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Abstract
We propose a general recursive algorithm for the computation of the conditional

probability function of the quadratic exponential model for binary panel data given

the total of the responses, which is a sufficient statistic for the individual intercept

parameter. This recursion permits to implement conditional and pseudo-conditional

maximum likelihood estimators of the parameters of this model, and related models

such as the dynamic logit model, even when one or more statistical units are

observed at many occasions. In this way we solve a typical problem in dealing with

distributions with a complex normalizing constant. The advantage in terms of

computational load with respect to standard techniques is assessed by simulation

and illustrated by an application based on a popular dataset about brand loyalty.

Keywords Clustered data � Conditional maximum likelihood estimation �
Longitudinal data � Newton-Raphson algorithm

1 Introduction

Binary choice models for longitudinal binary data play an important role in the

recent statistical and econometric literature (Diggle et al., 2002; Hsiao, 2014). The

simplest models of this type are based on a logit or probit transformation of the

probability of the binary response being equal to 1, which is assumed to depend on

individual intercepts, a linear function of the covariates, and, possibly, the lagged

response variable. These models can be formulated following a random- or a fixed-
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effects approach, according to whether individual intercepts are treated as random

variables or fixed parameters to be estimated. The main feature of the latter

approach is that it does not require distributional assumptions for the individual-

specific parameters, with advantages in terms of robustness of the conclusions that

may be reached on the basis of the model.

The Maximum Likelihood (ML) estimator for the parameters of a binary fixed-

effects model for panel data is however inconsistent because of the incidental

parameters problem (Neyman & Scott, 1948; Lancaster, 2000). The incidental

parameters are the individual intercepts and a relevant bias in their estimation arises

whenever sample units are observed over a small number of time occasions T, so
that the ML estimator is based only on a few observations per unit. Moreover, this

bias spreads to the estimator of the regression parameters, as they are not

informationally orthogonal to the incidental parameters, and is of order OðT�1Þ.
The literature proposes two different approaches to overcome the methodological

issues arising within the ML estimation of fixed-effects binary choice models. A

first approach is focused on reducing the order of the bias of the ML estimator to

OðT�2Þ, by means of bias corrections of the parameter estimator (Hahn & Newey,

2004; Fernández-Val, 2009; Hahn & Kuersteiner, 2011; Dhaene & Jochmans, 2015)

or by using a modified likelihood (Bester & Hansen, 2009; Arellano & Hahn, 2016;

Bartolucci et al., 2016) or score function (Carro, 2007). This strategy is very general

and can be adapted to both probit and logit as well as to other nonlinear models. It

can also accommodate dynamic formulations that include the lagged response

variable among the covariates, which is sensible for a variety of economic

applications. However, these estimators exhibit poor finite-sample performance

when T is small, a situation that is likely to occur in practice with rotated surveys or

even with long panels, if these are highly unbalanced.

The second approach is represented by conditional inference (Andersen,

1970, 1971), which is based on conditioning the joint probability of the response

configuration provided by each subject on a sufficient statistic for the specific

intercept, thereby eliminating the incidental parameters problem. Differently from

the bias-corrected ones, the resulting Conditional Maximum Likelihood (CML)

estimators are consistent as the sample size, n, goes to infinity with T fixed. The

viability of this strategy is however tied to the existence of reasonable sufficient

statistics for the incidental parameters for the specific model formulations.

With binary panel data, CML estimation has been applied to the static logit

(Chamberlain, 1980; Arellano & Honoré, 2001; Wooldridge, 2010) and Quadratic

Exponential (QE) model (Cox, 1972a; Bartolucci & Nigro, 2010). Traditionally,

CML for binary clustered data has also been adopted in psychometrics to obtain

consistent item estimates in the popular Rasch model (1960, 1961) and related latent

class models (Lindsay et al., 1991; Agresti, 2003). Conditional inference has also

been applied to generalized additive mixed models (Zhang & Davidian, 2004).

More recently, simplified versions based on pairwise conditional likelihood

approximations have been used to estimate the homophily parameters of network

formation models by Charbonneau (2017) and Jochmans (2018), while Graham
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(2017) advocates the use of CML to estimate the parameters of the tetrad logit for

undirected networks; see also de Paula (2020) for a recent review.

Sufficient statistics for the individual intercepts are not available in the case of

the Dynamic Logit (DL) model, for which a weighted CML estimator has been

derived by Honoré & Kyriazidou (2000) and a Pseudo-CML (PCML) estimator

based on an approximating QE model has been proposed by Bartolucci & Nigro

(2012); see also Bartolucci & Pennoni (2007).

From a practitioner perspective, CML estimators are appealing for economic

applications based on small-T panel data, as well as on long, but highly unbalanced,

longitudinal surveys. However, CML estimators require the maximization of

peculiar likelihood functions, whose computation in the standard way implies an

excessive burden when T is large, thus limiting the applicability of these techniques

that may become infeasible in certain situations. One way to overcome these

computational issues is to exploit recursive algorithms as we here propose.

Several works deal with the recursive computation of the log-likelihood function

for a variety of models in the conditional inference framework. The seminal work of

Howard (1972) shows that the conditional likelihood function of the model

proposed by Cox (1972b) is a symmetric function and it can be written recursively.

Another popular application of recursive algorithms is relative to the analysis of

epidemiological stratified case-control studies. Smith et al. (1981) propose an

algorithm for the CML estimation of the coefficients of a logistic regression and,

since this procedure becomes computationally challenging for large strata, Krailo

and Pike (1984) derive a recursive computation of the log-likelihood and its

derivatives. Moreover, Levin (1987) extends this result to models for multinomial

outcomes. Other recursive solutions come from Item Response Theory (Hambleton

& Swaminathan, 1986; Bartolucci et al., 2015), where Andersen (1972) and

Gustafsson (1980) show a recursive structure for the conditional estimating

equations of the Rasch model (Rasch 1960).

In this paper, we propose a general recursive algorithm to compute the

conditional likelihood of a series of models for binary data in an efficient way, so

that the CML approach may be easily applied even when a large number of

observations is available for a few sample units. The main contribution is

represented by the generalization of the result by Krailo and Pike (1984) to the QE

model and its extensions to accommodate the dynamic formulations recently

proposed by Bartolucci & Nigro (2010), Bartolucci & Nigro (2012), and Bartolucci

et al. (2018), whose computation would otherwise be unfeasible with a large time

dimension. Furthermore, we implement the proposed recursive algorithm in the

cquad package1, which provides software routines for the CML estimation of QE

model and the related aforementioned contributions (Bartolucci & Pigini, 2017).

A Monte Carlo simulation shows how the proposed algorithm avoids the

computational burden of the QE model for large-T datasets. This broadens the

applicability of conditional inference for dynamic models in many economic

applications. As an example, this work includes an empirical application concerning

1 Available for the software R (https://cran.r-project.org/package=cquad) and Stata (https://ideas.repec.

org/c/boc/bocode/s458852.html, https://github.com/fravale/cquadr).

123

Recursive computation of the conditional probability function... 531

https://cran.r-project.org/package=cquad
https://ideas.repec.org/c/boc/bocode/s458852.html
https://ideas.repec.org/c/boc/bocode/s458852.html
https://github.com/fravale/cquadr


brand loyalty based on real data on yogurt purchases, which is a popular example in

economics (Chintagunta et al., 2001).

The present work is organized as follows. Section 2 illustrates the main

theoretical aspects of the models and the conditional estimation framework.

Section 3 shows the proposed recursive algorithm for the QE model and its

extensions. The performance of the algorithm in terms of computational time is

evaluated by the Monte Carlo simulation in Sect. 4 and the analysis of brand loyalty

data is illustrated in Sect. 5. Finally, Sect. 6 provides the main conclusions.

2 Model Assumptions

This section first introduces the main theoretical aspects of the fixed-effects logit

and QE model. Then, the CML estimator for both models is presented.

2.1 Static Logit Model

Consider a sample of n individuals, where each individual i, i ¼ 1; . . .; n, is

observed at Ti time occasions, with Ti allowed to vary across individuals in order to

account for unbalanced panel structures.

Let yit be the binary response for subject i at occasion t and xit a column vector of

covariates, where t ¼ 1; . . .; Ti, with Xi ¼ ðxi1; . . .; xiTiÞ being the matrix collecting

all such covariates. Consider the logit formulation

pðyitjai;XiÞ ¼
exp yit ai þ x0itb

� �� �

1þ exp ai þ x0itbð Þ ;
ð1Þ

where ai is the individual intercept, capturing the time-constant subject-specific

unobserved heterogeneity, and b collects the common slope parameters.

As mentioned in Sect. 1, the conditional inference approach (Andersen, 1970)

has been applied to derive the conditional likelihood for the static logit model by

Chamberlain (1980). Consider the joint probability of the individual response

configuration yi ¼ ðyi1; . . .; yiTiÞ
0
that, under the logit model, is

pðyijai;XiÞ ¼
YTi

t¼1

pðyitjai;XiÞ ¼
exp yiþai þ

PTi
t¼1 yitxit

� �0
b

h i

QTi
t¼1 1þ exp ai þ x0itbð Þ½ �

; ð2Þ

where yiþ ¼
PTi

t¼1 yit is the total score, which can be proved to be a sufficient

statistic for ai. In this regard, consider the probability of observing a given total

score for the logit model so that, conditional on ai and Xi, we have

pðyiþjai;XiÞ ¼

X

z:zþ¼yiþ

exp zþaið Þ exp
XTi

t¼1

ztxit

 !0

b

" #

QTi
t¼1 1þ exp ai þ x0itbð Þ½ �

;
ð3Þ

where the numerator corresponds to the sum of all possible binary response vectors
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z ¼ ðz1; :::; zTiÞ
0
such that zþ ¼

PTi
t¼1 zt equals yiþ. The probability of yi conditional

on ai, Xi, and yiþ is the ratio between expressions (2) and (3), so that

pðyijai;Xi; yiþÞ ¼
exp yiþaið Þ exp

PTi
t¼1 yitxit

� �0
b

h i

QTi
t¼1 1þ exp ai þ x0itbð Þ½ �

�
QTi

t¼1 1þ exp ai þ x0itb
� �� �

P
z:zþ¼yiþ

exp zþaið Þ exp
PTi

t¼1 ztxit
� �0

b
h i

¼ q1ðXi; yiÞP
z:zþ¼yiþ

q1ðXi; zÞ
¼ pðyijXi; yiþÞ;

ð4Þ

where

q1ðXi; yiÞ ¼ exp
XTi

t¼1

yitx
0
itb

 !

: ð5Þ

Notice that the conditional probability pðyijXi; yiþÞ no longer depends on the

individual intercept.

On the basis of the previous results we obtain the conditional log-likelihood

function

‘ðbÞ ¼
Xn

i¼1

1f0\yiþ\Tig log pðyijXi; yiþÞ;

with 1f�g being the indicator function, which is maximized by a Newton-Raphson

algorithm in order to obtain a CML estimate.

Starting from a initial guess for the parameter vector, denoted by bð0Þ, at step h
the algorithm updates the parameter vector obtained at the previous step through the

usual rule

bðhÞ ¼ bðh�1Þ � o2‘ðbðh�1ÞÞ
obob0

" #�1
o‘ðbðh�1ÞÞ

ob
;

where

o‘ðbÞ
ob

¼
Xn

i¼1

1f0\yiþ\Tig
o log pðyijXi; yiþÞ

ob
; ð6Þ

o2‘ðbÞ
obob0

¼
Xn

i¼1

1f0\yiþ\Tig
o2 log pðyijXi; yiþÞ

obob0
: ð7Þ

This is repeated until convergence obtaining the CML estimate b̂. Note also that

minus the Hessian matrix obtained at convergence may be used to estimate the

variance-covariance matrix for b̂, and then its standard errors, in the usual way.
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It is important noting that computation of pðyijXi; yiþÞ is feasible only with

moderate values of T ¼ maxi Ti because expression (4) involves a sum over the

binary vectors z with a fixed total score, the number of which quickly grows in T, as
will be detailed in Sect. 4. This is a typical problem of computation of a normalizing

constant that occurs in many statistical contexts as, just to mention one of the many

relevant cases, in the models for spatial data described in the seminal paper of Besag

(1974).

2.2 Dynamic Models

The DL model is a straightforward extension of the static logit model in (1) as it

includes as a regressor the lagged dependent variable, yi;t�1, along with the

exogenous covariates and the individual intercept. The probability of the response

variable under the DL model is

pðyitjai;Xi; yi0; . . .; yi;t�1Þ ¼
exp yit ai þ x0itbþ yi;t�1c

� �� �

1þ exp ai þ x0itbþ yi;t�1c
� � ; ð8Þ

where the parameter c measures the so-called state dependence (Heckman, 1981),

which represents how much the experience of a certain event affects the probability

of experiencing the same event in the future. Here the conditioning set also includes

the past values of the response variable, with the initial observation yi0 assumed to

be known.

The probability of the response configuration yi under the DL model is

pðyijai;Xi; yi0Þ ¼
exp yiþai þ

PTi
t¼1 yitxit

� �0
bþ yi�c

h i

QTi
t¼1 1þ exp ai þ x0itbþ yi;t�1c

� �� � ; ð9Þ

where yi� ¼
PTi

t¼1 yi;t�1yit. Under the DL model, the total score is no longer a

sufficient statistic for the individual parameter ai. Therefore, Chamberlain (1993)

derives a CML estimator for the DL model only for the case with no covariates and

when T ¼ 3. Moreover, Honoré & Kyriazidou (2000) propose CML estimation of

the DL model with explanatory variables by exploiting a weighted conditional log-

likelihood. However, their strategy rules out the use of trending regressors and

dummies; the resulting estimator has a rate of convergence that is slower than
ffiffiffi
n

p
.

Among the dynamic formulations for binary panel data, the QE model closely

resembles the DL model, as it allows us to include individual specific effects and the

lagged dependent variable among the covariates. This model directly formulates the

joint probability of yi as

pðyijdi;Xi; yi0Þ ¼
exp yiþdi þ

PTi
t¼1 yitxit

� �0
g1 þ yiTi /þ x0iTig2

� �
þ yi�w

h i

P
z exp zþdi þ

PTi
t¼1 ztxit

� �0
g1 þ zTi /þ x0iTig2

� �
þ zi�w

h i :

Here di denotes the individual specific effects, g1 is the vector of regression

parameters, and w measures the true state dependence. In this formulation, / and g2
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are considered nuisance parameters. The denominator is based on the sum extended

to all the possible binary response vectors z, while zi� ¼ yi0z1 þ
PTi

t¼2 zt�1zt.
Differently from the DL model, in the QE model the total score yiþ is a sufficient

statistic for the individual intercept di, so that the conditional likelihood function is

based on the individual contributions

pðyijXi; yi0; yiþÞ

¼
exp

PTi
t¼1 yitxit

� �0
g1 þ yiTi /þ x0iTig2

� �
þ yi�w

h i

P
z:zþ¼yiþ

exp
PTi

t¼1 ztxit
� �0

g1 þ zTi /þ x0iTig2
� �

þ zi�w
h i :

ð10Þ

The CML estimator can easily be obtained by Newton-Raphson algorithm. Even in

this case, though, estimation is unfeasible when T is large for same reasons illus-

trated above for the static logit model.

2.3 Simplified, Modified, and Approximating QE Models

We now focus on three models deriving from the QE model in Eq. (10). These are:

(i) the simplified QE model outlined in Bartolucci & Pigini (2017); (ii) the modified

QE model put forward in Bartolucci et al. (2018); and (iii) the approximating QE

version for the DL model proposed by Bartolucci & Nigro (2012). A common

feature of these models is that the conditional probability for an individual response

configuration can be written as

pðyijXi; yi0; yiþÞ ¼
qjðXi; yiÞP

z:zþ¼yiþ
qjðXi; zÞ

; j ¼ 2; 3; 4; ð11Þ

respectively.

The simplified QE model assumes that the regression parameters are the same for

all time occasions, implying a reduction of the set of parameters in Eq. (10) from

ðg1;/; g2;wÞ to ðg;wÞ, so that the probability in Eq. (11) can be written as a function
of

q2ðXi; yiÞ ¼ exp
XTi

t¼1

yitx
0
itgþ yi�w

 !

: ð12Þ

The modified QE model closely resembles the simplified QE version. The main

difference is that, in this case, the association rule between the outcome variable and

its lag takes into account the pairs of consecutive observations that are equal,

regardless of their value being 0 or 1. This formulation is such that a more powerful

test for H0 : w ¼ 0 (absence of state dependence) can be obtained with respect to the

QE and simplified QE models.

Under the modified QE model, the conditional probability of yi given Xi and yi0
can be written as a function of
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q3ðXi; yiÞ ¼ exp
XTi

t¼1

yitx
0
itgþ ~yi�w

 !

; ð13Þ

where ~yi� ¼
PTI

t¼1 1fyit ¼ yi;t�1g is the number of consecutive observations equal

each other, being other 0 or 1. The corresponding denominator in (11) is the sum

over all the z such that zþ ¼ yiþ of q3ðXi; zÞ, which will be a function of

~zi� ¼ 1fzi1 ¼ yi0g þ
P

t[ 1 1fzit ¼ zi;t�1g.
Finally, Bartolucci & Nigro (2012) show that the QE model can serve as an

approximation of the DL model. The approximating formulation is based on a first-

order Taylor expansion of (9) around a ¼ �a, b ¼ �b, and c ¼ 0. The main advantage

is that the approximating QE model admits the total scores as sufficient statistics for

the individual intercepts. For this model, the conditional probability of yi is a

function of

q4ðXi; yiÞ ¼ exp
XTi

t¼1

yitx
0
itb�

XTi

t¼1

�rityi;t�1cþ
XTi

t¼1

yi�c

 !

; ð14Þ

where �rit ¼ expð�ai þ x0it
�bÞ= 1þ expð�ai þ x0it

�bÞ
� �

.

The model parameters are estimated by PCML on the basis of two steps: first, �rit
is computed using a CML estimate for �b and �ai equal to its ML estimate under the

static logit model; second, the estimate of ðb0; cÞ0 is obtained by maximizing the

conditional log-likelihood based on (14).

Overall, all models here discussed, included the static logit model, may be

expressed in the form (11) with different definitions of function qjðXi; yiÞ,
j ¼ 1; . . .; 4, that are defined in Eqs. (5), (12), (13), and (14), respectively.

3 Recursive Computation of the Conditional Likelihood Functions

A common shortcoming of the aforementioned models is the computational burden

in evaluating the normalizing constants
P

z:zþ¼yiþ
qjðXi; zÞ, j ¼ 1; . . .; 4. This section

first introduces the recursive algorithm by Krailo & Pike (1984) for the static logit

model. Then it shows the proposed extension for evaluating the normalizing

constants for the QE formulations, namely the simplified, modified and approxi-

mating QE models.

3.1 Recursion for the Static Logit Model

Consider the denominator of the conditional probability in (4), which is given by
X

z:zþ¼yiþ

q1ðXi; zÞ; ð15Þ

where q1ðXi; zÞ is defined in (5).

From the computational point of view, the sum above represents a limitation to

the applicability of the CML estimator, especially with large T, as will be discussed
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is Sect. 4. However, as noted by Howard (1972), the computation of the sum in

Eq. (15) can be performed recursively. Define now for individual i function ft;sð�Þ,
indexed by the time dimension t ¼ 1; . . .; Ti and by the total score denoted

s ¼ 0; . . .; yiþ, as

ft;sð/Þ ¼
X

z:zþ¼s

exp
Xt

u¼1

zu/u

 !

;

where now z ¼ ðz1; . . .; ztÞ0 such that
Pt

u¼1 zu ¼ s and /u ¼ x0iub. Further, define

/ ¼ ð/1; . . .;/tÞ0. Note that ft;sð/Þ corresponds to the quantity defined in (15) for

t ¼ Ti and s ¼ yiþ, that is,
X

z:zþ¼yiþ

q1ðXi; zÞ ¼ fTi;yiþð/Þ: ð16Þ

By exploiting the symmetric function properties of ft;sð/Þ, it can be computed

recursively in this way:

1. for t ¼ 1, let

f1;0ð/Þ ¼ 1, f1;1ð/Þ ¼ expð/1Þ, and 0 f2;2 ¼ f1;2 þ f1;1 otherwise;

2. for t ¼ 2; . . .; Ti, compute

ft;sð/Þ ¼ ft�1;sð/Þ þ ft�1;s�1ð/Þ expð/tÞ; s ¼ 0; . . .; t: ð17Þ

The recursive structure can be exploited for the computation the first- and the

second-derivatives of this function as well. In turn by exploiting (16), these

derivatives are used to compute the score vector and the Hessian matrix in (6) and

(7), which are involved in the Newton-Raphson algorithm for the maximization of

this function. For the first and second derivatives and for h; j ¼ 1; . . .; Ti,
s ¼ 0; . . .; t, and t ¼ 1; . . .; Ti, we use the notation

f
ðhÞ
t;s ð/Þ ¼

oft;sð/Þ
o/h

; and f
ðh;jÞ
t;s ð/Þ ¼ o2ft;sð/Þ

o/ho/j

;

respectively. How to compute these derivatives by a recursion for the static logit, as

well as for the other QE models, is described in ‘‘Appendix’’.

3.2 QE Models

The methodology outlined in the previous section for the static logit model cannot

be applied directly to the QE models illustrated in Sect. 2.3. In the following, we

propose recursive algorithms to deal with these models.

Similarly to the static logit model, given the time dimension, the total score, and

the initial observation, the sum at the denominator of Eq. (11) may be expressed as a

function of type
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gt;a;sð/;wÞ ¼ gt;a;s;v¼0ð/;wÞ þ gt;a;s;v¼1ð/;wÞ; ð18Þ

where the index v corresponds to the value of the t-th element of the vector z, the
initial observation is a ¼ 0; 1, while s ¼ 1; . . .; t and t ¼ 1; . . .; Ti are the total score
and the length of the vector configuration yi, respectively. This general structure can
be easily adapted to the three QE models defining different functions gt;a;sð/;wÞ that
may be recursively computed. The main difference with respect to the static case is

that, further to the total score and the time dimension, we take into account not only

the initial observation but also the t-th element of vector z.

3.2.1 Simplified QE Model

Consider the simplified version of the QE model described by (12) and the

corresponding normalizing constant expressed as the denominator of (11). In

general, we define a single element of the sum at the rhs of Equation (18) as

gt;a;s;vð/;wÞ ¼
X

z:zþ¼s;zt¼v

exp
Xt

u¼1

zu/u þ az1 þ
Xt

u¼2

zu�1zu

 !

w

" #

;

where /u ¼ x0iug. Following the formulation above, the recursion to compute

gt;a;s;vð/;wÞ is based on the following steps:

1. for t ¼ 1, let

g1;a;s;vð/;wÞ ¼
1; s ¼ v ¼ 0;

expð/1 þ awÞ; s ¼ v ¼ 1;
0; otherwise;

8
<

:

with a ¼ 0; 1;
2. for t ¼ 2; . . .; Ti, recursively compute the quantities

gt;a;s;vð/;wÞ

¼

1; s ¼ 0; v ¼ 0;

gt�1;a;s;0ð/;wÞ þ gt�1;a;s;1ð/;wÞ; s ¼ 1; . . .; t � 1; v ¼ 0;

gt�1;a;s�1;0ð/;wÞ expð/tÞ
þgt�1;a;s�1;1ð/;wÞ expð/t þ wÞ; s ¼ 1; . . .; t; v ¼ 1;

0; otherwise:

8
>>>>>><

>>>>>>:

ð19Þ

3.2.2 Modified QE Model

Following the same strategy as above, the recursion for the modified QE model can

be adopted by defining
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gt;a;s;vð/;wÞ ¼
X

z:zþ¼s;zt¼v

exp
Xt

u¼1

zu/u þ 1fz1 ¼ ag þ
Xt

u¼2

1fzu ¼ zu�1gÞw�:
 "

The recursion for computing gt;a;s;vð/;wÞ is as follows:

1. for t ¼ 1, let

g1;a;s;vð/;wÞ ¼ exp½ð1� aÞw�; s ¼ v ¼ 0; expð/1 þ awÞ; s ¼ v ¼ 1; 0; otherwise;:f

with a ¼ 0; 1;
2. for t ¼ 2; . . .; Ti, compute

gt;a;s;vð/;wÞ

¼

gt�1;a;s;0ð/;wÞ expðwÞ
þgt�1;a;s;1ð/;wÞ; s ¼ 0; . . .; t � 1; v ¼ 0;

gt�1;a;s�1;0ð/;wÞ expð/tÞ
þgt�1;a;s�1;1ð/;wÞ expð/t þ wÞ; s ¼ 1; . . .; t; v ¼ 1;

0; otherwise:

8
>>>>>><

>>>>>>:

ð20Þ

3.2.3 Approximating QE Model

Finally, for the approximating QE model leading to Eq. (14), we define

gt;a;s;vð/;wÞ ¼
X

z:zþ¼s;zt¼v

Xt

u¼1

zu/u þ
Xt

u¼1

muzu�1 þ
Xt

u¼1

zu�1zu

 !

c

" #

;

where z0 ¼ a, /u ¼ x0iub, and mu ¼ ��riuc.
Exploiting the same structure of Eq. (18), the recursive computation of

gt;a;s;vð/; cÞ can be performed as follows:

1. for t ¼ 1, let

g1;a;s;vð/; cÞ ¼
expðm1aÞ; s ¼ v ¼ 0

exp½/1 þ aðm1 þ cÞ�; s ¼ v ¼ 1;

0; otherwise;

8
><

>:

with a ¼ 0; 1;
2. for t ¼ 2; . . .; Ti, compute
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gt;a;s;vð/; cÞ

¼

1; s ¼ 0; v ¼ 0;

gt�1;a;s;0ð/; cÞ
þgt�1;a;s;1ð/; cÞ expðmtÞ; s ¼ 1; . . .; t � 1; v ¼ 0;

gt�1;a;s�1;0ð/; cÞ expð/tÞ
þgt�1;a;s�1;1ð/; cÞ expð/t þ cþ mtÞ; s ¼ 1; . . .; t; v ¼ 1;

0; otherwise:

8
>>>>>>>><

>>>>>>>>:

ð21Þ

4 Computational Complexity

We now focus on the comparison between the different methods to evaluate the

conditional probability of a response configuration in terms of computational

complexity. For what concerns the standard method based on Equation (11) applied

for each unit i ¼ 1; . . .; n, this is based on a sum extended to all the vectors z, whose
number depends on the time dimension and on the total score, as given by the

binomial coefficient k ¼ Ti
yiþ

	 

. When Ti is large (e.g., T � 15), the number of

operations k may become huge as well as the number of operations required for the

computation of the normalizing constant. Figure 1 shows the total number of

vectors z for a small grid of values of Ti and yiþ. Obviously, when the number k of
such vectors becomes too large, the computation of (11) is no longer feasible.

Fig. 1 Numbers of vectors z (in thousands) as a function of Ti and yiþ
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The proposed recursion overcomes the computational problem described above.

Again, the operations required depend on Ti and yiþ, but their order is reduced

because basic sums and products are computed, at most, for each value of the total

score s in {1; . . .; t}, and repeated for t times, with t varying in {1; . . .; Ti}. This
aspect results in a significant difference in terms of computational time.

For a clearer comparison between different methods, the computational time of

the proposed recursive algorithm is empirically evaluated by a simple Monte Carlo

simulation that is described in this section. In this regard consider that experiments

are run on a computer with n. 2 Intel Xeon CPU E5-2640 v4 2.40GHz, 250GB of

RAM, with Debian GNU/Linux ‘‘bullseye’’/sid as operating system. Results are

obtained using R 4.0.3 and the custom code included in the cquad package.

The simulation design is similar to the one adopted by Honoré & Kyriazidou

(2000). In particular, data are generated from the DL model according to expression

(8), where xit is an exogenous regressor following a Gaussian distribution with zero

mean and variance p2=3, the parameter b is equal to 1, and the state dependence

parameter c is equal to 0.5. Individual effects are generated as ai ¼ 1
4

P3
t¼0 xit and

the Monte Carlo replications are 50. Furthermore, the initial observation has

distribution

pðyi0jai; xi0Þ ¼
exp yi0 ai þ xi0bð Þ½ �
1þ exp ai þ xi0bð Þ :

Finally, we consider n ¼ 250 individuals observed for a different number of time

occasions. In order to simplify the interpretation of the results, the study is based on

Fig. 2 CPU time of the recursion: QE models
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simulated datasets of 249 subjects observed for Ti ¼ 5 time occasions and only one

subject, the last, observed for T [ 5 time occasions, where T is allowed to vary in

different ranges.

Within the simulation study we measure how the CPU time required by the

Newton-Raphson algorithm for CML estimation varies according to the time

dimension of the panel. In this case we evaluate T in a grid between 16 and 100 with

steps of 4. For each value of T, the average CPU time taken by the maximization

over the replications are shown in Fig. 2. The CPU time obviously increases in

T and it is similar for the three models considered.

With a second experiment, we aim at comparing the required time for the

computation of the log-likelihood function with both the standard algebraic

operation and using the recursive algorithm.

In this case, we make use of a single draw from the simulation design described

above, with Ti ¼ 5 for i ¼ 1; . . .; 249. The outcome for the 250-th subject is

arbitrarily given by a sequence that alternates 0 and 1, so as to rule out the

randomness given by the data generating process and, at the same time, to maximize

the number of vectors, namely k, controlling for the total score. Further, the initial

observation is set to 1 and T ranges in f8; . . .; 18g.
Figures 3, 4, and 5 represent the computational time required for the log-

likelihood maximization of the simplified, modified, and approximating QE models,

respectively. In terms of computational load, the results for the modified QE model

are entirely comparable with those for the simplified QE model, while the

Fig. 3 CPU time comparison of algebraic and recursive computation: Simplified QE
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Fig. 4 CPU time comparison of algebraic and recursive computation: Modified QE

Fig. 5 CPU time comparison of algebraic and recursive computation: Approximating QE
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approximating QE is more demanding since it consists in a two-step CML

estimator.

Each figure reports the time required by the algebraic operations (‘‘Standard’’)

and the recursion (‘‘Recursive’’), in which we can see that the former exhibits an

exponential pace as T approaches 18 while the latter remains stable. The time taken

by the algebraic computation of the ‘‘one-step’’ QE models grows up to 1 minute

while the PCML routine takes more than 4 minutes for T ¼ 18. For what concerns

the algorithm, the computational time is always lower than one second for all the

time dimensions considered.

5 Application: Brand Loyalty

The proposed methodology is applied to real data on consumers loyalty to two

different dominant yogurt brands. The analysis here performed replicates the

example provided by Chintagunta et al. (2001). Differently from the original work,

though, the present application is based on a sample dataset provided by A.C.

Nielsen2 that contains information about yogurt purchases made by individuals

observed for a period of about two years. This dataset has already been used by Jain

et al. (1994).

Purchases concern four brands: Yoplait, Dannon, Nordica, and Weight. As in the

original work, we only keep purchases of the two brands with the largest market

share in this dataset, namely Dannon and Yoplait. The sample consists of an

unbalanced panel of 100 consumers, for a total of 1,788 observations. Time

occasions differ among individuals and range between a minimum of 1 and a

maximum of 161.

The response variable for the model considered is set to 1 when a consumer

chose Dannon. We also include two exogenous explanatory variables. The first one

is the log-difference between the prices of the two products (Price). The second one

(Featured) is a categorical variable built as the difference between two dummy

variables, one per brand, recording whether the brand is advertised in newspapers.

We expect that a small relative price and advertisement should have a positive

impact on the demand of the goods and then on the probability of a purchase for a

brand. Moreover, stickiness in consumer habits require to be taken into account by

means of a dynamic specification of the model, that is, by including the lagged

dependent variable in the set of covariates. Chintagunta et al. (2001) discuss

different model specifications but only the DL model allows us to properly include

individual fixed effects and account for true state dependence.

The models here considered are extremely useful to represent consumers

behavior and their loyalty to a brand (Chintagunta et al., 2001). First of all, from a

statistical perspective, it is straightforward to represent brand choices as a binary

variable being 1 or 0 according to whether a product is chosen or not. Secondly, the

panel structure of the data allows us to take into account some individual time-

constant unobserved characteristics. Since consumers are observed for a relatively

2 Data are publicly available in the R package Ecdat (https://cran.r-project.org/web/packages/Ecdat/

index.html).
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short span of time, in which their purchases are recorded, from a theoretical

perspective it is reasonable to consider some individual unobservable characteristics

as time-invariant.

In the original example, Chintagunta et al. (2001) specify the DL model and

consider different estimation approaches: the ML estimator of the pooled model

(with no individual intercepts), the CML estimator where the lagged dependent

variable is treated as exogenous, the weighted CML (WCML) estimator by Honoré

& Kyriazidou (2000), and different random-effects specifications. The proposed

algorithm allows us to extend the analysis to QE models as well. In particular, here

we formulate the brand choice model as a simplified QE model and as the QE

approximation of the DL model. The parameters of these model formulations are

estimated by CML and PCML, respectively. Estimation results are reported in

Table 1, together with the pooled logit model, the CML, and the WCML.

We observe that the estimated coefficients greatly differ across the proposed

model specifications. In general, all the signs are coherent with economic theory, so

that an increase of the relative price decreases the probability of a purchase for the

brand Dannon. The variable Featured seems to be not statistically significant.

Furthermore, it is interesting to see how the estimated level of state dependence is

sensitive to the specification of the unobservables. In the pooled model, the

estimated state dependence parameter is the largest among all the considered

specifications. Including heterogeneity dramatically decreases its magnitude, which

slightly differs between the DL estimated by CML and PCML, due to the different

estimation strategies. Anyway, the Pooled and the CML models are likely to provide

biased estimates because the first ignores the potential heterogeneity and in both

models the dynamic specification is not accounted for. Finally, we observe that the

computational time for the QE models are about twenty times larger with respect to

the DL ones because of the larger complexity of the dynamic formulations

considered.

Finally, it is worth stressing that there is no way to compare the computational

time required by the algorithm for the QE models and their standard matrix

Table 1 Estimation results: DL and QE models for brand choice

DL DL* DL Sim. QE App. QE

Pooled ML CML WCML** CML PCML

Dannont�1 4.634 1.715 1.778 2.118 2.326

(0.183) (0.317) (0.208) (0.221) (0.389)

Price -3.373 -3.565 -3.264 -3.264 -3.390

(0.384) (0.771) (0.654) (0.514) (0.702)

Featured 0.362 0.739 -0.121 0.440 0.723

(0.275) (0.490) (0.456) (0.317) (0.438)

Time (sec) \1 1.399 2.384 31.996 35.335

* Lagged dependent variable treated as exogenous.

** Bandwidth parameter for WCML, c ¼ 10
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computation since, in the latter case, the estimation in not feasible due to the large

numbers of time occasions.

6 Conclusions

This work provides a novel way to compute the conditional likelihood functions of

the QE model and its extensions. By means of a recursive algorithm, the standard

computational burden of algebraic calculations is relieved for applications that

involve a panel dataset with large time dimensions.

In particular, the application of the algorithm here proposed is relevant in

empirical works making use of unbalanced panel datasets. The presence of subjects

observed for a few time occasions makes the conditional inference approach more

appealing than the ML estimator, which is inconsistent with fixed T. At the same

time, the proposed algorithm dramatically limits the burden of computing the

conditional log-likelihood, which can be sizable even if only few subjects are

observed for a long time span.

A Monte Carlo experiment shows how the proposed algorithm outperforms

standard computation and it should enlarge the applicability of the considered

models. In this regard, an application to real data concerning brand loyalty has been

proposed with the additional interest of showing a set of results that would have

been otherwise impossible, providing practitioners with a wider range of estimation

tools for empirical analysis.

Finally, the conditional inference approach can be easily extended to ordered

data, as a fixed-effects ordered logit model can be estimated by relying on a set of

fixed-effects binary logit models, which are referred to binary variables with

categories obtained from a dichotomization of the original responses (Chamberlain,

1980; Baetschmann et al., 2015).

Appendix: Derivatives

In the following, we report the first and second derivatives for the relevant functions

of the proposed recursive algorithm for the static logit, simplified, modified, and

approximating QE models. These derivatives are then used to compute the score

vector and Information matrix involved in the steps of the Newton-Raphson

algorithm, in order to maximize the conditional log-likelihoods.

Static Logit Model

Concerning computation of the derivatives presented in Sect. 3.1 we can exploit the

same recursive structure presented in Eq. (17), so that:

1. for t ¼ 1 the first derivatives are
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f
ðhÞ
1;0 ð/Þ ¼ 0; h ¼ 1; . . .; Ti;

f
ðhÞ
1;1 ð/Þ ¼

expð/1Þ; h ¼ 1;

0; otherwise;

�

and the second derivatives are

f
ðh;jÞ
1;0 ð/Þ ¼ 0; h; j ¼ 1; . . .; Ti;

f
ðj;jÞ
1;1 ð/Þ ¼

expð/1Þ; h ¼ j ¼ 1;

0; otherwise;

�

2. for t ¼ 2; . . .; Ti and s ¼ 1; . . .; t, are the first derivatives are

f
ðhÞ
t;0 ð/Þ ¼ 0; h ¼ 1; . . .; Ti;

f
ðhÞ
t;s ð/Þ ¼

f
ðhÞ
t�1;sð/Þ þ f

ðhÞ
t�1;s�1ð/Þ expð/tÞ; h ¼ 1; . . .; t � 1;

ft�1;s�1ð/Þ expð/tÞ; h ¼ t;

0; otherwise;

8
><

>:

and second derivatives are

f
ðh;jÞ
t;0 ð/Þ ¼ 0; h; j ¼ 1; . . .; Ti;

f
ðh;jÞ
t;s ð/Þ ¼

f
ðh;jÞ
t�1;sð/Þ þ f

ðh;jÞ
t�1;s�1ð/Þ expð/tÞ; h; j ¼ 1; . . .; t � 1;

f
ðhÞ
t�1;s�1ð/Þ expð/tÞ; h ¼ 1; . . .; t � 1; j ¼ t

f
ðjÞ
t�1;s�1ð/Þ expð/tÞ; h ¼ t; j ¼ 1; . . .; t � 1;

ft�1;s�1ð/Þ expð/tÞ; h ¼ j ¼ t;

0; otherwise:

8
>>>>>>><

>>>>>>>:

Simplified QE Model

As for the static model, define now the first and the second derivatives

g
ðhÞ
t;s ð/Þ ¼

ogt;sð/Þ
o/h

;

g
ðh;jÞ
t;s ð/Þ ¼ o2gt;sð/Þ

o/ho/j

;

respectively, where these quantities are computed for h; j ¼ 1; . . .; Ti, s ¼ 0; . . .; t,
and t ¼ 1; . . .; Ti and where we further define /Tiþ1 ¼ w in order to include the

derivative with respect to the state dependence parameter which is an additional

argument of our function further to the Ti elements of /.

Regarding the first derivatives of the function defined in (19), we exploit the

same recursion:
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1. when t ¼ 1 compute

g
ðhÞ
1;a;s;vð/;wÞ ¼

expð/1 þ awÞ; h ¼ 1;

a expð/1 þ awÞ; h ¼ Ti þ 1;

�

for a ¼ 0; 1 and s ¼ v ¼ 1 and g
ðhÞ
1;a;s;v ¼ 0 in all other cases;

2. when t ¼ 2; . . .; Ti consider the following cases:

• for s ¼ 1; . . .; t � 1 and v ¼ 0:

g
ðhÞ
t;a;s;vð/;wÞ ¼ g

ðhÞ
t�1;a;s;0ð/;wÞ þ g

ðhÞ
t�1;a;s;1ð/;wÞ; h ¼ 1; . . .; t � 1; Ti þ 1;

• for s ¼ 1; . . .; t, v ¼ 1,

g
ðhÞ
t;a;s;vð/;wÞ

¼

g
ðhÞ
t�1;a;s�1;0ð/;wÞ expð/tÞ þ g

ðhÞ
t�1;a;s�1;1ð/;wÞ expð/t þ wÞ; h ¼ 1; . . .; t � 1;

gt;a;s;vð/;wÞ; h ¼ t;

g
ðhÞ
t�1;a;s�1;0ð/;wÞ expð/tÞ þ g

ðhÞ
t�1;a;s�1;1ð/;wÞ expð/t þ wÞ

þgt�1;a;s�1;1ð/;wÞ expð/t þ wÞ; h ¼ Ti þ 1;

8
>>>>>>>>><

>>>>>>>>>:

• g
ðhÞ
t;a;s;vð/;wÞ ¼ 0 in all other cases.

Regarding the second derivatives, we have:

1. when t ¼ 1 compute
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g
ðh;jÞ
1;a;s;vð/;wÞ ¼

expð/1 þ awÞ; h ¼ j ¼ 1;

a expð/1 þ awÞ; h ¼ 1; j ¼ Ti þ 1;

a expð/1 þ awÞ; h ¼ Ti þ 1; j ¼ 1;

a expð/1 þ awÞ; h; j ¼ Ti þ 1;

8
>>><

>>>:

for a ¼ 0; 1 and s ¼ v ¼ 1 and g
ðhÞ
1;a;s;v ¼ 0 in all other cases.

2. when t ¼ 2; . . .; Ti consider the following cases:

• for s ¼ 1; . . .; t � 1 and v ¼ 0,

g
ðh;jÞ
t;a;s;vð/;wÞ ¼ g

ðh;jÞ
t�1;a;s;0ð/;wÞ þ g

ðh;jÞ
t�1;a;s;1ð/;wÞ; h; j ¼ 1; . . .; t � 1; Ti þ 1;

• for s ¼ 1; . . .; t, v ¼ 1,

g
ðh;jÞ
t;a;s;vð/;wÞ

¼

g
ðh;jÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ; h; j¼1; . . .; t�1;

g
ðhÞ
t;a;s;vð/;wÞ; h¼1; . . .; t�1; j¼ t;

g
ðh;jÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ;

þg
ðhÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ; h¼1; . ..;t�1; j¼Tiþ1;

g
ðjÞ
t;a;s;vð/;wÞ; h¼ t; j¼1;. . .; t;Tiþ1;

g
ðh;jÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ

þg
ðjÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ; h¼Tiþ1; j¼1;. . .; t�1

g
ðhÞ
t;a;s;vð/;wÞ; h¼Tiþ1; j¼ t;

g
ðh;jÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ

þg
ðhÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞþg

ðjÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ

þgt�1;a;s�1;1ð/;wÞexpð/tþwÞ; h¼Tiþ1; j¼Tiþ1;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

• g
ðh;jÞ
t;a;s;vð/;wÞ ¼ 0 in all other cases.

Modified QE Model

Regarding the first derivatives of the function reported in Eq. (20), we exploit the

same recursion:

1. with t ¼ 1

• for s ¼ v ¼ 0 compute
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g
ðhÞ
1;a;s;vð/;wÞ

¼
0; h ¼ 1;

ð1� aÞ exp½/1 þ ð1� aÞw�; h ¼ Ti þ 1;

�

• for s ¼ v ¼ 1 compute

g
ðhÞ
1;a;s;vð/;wÞ

¼
expð/1 þ awÞ; h ¼ 1;

a expð/1 þ awÞ; h ¼ Ti þ 1;

�

• g
ðhÞ
1;a;s;v ¼ 0 in all other cases.

2. with t ¼ 2; . . .; Ti consider the following cases:

• for s ¼ 0; . . .; t � 1 and v ¼ 0,

g
ðhÞ
t;a;s;vð/;wÞ

¼

0; h ¼ 1; . . .; t � 1;

g
ðhÞ
t�1;a;s;0ð/;wÞ expðwÞ þ gt�1;a;s;0 expðwÞ

þg
ðhÞ
t�1;a;s;1ð/;wÞ; h ¼ Ti þ 1;

8
>>>><

>>>>:

• for s ¼ 1; . . .; t, v ¼ 1,

g
ðhÞ
t;a;s;vð/;wÞ

¼

g
ðhÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðhÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ

þgt�1;a;s�1;0ð/;wÞexpð/tÞ
þgt�1;a;s�1;1ð/;wÞexpð/tþwÞ; h¼1;...;t;

g
ðhÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðhÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ

þgt�1;a;s�1;1ð/;wÞexpð/tþwÞ; h¼Tiþ1;

8
>>>>>>>>><

>>>>>>>>>:

3. g
ðhÞ
t;a;s;vð/;wÞ ¼ 0 in all other cases.

Regarding the second derivatives, we have:

1. for t ¼ 1 and v ¼ 0 compute
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g
ðh;jÞ
1;a;s;vð/;wÞ ¼ ð1� aÞ exp½ð1� aÞw�; h; j ¼ Ti þ 1;

2. for t ¼ 1 and v ¼ 1 compute

g
ðh;jÞ
1;a;s;vð/;wÞ ¼

expð/1 þ awÞ; h ¼ j ¼ 1;

a expð/1 þ awÞ; h ¼ 1; j ¼ Ti þ 1;

a expð/1 þ awÞ; h ¼ Ti þ 1; j ¼ 1;

a expð/1 þ awÞ; h; j ¼ Ti þ 1;

8
>>><

>>>:

for a ¼ 0; 1 and s ¼ v ¼ 1 and g
ðhÞ
1;a;s;v ¼ 0 in all other cases.

3. for t ¼ 2; . . .; Ti consider the following cases:

• for s ¼ 1; . . .; t � 1 and v ¼ 0,

g
ðh;jÞ
t;a;s;vð/;wÞ

¼

g
ðh;jÞ
t�1;a;s;0ð/;wÞ þ expðwÞ þ g

ðh;jÞ
t�1;a;s;1ð/;wÞ h ¼ j ¼ 1; . . .; t � 1;

g
ðh;jÞ
t�1;a;s;0ð/;wÞ þ expðwÞ þ g

ðh;jÞ
t�1;a;s;1ð/;wÞ

þg
ðhÞ
t�1;a;s;0ð/;wÞ expðwÞ; h ¼ 1; . . .; t � 1; j ¼ Ti þ 1;

g
ðh;jÞ
t�1;a;s;0ð/;wÞ þ expðwÞ þ g

ðh;jÞ
t�1;a;s;1ð/;wÞ

þg
ðjÞ
t�1;a;s;0ð/;wÞ expðwÞ; j ¼ 1; . . .; t � 1; h ¼ Ti þ 1;

g
ðh;jÞ
t�1;a;s;0ð/;wÞ þ expðwÞ þ g

ðh;jÞ
t�1;a;s;1ð/;wÞ

þg
ðhÞ
t�1;a;s;0ð/;wÞ expðwÞ þ g

ðjÞ
t�1;a;s;0ð/;wÞ expðwÞ

þgt�1;a;s;0ð/;wÞ expðwÞ; j ¼ h ¼ Ti þ 1:

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

• for s ¼ 1; . . .; t, v ¼ 1,
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g
ðh;jÞ
t;a;s;vð/;wÞ

¼

g
ðh;jÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ; h;j¼1;...;t�1;

g
ðhÞ
t;a;s;vð/;wÞ; h¼1;...;t�1; j¼ t;

g
ðh;jÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ;

þg
ðhÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ; h¼1;...;t�1; j¼Tiþ1;

g
ðjÞ
t;a;s;vð/;wÞ; h¼ t; j¼1;...;t;Tiþ1;

g
ðh;jÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ

þg
ðjÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ; h¼Tiþ1; j¼1;...;t�1

g
ðhÞ
t;a;s;vð/;wÞ; h¼Tiþ1; j¼ t;

g
ðh;jÞ
t�1;a;s�1;0ð/;wÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ

þg
ðhÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞþg

ðjÞ
t�1;a;s�1;1ð/;wÞexpð/tþwÞ

þgt�1;a;s�1;1ð/;wÞexpð/tþwÞ; h¼Tiþ1; j¼Tiþ1;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

• g
ðh;jÞ
t;a;s;vð/;wÞ ¼ 0 in all other cases.

Approximating QE model

Regarding the first derivatives of the function in Eq. (21), compute:

1. with t ¼ 1,

• for s ¼ v ¼ 0 and a ¼ 0; 1,

g
ðhÞ
1;a;s;vð/; cÞ ¼

a expðam1Þð��ri1Þ; h ¼ Ti þ 1;

0; otherwise;

�

• for for s ¼ v ¼ 1 and a ¼ 0; 1,

g
ðhÞ
1;a;s;vð/; cÞ ¼

expð/1 þ aðm1 þ cÞÞ; h ¼ 1;

a expð/1 þ aðm1 þ cÞÞð1� �ri1Þ; h ¼ Ti þ 1;

�

• g
ðhÞ
1;a;s;v ¼ 0 in all other cases.

2. for t ¼ 2; . . .; Ti consider the following cases:

• for s ¼ 1; . . .; t � 1 and v ¼ 0,
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g
ðhÞ
t;a;s;vð/; cÞ

¼

g
ðhÞ
t�1;a;s;0ð/; cÞ þ g

ðhÞ
t�1;a;s;1ð/; cÞ expðmtÞ; h ¼ 1; . . .; t;

g
ðhÞ
t�1;a;s;0ð/; cÞ þ g

ðhÞ
t�1;a;s;1ð/; cÞ expðmtÞ

þgt�1;a;s;1ð/; cÞ expðmtÞð��ritÞ; h ¼ Ti þ 1;

8
>>>><

>>>>:

• for s ¼ 1; . . .; t, v ¼ 1,

g
ðhÞ
t;a;s;vð/;cÞ

¼

g
ðhÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðhÞ
t�1;a;s�1;1ð/;cÞexpð/tþ mtþ cÞ

þgt�1;a;s�1;0ð/;cÞexpð/tÞþgt�1;a;s�1;1ð/;cÞexpð/tþ mtþ cÞ; h¼ 1; . . .; t

g
ðhÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðhÞ
t�1;a;s�1;1ð/;cÞexpð/tþ mtþ cÞ

þgt�1;a;s�1;1ð/;cÞexpð/tþ mtþ cÞð1� �ritÞ; h¼ Tiþ1;

8
>>>>>><

>>>>>>:

• g
ðhÞ
t;a;s;vð/; cÞ ¼ 0 in all other cases.

Following the same approach as above, the second derivatives are:

1. for t ¼ 1,

• with v ¼ 0 compute

g
ðh;jÞ
1;a;s;0ð/;wÞ ¼ a expðam1Þð��ri1Þ2; h; j ¼ Ti þ 1;

• while for v ¼ 1 we have

g
ðh;jÞ
1;a;s;1ð/;wÞ

¼

expð/1 þ aðm1 þ cÞÞ; h ¼ j ¼ 1;

a expð/1 þ aðm1 þ cÞÞð1� �ri1Þ; h ¼ 1; j ¼ Ti þ 1;

a expð/1 þ aðm1 þ cÞÞð1� �ri1Þ; h ¼ Ti þ 1; j ¼ 1;

a expð/1 þ aðm1 þ cÞÞð1� �ri1Þ2; h; j ¼ Ti þ 1;

8
>>><

>>>:

• g
ðh;jÞ
1;a;s;vð/;wÞ ¼ 0 in other cases.
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2. with t ¼ 2; . . .; Ti:

• for s ¼ 1. . .t � 1 and v ¼ 0, we have:

g
ðh;jÞ
t;a;s;vð/;cÞ

¼

g
ðh;jÞ
t�1;a;s;0ð/;cÞþg

ðh;jÞ
t�1;a;s;1ð/;cÞexpðmtÞ; h; j¼1; . . .; t

g
ðh;jÞ
t�1;a;s;0ð/;cÞþg

ðh;jÞ
t�1;a;s;1ð/;cÞexpðmtÞ

þg
ðjÞ
t�1;a;s;1ð/;cÞexpðmtÞð��ritÞ; h¼Tiþ1; j¼1; . . .; t

g
ðh;jÞ
t�1;a;s;0ð/;cÞþg

ðh;jÞ
t�1;a;s;1ð/;cÞexpðmtÞ

þg
ðhÞ
t�1;a;s;1ð/;cÞexpðmtÞð��ritÞ; h¼1;. . .; t; j¼Tiþ1;

g
ðh;jÞ
t�1;a;s;0ð/;cÞþg

ðh;jÞ
t�1;a;s;1ð/;cÞexpðmtÞ

þg
ðhÞ
t�1;a;s;1ð/;cÞexpðmtÞð��ritÞþg

ðjÞ
t�1;a;s;1ð/;cÞexpðmtÞð��ritÞ

þgt�1;a;s;1 expðmtÞð��ritÞ2; h¼Tiþ1; j¼Tiþ1;

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

• for s ¼ 1. . .t � 1 and v ¼ 1, we have:

g
ðh;jÞ
t;a;s;vð/;cÞ

¼

g
ðh;jÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞ

þg
ðhÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðhÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞ

þg
ðjÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðjÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞ

þgt�1;a;s;0ð/;cÞexpð/tÞþgt�1;a;s;1ð/;cÞexpð/tþmtþcÞ; h;j¼1;...;t;

g
ðh;jÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞ

þg
ðhÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞð1� �ritÞþg

ðjÞ
t�1;a;s�1;0ð/;cÞexpð/tÞ

þg
ðjÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞ

þgt�1;a;s;1ð/;cÞexpð/tþmtþcÞð1� �ritÞ; h¼1;...;t; j¼Tiþ1;

g
ðh;jÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞ

þg
ðjÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞð1� �ritÞ

þg
ðhÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðjÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞ

þgt�1;a;s;1ð/;cÞexpð/tþmtþcÞð1� �ritÞ; h¼1;...;t; j¼Tiþ1;

g
ðh;jÞ
t�1;a;s�1;0ð/;cÞexpð/tÞþg

ðh;jÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞ

þg
ðhÞ
t�1;a;s�1;0ð/;cÞexpð/tþmtþcÞð1� �ritÞ

þg
ðjÞ
t�1;a;s�1;1ð/;cÞexpð/tþmtþcÞð1� �ritÞ

þgt�1;a;s�1;1ð/;cÞexpð/tþmtþcÞð1� �ritÞ2; h¼Tiþ1; j¼Tiþ1;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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3. g
ðh;jÞ
t;a;s;vð/; cÞ ¼ 0 in all other cases.
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