rate 0.0019 0.0019 0.0039 0.0038 0.0013
Dropout rate 0.0251 0.0019 0.2000 0.2000 0.0055
Number of Hid-

den Layers
3 3 5 4 5

Neuron units per 
layer

497 497 467 467 467

Batch size 8 8 80 80 80
Activation func-

tion
Linear Linear Linear Linear Linear

Optimizer rms adamx rms rms adam
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variant, we further improve the model performance by applying regularization man-
ually. As noted in Eq.  (5), regularization helps to minimize the objective function 
and prevents overfitting.

Table 12 in the appendix presents the model performance results of each model 
for each type of input. For our final comparative analysis of the results, we selected 
the model with the best performance among the fundamental predictors and univari-
ate input types. In our pre-assessment experiments, models utilizing the technical 
indicators fared better than those utilizing the other two input types (fundamental, 
univariate). To present the most appropriate comparisons for all models, we rejected 
the LSTM model that delivered the worst performance for technical indicator inputs. 
Finally, we used the following input and model types for our final results:

1. Fundamental predictors: DANN
2. Technical indicators: DANN, BiLSTM, CNN-BiLSTM
3. Univariate input: LSTM

3.2  Performance Metrics

We use three metrics to assess and compare performance of all competing models:

1. Root mean square error (RMSE) =

�
1

N

N∑
k=1

�
yk − ŷk

�2

2. Mean absolute error (MAE) = 1

N

N∑
k=1

��yk − ŷk
��

3. Mean absolute percentage error (MAPE) = 1

N

N∑
k=1

���
yk−ŷk

yk

��� × 100

where  yk is the kth observation of y and ŷ the predicted y value given the model.
All experiments were conducted on a Windows 10 machine equipped with an 

Intel Core i5, 8 CPUs running at 2.30 GHz, 20 GB RAM, and an NVIDIA GeForce 
GTX 1050 GPU. The deep learning methods were implemented using Python 3.7.3 
64-bit, TensorFlow 2.6, and CUDNN10.1.105.

4  Results and Discussion

We run the experiments for each of the four periods separately for each model to get 
the forecast for the next day. Additionally, we perform a multi-step ahead forecast for 
the 3,5, and 7-day forecast horizons. The mean data for all performance measures are 
shown in Tables 10 and 11. Figure 6 shows the comparison of actual and predicted val-
ues for all competing prediction models for interval 4. As seen in Fig. 6 and Table 10, 
DANN with technical indicators is the best performing model for forecasting the next 
day closing prices for all four intervals. It implies that the model can learn local infor-
mation about each market phase and remain relatively robust in the face of changing 



1937

1 3

Modeling Bitcoin Prices using Signal Processing Methods,…

bitcoin market circumstances and variability in price. The fourth interval records rela-
tively higher values for all three-performance metrics than the first three intervals. It 
can be attributed to the significant price volatility throughout 2020–2021.

Table  11 summarizes the forecast for the next ‘N’ days for interval 4, ranging 
from April 1, 2013, to November 6, 2021. DANN with technical indicators is the 
most promising model for 3  days and 5 days ahead forecasting horizons with the 
lowest MAE, RMSE, and MAPE values. Additionally, it reports the lowest RMSE 
of 192.33 and MAPE of 2.25% for the 7th day Bitcoin price forecast. CNN-BiL-
STM, on the other hand, reports a marginally lower MAE value of 171.97 for the 
seventh day. It can also be observed from both Tables  10 and 11 that all models 
utilizing the technical indicators as input data outscore the DANN model with Fun-
damental indicators and LSTM model with lagged close prices. CNN-BiLSTM with 
technical indicators reports the next best scores overall for all time intervals and is 
fairly close to the results achieved by DANN with technical indicators. It is fair to 
infer that when technical indicators are used as input variables to the framework, the 
models yield better results. Other models outperform the univariate LSTM model, 
which uses only the lag prices as input data, suggesting that the model is inadequate 
to learn the chaotic nature of the Bitcoin time series.

Figure  7 shows the RMSE values for all time forecasting horizons for interval 
4. The DANN model with technical indicators as inputs reports the lowest RMSE 
scores for all four intervals, followed by CNN-BiLSTM. When the model’s fluc-
tuation throughout prediction horizons is considered, CNN-BiLSTM exhibits much 
more volatility between next-day (RMSE 162.58) and seventh-day (RMSE 341.12) 
forecasts. As a result, the DANN model using technical indicators as input is the 
best prediction model when model robustness across market phases and perfor-
mance metric variability are considered for all forecast horizons.

Furthermore, as shown in Table  9, Bayesian Optimization recommended a 
smaller network size with three hidden layers for the DANN model and five hid-
den layers for the CNN-BiLSTM model. In general, a smaller neural network size is 
preferable since it requires less computational time to train.

The results outperformed three previous benchmark studies with overlapping inter-
vals (Adcock & Gradojevic, 2019; Mallqui & Fernandes, 2019; Mudassir et al., 2020). 
When compared to Mudassir et al., (2020), who improved the results of the first two 
studies and reported an MAE of 39.5, an RMSE of 52.51, and a MAPE of 1.44 per-
cent for their best performing models, we observe that the DANN model with techni-
cal indicators improves each of the performance metrics by more than 40% for interval 
3, their most recent reported period. Similarly, when compared to Chen et al., (2021), 
the best performing model that reported MAE of 156.2296, an RMSE of 233.883 and 
MAPE of 2.2602 for their most recent period, our best reported DANN model outper-
forms the MAE by 28%, RMSE by 52% and MAPE by over 100%.

Table  4 illustrates that no other attribute has equal importance for all intervals 
besides output value per day. For the most recent interval 4, blockchain data, Google 
search trends, and US initial claims are the most significant fundamental attributes. 
Interval 4 contains the most impactful boom phase of 2020–2021. Table 4 reveals that 



1938 B. Tripathi, R. K. Sharma 

1 3

majority of the significant features for interval 4 are classified within the blockchain 
information category. Network value to transactions, fees per transaction, miner’s rev-
enue, and output value per day reached record highs in 2020–2021, corresponding to 
interval 4. As increasing number of users joined Bitcoin’s blockchain network after 
the 2017 surge, the network grew in size, and the influence of blockchain-related fac-
tors on the price also increased. Google search trends can be a good proxy for the 
public recognition and interest in Bitcoin over specific time intervals (more strongly in 

Table 10  Mean results of 15 runs for next-day closing price prediction using for all four intervals

Source: Authors calculations
The values highlighted in bold signify the lowest prediction error

Intervals Metrics DANN 
(fundamental 
indicators)

DANN 
(technical 
indicators)

BiLSTM 
(technical 
indicators)

LSTM (uni-
variate)

CNN-BiLSTM 
(technical 
indicators)

Interval 1 MAE 6.57 0.58 6.85 2.96 1.55
RMSE 6.76 0.80 8.62 4.39 2.14
MAPE 1.20 0.10 1.19 0.50 0.28

Interval 2 MAE 3.57 1.38 8.26 10.43 5.03
RMSE 5.02 1.61 9.79 11.58 6.47
MAPE 0.32 0.14 0.84 1.01 0.49

Interval 3 MAE 131.64 18.95 224.32 186.86 39.73
RMSE 198.66 52.51 269.04 324.68 73.46
MAPE 1.83 0.18 3.77 2.45 0.47

Interval 4 MAE 323.48 121.99 313.73 402.55 131.65
RMSE 397.23 153.93 373.61 511.49 162.58
MAPE 0.76 0.28 0.69 1.12 0.30

Table 11  Mean results of 15 runs for next ’N’ days closing price prediction for Interval 4

Source: Authors calculations
The values highlighted in bold signify the lowest prediction error

Horizons Metrics DANN 
(fundamental 
indicators)

DANN 
(technical 
indicators)

BiLSTM 
(technical indi-
cators)

LSTM (uni-
variate)

CNN-BiLSTM 
(technical 
indicators)

3 days MAE 343.38 125.81 329.27 413.94 147.65
RMSE 412.76 157.86 385.66 526.69 258.12
MAPE 2.96 2.20 2.14 1.99 0.60

5 days MAE 350.79 135.52 340.70 428.55 151.65
RMSE 426.13 176.02 395.57 551.49 321.12
MAPE 4.96 2.10 3.06 3.12 3.46

7 days MAE 361.79 181.72 344.06 472.55 171.97
RMSE 456.81 192.33 403.66 551.49 341.12
MAPE 4.13 2.25 3.37 4.12 4.72
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interval 4). Still, they may not consistently exhibit a strong correlation through all peri-
ods. Another significant feature in interval 4 is US initial jobless claims, which reflects 
the number of people who filed for unemployment insurance during the Covid19 pan-
demic. In the later parts of interval 4, strong Bitcoin surges and price drops can be 
linked to the unprecedented spike and subsequent correction in unemployment claims. 
Due to rising unemployment and stimulus funding during the pandemic and increased 
speculation, many institutional investors sought an alternative exposure to a market 
that promised a higher expected return.

Table 5 illustrates the significant features selected for different intervals. As seen, 
no single technical indicator is used for all periods. Due to the ever-changing nature of 
cryptocurrency markets, it makes sense that there cannot be a perfect technical indica-
tor that works for all market phases. The feature importance criteria for intervals 1 to 4 
vary according to market phases. Bitcoin halving event (Conway, 2021) is a major con-
tributor to the change in market dynamics across all four intervals. Halving reduces the 
rate at which new coins are mined, reducing the quantity of fresh supply and increas-
ing demand. Prior halving events were followed by substantial boom and bust cycles, 

Fig. 6  Predictive comparison of True and Predicted values of Bitcoin closing prices for all competing 
models for interval 4

Fig. 7  Root Mean Square (RMSE) distribution for 1d, 3d, 5d, 7d step ahead forecasts for interval 4
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resulting in overall higher prices than prior to the event. There have been three Bit-
coin halving events in 2013, 2016, and 2020. The third halving occurred during Covid 
19 in 2020, overlapping with interval 4. Furthermore, during interval 1 (2013–2016), 
the Bitcoin market was not severely affected by the additional factors of heightened 
regulation, large institutional holdings, systematic pump-and-dump networks, and a 
surge in competing cryptocurrencies. Nonetheless, as the market matured, these fac-
tors had a considerable influence on the price of Bitcoin throughout intervals 3 and 
4. The technical indicators selected in interval 4 are mostly oscillators which help 
determine how fast the price of the underlying asset changes. The feature selection 
process responds to fluctuating market phases. It identifies oscillators that capture the 
speed of price movement, which varies dramatically from interval 1 to interval 4 due 
to the reasons mentioned above. Prior research (Mallqui & Fernandes, 2019) recom-
mended using technical indicators such as Williams % R, MACD, and RSI to improve 
the accuracy of Bitcoin exchange price forecasting. The results of our feature selec-
tion process are consistent with their recommendation. Additionally, the feature selec-
tion procedure of each interval reveals that the Bitcoin price is influenced more by the 
most recent factors for a given interval than by the factors that worked in the preceding 
intervals. This finding is consistent with the findings of Wang and Hausken (2022), 
who observed that recent data has a greater impact on the price of Bitcoin than earlier 
data. Another important finding is that Bitcoin price keeps evolving for each interval 
as per the changing market dynamics. This corroborates the conclusions of Wang and 
Hausken (2022), who suggested that the Bitcoin price will continue to fluctuate until 
2100 owing to dynamic market movements.

5  Conclusions

This paper proposes a hybrid deep neural network architecture to accurately fore-
cast short-term Bitcoin exchange prices. The training approach utilizes univariate 
input of previous close prices and multi-variate feature inputs, namely financial and 
technical indicators. The predictive effect of each input strategy is systematically 
evaluated to determine the input-model combination that yields the best forecast-
ing accuracy. Experiments are conducted using deep learning models with varying 
characteristics, strengths, and limitations, namely the DANN, LSTM, BiLSTM, and 
CNN-BiLSTM models.

In the first phase, we proposed a three-step feature selection approach to provide a 
strong feature subset with no multicollinearity among predictor variables. After that, 
signal processing methods are used for outlier treatment and data smoothing. We 
imputed outliers with the Hampel filter and used the Savitzky–Golay (SG) filter to 
remove noise from the series. Additionally, we examined the effect of window length 
and the polynomial degree of the SG filter to choose the most optimum signal-to-noise 
tradeoff for our input series. Finally, we employed Bayesian Optimization to find the 
optimal hyperparameter configuration for designing the architecture of neural networks.
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We found that DANN outperformed its competitors when technical indicators 
were used as inputs. In addition, we discovered that DANN was the most reliable 
model with the lowest RMSE for multi-step ahead forecasting for the Nth day fore-
casting horizon during the most significant out-of-sample period from January 1, 
2021, to November 1, 2021, which recorded the highest volatility in Bitcoin’s his-
tory. Moreover, the findings confirm a previous assertion (Huang et al., 2019) that 
technical indicators can be more accurate forecasters of Bitcoin prices than funda-
mentals. Furthermore, the experimental findings support the hypothesis that no tech-
nical indicator can have the same predictive ability throughout all market stages. It 
implies that the best forecasting strategy needs to use the predictor variables compat-
ible with the market stage to achieve an optimal model performance.

The findings of this study have substantial implications for portfolio manag-
ers and algorithmic traders. Portfolio selection strategies seek an accurate price 
forecasting model that can avoid random market fluctuations and accurately 
forecast the price of each asset to maximize overall returns. The proposed fore-
casting method can be incorporated into a portfolio optimization system and 
utilized by portfolio managers to precisely forecast each asset’s price, contrib-
uting to higher portfolio returns. Moreover, algorithmic trading systems can 
utilize the forecasting technique to generate trading strategy recommendations 
for sell, buy, and hold decisions.

Another implication of this study is the hybrid method of outlier and noise 
removal may be of interest to scholars conducting similar studies in the future. 
Additionally, the hybrid methodology contributes to the sparse literature on 
applying signal processing techniques for data pre-processing of financial time 
series. Further, the architecture could be applied in various financial and non-
financial areas of research for feature selection, noise removal, and forecasting 
nonlinear data such as stock prices, electricity load, and weather. In the future, 
we intend to enhance the outlier detection and imputation procedures with more 
sophisticated methods. In place of Hampel filters, the approach for detecting 
outliers may employ more robust techniques, such as Autoencoder neural net-
works or Kalman filter. Effective treatments, such as Multiple Imputation (MI) 
and model-based imputation, can be used to enhance the outlier imputation. 
In addition, we intend to train the neural networks using the same framework 
for intraday algorithmic trading that uses high-frequency data and generates 
entry and exit rules for automatically placing buy and sell orders based on the 
forecast.

Appendix

See Appendix Table 12.
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