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Abstract
In this paper, the approximate solution u(x,  t) of the temporal fractional Black–
Scholes model involving the time derivative in the Caputo sense with initial and 
boundary conditions has been studied. This equation has the main part in defining 
the European option in the financial activities. Time discretization is performed 
by linear interpolation with a temporally �2−� order accuracy, and the Chebyshev 
collocation is based on the orthogonal polynomials used for spatial discretization. 
Additionally, the convergence and stability analysis of the specified methods are 
considered. Finally, the numerical solutions of some examples were obtained and 
compared with their analytical solutions that demonstrate the high accuracy and fea-
sibility of the proposed approach.

Keywords Time-fractional Black–Scholes equation · Chebyshev polynomials of the 
third kind · Linear interpolation · Collocation method · Convergence analysis

Mathematics Subject Classification 91G80 · 34K37 · 97N50

1 Introduction

An option is a contract that gives its owner the due to buy or sell a defined value of a 
special asset at a fixed value, called the exercise value, before or on a given date, known 
as the maturity date. An option can be applied before maturity at any moment, called 
the American option, or on the maturity, called the European option. Moreover, the 
option that offers the right to buy defines the call option, and the option that gets the 
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right to sell defines the put option. The pricing of an option is very important in finan-
cial derivatives to mitigate losses incurred. Therefore, we must introduce the manner to 
investigate the price of this option.

First of all, in 1973, three mathematicians named Black and Scholes (1973) and 
Merton (1973) presented a scheme to estimate the price of option named the Black-
Scholes model (BSM). The merchants of an option generally buy and sell the right of 
an option. Because of the accuracy in options trading and the success of the strategy in 
anticipating options prices, it eventually adds to large growth. This financial theory was 
introduced by applying fractional calculus of the stochastic system’s fractal assembly. 
This was done by replacing the fractional Brownian movement compared to its classic 
type. Many phenomena in nature such as the dynamical model (Kumar et al., 2020d), 
the epidemic of measles (Kumar et al., 2020e), transport phenomena (Tuan et al., 2020; 
Kumar et al., 2020b, 2020c), tumor cells (Kumar et al., 2020b), and population model 
(Kumar et al., 2020a) can be modeled with the help of these fractional calculations. 
The only problem with this type of equation is its analytical solution. So to solve the 
problem of the non-locality of fractional calculus, you have to use numerical solution. 
In recent years, many numerical methods have been proposed to solve fractional equa-
tions (Ren & Liu, 2019; Ren, 2022; AlAhmad et al., 2021; Alia et al. 2021). Below 
we will summarize an important part of this work. Compact finite difference design to 
discrete time variable with third Chebyshev polynomials to gain full discrete in Safdari 
et  al. (2020a), hybrid Laplace transform-finite difference method in Salama et  al. 
(2021), the fourth kind of shifted Chebyshev that presented by Safdari et al. (2020b), 
an extended cubic B-spline approximation in Akram et al. (2021), Hermite wavelet by 
kumar in Kumar et al. (2021), spectral method based on Legendre polynomials in 2019 
by singh in Singh et al. (2019a), the Fibonacci collocation method to solve two-dimen-
sional fractional-order reaction advection sub-diffusion model by Dwivedi and Singh  
(2021). Moreover, numerous methods in the spectral method and homotopy perturba-
tion method are also presented in papers (Verma et al., 2019;  Singh et al., 2019b; Gao 
et al., 2020).

Now, this type of field, because fractional calculus is a strong instrument to illustrate 
the inherited and retention characteristics in mathematics, has been used with the help 
of modeling in financial equations and can be used in detail to model the type of Euro-
pean or American options (Björk & Hult, 2005; Meerschaert & Sikorskii, 2011). In this 
regard, many authors have developed modeling for the option, which can be referred to 
in the following sample. The pricing of the European call option (Wyss 2000), specific 
state of the bi-fractional BSM (Liang et al., 2010), describing the value of European-
style derivatives (Cartea, 2013), and implementing spectral methods to develop BSM 
(Leonenko et al., 2013).

Let r be the risk-free interest rate, � is the volatility and t is the time in the year. Then 
in this paper, we consider TFBSM with expressed features that u(x, t) be the value of an 
option, as below
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and the boundary conditions as

where f(x, t) and r > 0 are the known term. Moreover, 0D�

t
 is the left Caputo frac-

tional derivative that is described as

That’s why we take a numerical approach. Of course, many numerical methods have 
been used to solve this problem over the years such as Legendre multiwavelet and 
the Chebyshev collocation method for pricing the double barrier option in Sobhani 
and Milev (2018) and (Mesgarani et al., 2020), respectively. Furthermore, a � finite-
difference structure and an implicit scheme in Zhang et  al. (2014) and (Song & 
Wang, 2013), respectively are used to price the option, In addition, in papers (Bhow-
mik, 2014; Chen et al., 2015; Zhang et al., 2016), other methods have been used to 
approximate this type of equation.

In this article, we try to act according to the following sections. We will obtain the 
time-discrete by using the quadratic interpolation and full scheme by the collocation 
method based on the third Chebyshev polynomials and investigate the convergence 
analysis in Sect. 2. Moreover, we will investigate the new approach by providing two 
numerical examples and will demonstrate the accuracy and efficiency of the method.

2  The discretization of time and space variable

In this section, we introduce and obtain the semi-discrete design as below. Considering 
uk = u(x, tk),� =

Γ(2−�)

2
�
2
, � = Γ(2 − �)(r −

1

2
�
2
), � = rΓ(2 − �),Fk

= Γ(2 − �)f (x, tk) 
and Sk,j = −Sk,j and applying the linear design for approximating 0D�

t
u(x, t) in the 

paper (Kumar et al., 2017), we obtain this scheme. For 0 < 𝛼 ≤ 1 , we get the step size 
� =

T

M
 and nodes of time is tk = k�, k = 0, 1,… ,M . Then we get

where C is a nonnegative constant, Rk ≤ CO(�
2−�

) and

The variational scheme can be got by omitted Rk in Eq. (3), as

(2)u(0, t) = �0(t), u(1, t) = �1(t),
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where Uk, k = 0, 1,… ,M in Eq. (3) is the approximate solution.
In the present discussion, we need to consider the convergence analysis of the 

method. As we will see later in the final section, according to the numerical results 
shown, this method is unconditionally stable and the convergence order of the 
method is O(�

2−�
) . Suppose Hn is the functional space that is defined as follows

where the measurable function space in this relation is L2(Ω) in Ω that is square 
Lebesgue integrable. To prove the convergence and stability of the method, we need 
to convert Eq. (5) as follows. Let us assume that Ûj is an approximate solution of Eq. 
(5). So by using the error function �k = Ûk

− Uk, k = 0, 1,… ,M , we get

Theorem 1 The generated design by Eq. (5) is unconditionally stable.

Proof First of all, we know in Eq. (6) that ⟨ ��k
�x
, �k⟩ = 0 and also we have 

⟨ �2�k
�x2

, �k⟩ = −⟨ ��k
�x
,
��

k

�x
⟩ . As a result we get

Using the Cauchy–Schwarz inequality and 1 + ��� ≥ 1 , we get

Now, we apply the principle of mathematical induction on k as the numerator of 
induction. If k = 1 , we get

Regarding Lemma 5 of the paper (Safdari et  al., 2020b), we can write 
−1 < Sk,j < 0 ⟹ 0 < Sk,j < 1, j = 0, 1, , 2,… , k − 1 . So it results
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Assume the mathematical induction is true for all k = 1, 2,… ,M − 1 . Now we prove 
it for k = M . One obtains

Being used again with Lemma 5 of the paper (Safdari et  al., 2020b) is 

−2 < SM,0 +

M−1∑
j=1

SM,j < 1 , we have

This means that the method is stable.   ◻

Theorem 2 The order of convergence of the semi-discrete method (5) is O(�
2−�

).

Proof From Eqs. (3) and (5), we define �k = uk − Uk, k = 1, 2,… ,M and subtract 
Eq. (3) from Eq. (5) leading to

Without loss of generality and using the method of proving the previous theorem, 
we get

It is quite evident that

Because 1

1+���
≤ 1 and ‖�0‖ = 0 . So we conclude that the convergence order is 

O(�
2−�

) in the case of smooth solutions in time direction.   ◻

Now, to get the discretization of space in Eq. (5), we use the shifted Chebyshev pol-
ynomials of the third kind (SCPTK) Vi(x), i = 0, 1,… as
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In space variable with domain [0, 1], we can apply the first N + 1-terms of SCPTK 
as the following expansion of u(x, tj).

where the unknown coefficients is �i(j) that are defined as following.

Now, to approximate the space derivative of the first and second order, �
luM

�xl
, l = 1, 2 , 

in Eq. (5), we use features of the basis SCPTK and Eq. (9) as

where coefficients N�

i,k,l
 is defined as

To get the linear system, we need to take the roots of SCPTK as collocation points 
i.e. {xs}

N+1−�

s=1
 and substitute Eq. (11) in Eq. (5), we have

where the unknown coefficients in this system are �j
i
= �i(tj) that must be obtained. 

To determine the uncharted coefficients �i
i
, i = 0, 1, 2,… , we need two extra condi-

tions such as the boundary conditions to turn the above relation into a linear system 
with N + 1 equations and N + 1 unknowns. Heed that by replacing Eq. (9) in Eq. (2), 
we get the boundary conditions as

V
∗

i
(x) = �i

i−1∑
k=0

k∑
�=0

Υi,k,� × xk−� , x ∈ [0, 1], i = 1, 2,… ,

�i =
(22i−2)Γ(i − 0.5)

i(2i − 2)!
, Υi,k,� =

(−1)�2−ki!Γ(i + k)

k!(k − �)!�!(i − k − 1)Γ(k + 0.5)
.

(9)u(x, tj) =

N∑
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�i(tj)V
∗

i
(x),

(10)�i(tj) =
2

� ∫
1

0

√
x

1 − x
u(x, tj)V

∗

i
(x)dx, j = 0, 1,… ,M.

(11)
�
�
(u(x, tj))

�x�
=
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�
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Moreover, we obtain the initial condition �0
i
 with combining u(x, 0) = �(x) and Eq. 

(10).

3  Numerical Results

The current form of value barrier choice driven by a time-fractional BSM structure, 
which is one the most interesting ideas in the financial sector, has now been applied 
inside this part. Furthermore, using the numerical technique of TFBSM, the effi-
ciency of the system of the proposed methodology is demonstrated. We denote the 
order as CO that is calculated as follows.

in which Ei+1 and Ei are errors In accordance with mesh sizes 2M and M. The theo-
retical study is supported by the estimated findings.

Example 3.1 Consider the following problem with the homogeneous boundary 
conditions

that u(x, t) = (t + 1)2x2(1 − x) is the exact solution and the known parameters are 
� = 0.25, p =

1

2
�
2, q = r − p, r = 0.05, � = 0.7 and

(13)
N∑
i=0

(−1)i�
j

i
= �0(tj),

N∑
i=0

(2i + 1)�
j

i
= �1(tj), j = 1, 2,… ,M.

CO = log2

(
Ei+1

Ei

)
,

⎧⎪⎨⎪⎩

0D
𝛼

t
u(x, t) = p

𝜕
2u(x,t)

𝜕x2
+ q

𝜕u(x,t)

𝜕x
− ru(x, t) + f (x, t),

u(x, 0) = x2(1 − x), 0 < x < 1,

u(0, t) = u(1, t) = 0,

Table 1  The error and order for Example 3.1 with N = 7 at T = 1

M � = 0.2 � = 0.7

L
∞

CO L
2

CO L
∞

CO L
2

CO

100 5.51053E−6 1.18971E−5 1.93766E−4 4.16664E−4

200 1.64335E−6 1.74556 3.54817E−6 1.7613 7.89903E−5 1.29457 1.69866E−4 1.29449
400 4.87127E−7 1.75427 1.05182E−6 1.75419 3.21516E−5 1.29678 6.91432E−5 1.29674
800 1.43688E−7 1.76136 3.10268E−7 1.76130 1.30750E−5 1.29808 2.81188E−5 1.29805
TOC 1.8 1.8 1.3 1.3
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We demonstrate the error and order of this example in Table  1 at T = 1 with 
N = 7 that is seen the convergence order is O(�

2−�
) and it’s also related to the TOC 

(temporal order of convergence). Furthermore, as the number M increases, the error 
diminishes. one can deduce from the thorough findings in Table 2 that the results 
are remarkably similar to those of De Staelen and Hendy (2017) and Golbabai 
et  al. (2019). Furthermore, reasonably precise findings are provided with a very 
small space size. When T = 1 , we draw the absolute error and approximate solu-
tion in Fig. 1 and can deduce from this figure that the numerical method has a close 
accuracy.

Example 3.2 Take the TFBSM with nonhomogeneous boundary conditions as a sec-
ond instance as follows.

where u(x, t) = (t + 1)2(x3 + x2 + 1) is the exact solution and f(x,  t) is got by using 
this solution. Moreover, the known values are p = 1, q = r − p, r = 0.5 and � = 0.7

This question’s conclusions have also been reported in Tables  3, 4 and Fig.  2. 
Table  3 includes the new approach with compact finite difference manner (De 
Staelen & Hendy, 2017) and radial basis functions based on finite-difference con-
struction (Golbabai et al., 2019) to produce successful results for the methodology. 
Furthermore, the order is demonstrated in Table 4 with N = 5 at T = 1 that this is 
supported the theoretical predictions. The numerical finding and absolute error that 

f (x, t) = (

2t2−�

Γ(3 − �)

+

2t1−�

Γ(2 − �)

)x2(1 − x) − (t + 1)2[p(2 − 6x)

+ q(2x − 3x2) − rx2(1 − x)].

⎧⎪⎨⎪⎩

0D
𝛼

t
u(x, t) = p

𝜕
2u(x,t)

𝜕x2
+ q

𝜕u(x,t)

𝜕x
− ru(x, t) + f (x, t),

u(x, 0) = x3 + x2 + 1, 0 < x < 1,

u(0, t) = (t + 1)2, u(1, t) = 3(t + 1)2,

Table 2  The error and convergence order for Example 3.1 at T = 1

M Method of De Staelen and 
Hendy (2017) for N = 150 and 
� = 0.7

Method of Golbabai et al. 
(2019) for N = 150 and 
� = 0.7

Present method  for N = 5 
and � = 0.7

L
∞

CO L
∞

CO L
∞

CO

10 3.5000E−3 5.821E−3 4.42002E−4

20 1.4400E−3 1.3300 2.304E−3 1.3372 1.83665E−4 1.26698
40 5.9000E−4 1.3150 9.081E−4 1.3421 7.55780E−4 1.28104
80 2.4000E−4 1.3400 3.572E−4 1.3461 3.09290E−4 1.28900
160 9.5000E−5 1.3600 1.411E−4 1.3400 1.26173E−5 1.29356
320 3.8000E−5 1.3800 5.387E−5 1.3892 5.13775E−6 1.29619
TOC 1.3 1.3 1.3
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Fig. 1  The error (left-side) and approximate solution (right-side)) for Example 3.1 at T = 1

Table 3  The error and convergence order for Example 3.2 at T = 1

Method of De Staelen and 
Hendy (2017)

Method of Golbabai et al. 
(2019)

Present method

for N = 150 and � = 0.7 for N = 150 and � = 0.7 for N = 5 and � = 0.7

M L
∞

CO L
∞

CO L
∞

CO

10 5.2000E−3 6.345E−3 5.57865E−3

20 2.0700E−3 1.3300 2.507E−3 1.3372 2.28382E−3 1.28850
40 8.3000E−4 1.3150 9.957E−4 1.3421 9.31965E−4 1.29314
80 3.3000E−4 1.3400 4.011E−4 1.3461 3.79591E−4 1.29587
160 1.3000E−4 1.3600 1.591E−4 1.3400 1.54434E−4 1.29750
320 5.0000E−4 1.3800 6.274E−5 1.3892 6.27869E−5 1.29849
TOC 1.3 1.3 1.3

Table 4  The order, L
2
 and L

∞

 for Example 3.2 with N = 5 at T = 1

M � = 0.2 � = 0.9

L
∞

CO L
2

CO L
∞

CO L
2

CO

15 2.21233E−4 5.11642E−4 7.74010E−3 1.78837E−2

30 6.74102E−5 1.71453 1.55897E−4 1.71454 3.61570E−3 1.09809 8.35412E−3 1.09809
60 2.03274E−5 1.72945 4.70100E−5 1.72955 1.68791E−3 1.09904 3.89993E−3 1.09904
120 6.07965E−6 1.74136 1.40600E−5 1.74137 7.87711E−4 1.09950 1.82001E−3 1.09950
240 1.80645E−6 1.75083 4.17763E−6 1.75084 3.67547E−4 1.09974 8.49219E−4 1.09974
TOC 1.8 1.8 1.1 1.1
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as seen as the approximation solution is approaching the exact solution are displayed 
in Fig. 2.

4  Conclusion

Rather than the construction of the integer-order derivative, the model’s frac-
tional-order derivative’s “worldview" contributes to extremely exact and numeri-
cal approaches. For this reason, we considered the time-fractional Black-Scholes 
equation in this paper and presented a numerical scheme to solve that. Because for 
0 < 𝛼 ≤ 1 the fractional derivative of Caputo and Riemann-Liouville coincide, then 
It is already replaced in the TFBSM. To discretize in a time sense, the authors used 
a linear interpolation with the accuracy order of O(�

2−�
) . Then by using the Cheby-

shev collocation manner based on the third kind, we explained how to obtain a fully 
discrete numerical method. Moreover, the unconditional stability and the order of 
the temporal discrete are also stated. Two numerical examples with exact solutions 
are chosen to prove the resolution and convergence order of the numerical model, 
and the numerical result has shown the reliability of the new plan.
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