
Calibration of Agent-Based Models by Means of Meta-
Modeling and Nonparametric Regression

Siyan Chen1 • Saul Desiderio1

Accepted: 20 August 2021 / Published online: 4 September 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Taking agent-based models to the data is still very challenging for researchers. In

this paper we propose a new method to calibrate the model parameters based on

indirect inference, which consists in minimizing the distance between real and

artificial data. Basically, we first introduce a nonparametric regression meta-model

to approximate the relationship between model parameters and distance. Then the

meta-model is estimated by local polynomial regression estimation on a small

sample of parameter vectors drawn from the parameter space of the ABM. Finally,

once the distance has been estimated we can pick the parameter vector minimizing

it. One innovative feature of the method is the sampling scheme, based on sampling

at the same time both the parameter vectors and the seed of the random numbers

generator in a random fashion, which permits to average out the effect of ran-

domness without resorting to Monte Carlo simulations. A battery of simple cali-

bration exercises performed on an agent-based macro model shows that the method

allows to minimize the distance with good precision using relatively few simula-

tions of the model.
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1 Introduction

The acknowledgment that real-world economies are intrinsically complex systems

has pushed an increasing number of economists to turn in the last few decades to

agent-based models (ABMs).

ABMs are generally large systems of stochastic difference equations whose

properties cannot be analytically understood because of their complexity. Conse-

quently, ABMs are first translated into software and then analyzed numerically

through computer simulations. Examples of applications of ABMs to economics (or

agent-based computational economics, a.k.a. ACE, Judd and Tesfatsion 2006) are

now uncountable and range from the study of single markets, such as the financial

market and the labor market, to the study of entire multi-market economies.

A crucial and still problematic phase of ABMs analysis is the assessment of their

degree of realism. This phase is generally called empirical validation, which

consists in comparing the model output with analogous empirical data (Fagiolo et al.

2007). Basically, there are three broad categories of empirical validation (Judd and

Tesfatsion 2006; Bianchi et al. 2007):

1. Input or ex ante validation, ensuring that the model characteristics exogenously

input by the modeler (such as agents’ behavioral equations, initial conditions,

random-shock realizations, etc.) are empirically meaningful and broadly

consistent with the real system being studied through the model.

2. Descriptive output validation, assessing how well the model output matches the

properties of pre-selected empirical data.

3. Predictive output validation, assessing how well the model output is able to

forecast properties of new data (out-of-sample forecasting).

The most common typology of validation procedure is the descriptive one, which is

carried out by evaluating the model’s ability to replicate some set of stylized facts.

However, descriptive validation procedures are still eminently qualitative and

consequently no consensus has emerged so far on the best way to evaluate ABMs.1

Taking ABMs to the data is made tricky also by the estimation of the model

parameters. The outcome of validation procedures depends in fact also on the model

parameter configuration. As a consequence, to increase the model’s degree of

realism the researcher may want to resort to some calibration procedure to choose

optimal parameter values. Calibration is however one of the major challenges posed

by agent-based models. The reason is that in general ABMs cannot be analytically

solved and so it is not possible to obtain some closed-form equilibrium relationship

depending on the model parameters (e.g. equilibrium GDP as function of the

marginal propensity to consume) to estimate directly on real data through common

statistical techniques.2 Hence, because of the difficulties encountered in calibrating

1 Nonetheless, more advanced validation methods have recently been put forth like for example the one

in Guerini and Moneta (2017), which is based on the comparison of the causal relationships implied by a

structural VAR model estimated on both real and simulated data.
2 There are a few exceptions, though, e.g. Alfarano et al. (2005), Caiani et al. (2016), who obtain some

closed-form solutions depending on the parameters.
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the parameters by direct estimation, indirect methods such as indirect inference

(Gourieroux et al. 1993) and the method of simulated moments (McFadden 1989)

have become popular to calibrate ABMs. Many different variants of calibration

through indirect methods exist in ACE literature, including among the others those

proposed by Gilli and Winker (2003), (Bianchi et al. 2007, 2008), Fabretti (2013),

Recchioni et al. (2015), Grazzini and Richiardi (2015) and Lamperti (2018).3 In

spite of their differences, however, all indirect calibration methods feature the same

three phases:

1. Choosing a set of real data Dr and analogous simulated data Dm produced by the

model.4

2. Choosing a metric dð�Þ to measure the distance between Dr and Dm,

representing the degree of realism of the model.

3. Choosing by simulations the model parameters that minimize the distance

dðDr;DmÞ.

Such a general framework has been labeled simulated minimum distance approach

(Grazzini and Richiardi 2015), of which the first two phases basically constitute the

criterion used to validate the model, and the third phase is the very calibration

process. The goal of this paper is precisely to propose a new indirect calibration

method.

Indirect calibration in principle would require repeated simulations of the ABM

to compute the value of the objective function dðDr;DmÞ for each point of the

parameter space. By the brute force of calculations the modeler can therefore find

the minimum-distance parameter vector. Unfortunately, for most of ABMs a

complete exploration of the parameter space cannot be carried out at reasonable

computational costs because of well-known issues:

1. Complexity: a single simulation of a sufficiently large ABM may take a long

time to be run even for a small number of periods.

2. ‘Curse of dimensionality’: ABMs are usually over-parametrized, i.e. their

parameter space is large.

3. Randomness: normally ABMs are stochastic. Thus, Monte Carlo replications

are needed to average out the noise caused by random numbers, that is for each

point of the parameter space simulations must be repeated with different seeds

of the random numbers generator.

To overcome these problems, calibration methods are usually constructed around

search algorithms that explore only sub-sets of the parameter space, like for instance

genetic algorithms (e.g. as in Fabretti 2013) and gradient-based search algorithms

(e.g. as in Gilli and Winker 2003; Recchioni et al. 2015). Because of the typical

complexity of ABMs, however, a major drawback of search algorithms is that they

may find a solution that is only a local minimum. This means that such methods may

3 See for example Fagiolo et al. (2017) and Lux and Zwinkels (2018) for two extensive surveys and Platt

(2020) for a test of different methods.
4 The data can be used directly or through summary statistics.
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still require many runs of the model because to find the global minimum the search

needs to be repeated for different starting points (and for different seeds of the

random numbers generator).

A totally different approach to calibration which allows to avoid the complete

exploration of the parameter space is the one based on the concept of meta-
modeling. Meta-modeling is the process of approximation of an unknown

complicated relationship between input factors (the parameters or other initial

conditions) and model output with a simpler one of known shape, called ‘meta-

model’ (Saltelli et al. (2008), ch. 5). In the context of calibration a meta-model

could be specified for example to approximate the relationship between the distance

dð�Þ and the ABM parameters. The advantage of this approach is that the distance is

not computed point by point but is estimated using only a limited number of

observed points of the parameter space, for which therefore the ABM needs to be

simulated. Subsequently, the estimated meta-model is used to calculate an

approximated distance d̂ for the whole parameter space without further simulations

of the agent-based model. Calibration procedures based on meta-modeling are

therefore aimed to increase the speed of the calibration process at the expenses of its

accuracy, because the distance is approximated by the fitted values of the meta-

model. Hence, calibration through meta-modeling seems to be particularly

suitable for computationally demanding large-scale ABMs, in which case a loss

in accuracy is well compensated by gains in execution time. Moreover, methods

based on meta-modeling have potentially also another merit: as in fact the

approximated distance is smoother than the actual one, in general they have the

tendency to eliminate local minima, which are one of the main problems afflicting

methods based on search algorithms.

Among the few examples of the meta-modeling approach in ACE literature are

Salle and Yildizoglu (2014), Barde and van der Hoog (2017) and Bargigli et al.

(2020), who employ a kriging meta-model estimated on a sample constructed by the

nearly-orthogonal Latin hypercube method. Another one is Chen and Desiderio

(2021), who propose a novel sampling strategy of the parameter space which allows

to estimate meta-models without resorting to Monte Carlo replications. All of these

works are based on parametric regression meta-models, which can be easily

estimated by such standard regression techniques as OLS and GLS but which may

provide a poor approximation of the distance if this is a highly non-linear function

of the model parameters. Thus, to overcome such a limitation in the present paper

we will introduce a new calibration method still based on the sampling scheme of

Chen and Desiderio (2021), but with the crucial difference that we will not specify

the functional form of the meta-model used to approximate the distance. The

unspecified meta-model will be therefore estimated by nonparametric regression

techniques, namely local polynomial estimation. As for the parametric case, the

main advantage of our method over other calibration procedures is that the ABM is

simulated relatively few times. In addition, its high degree of flexibility makes it

fitter than the parametric counterparts when the distance function is highly non-

linear. Clearly, the inevitable drawback is that it requires less common estimation

techniques.
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To our knowledge, our method is the first of its kind. Another recent calibration

method for ABMs based on nonparametric meta-modeling is Lamperti et al. (2018),

which use machine learning algorithms in place of regression meta-models.

Although very similar in spirit, our work is however totally different as for the

technique adopted, and is probably of greater ease of implementation. Other recent

works quite different from ours but also employing some typology of nonparametric

estimation techniques are Kukacka and Barunik (2017) and Grazzini et al. (2017).

The paper continues as follows: in Sect. 2 we briefly introduce nonparametric

regression, in Sect. 3 we present the calibration procedure and in Sect. 4 we apply it

to calibrate the ABM presented in Chen and Desiderio (Chen and Desiderio

2018, 2020). Section 5 concludes.

2 Nonparametric Regression

In this section we briefly introduce nonparametric regression methods. Unlike

parametric regression, the general idea is to estimate the relationship between a

dependent variable Y (the output) and a set of independent variables X (the input)

without specifying a particular functional form for it. Many techniques exist that

perform this task, such as kernel smoothing, splines and wavelets, but we will focus

on the relatively simple local polynomial estimators (e.g. ch. 1, Tsybakov (2009)),

which will constitute the basis of our calibration procedure. Local polynomial

estimators possess good statistical properties in the case of both random inputs and

fixed inputs. Below we will consider only the former case as it is more consistent

with the sampling strategy we are going to use in Sect. 3.

2.1 Local Polynomial Regression

Given the random vector ðX; YÞ 2 Rk � R, the regression function of Y on X is

defined as

f ðxÞ ¼ EðY jX ¼ xÞ: ð1Þ

The goal in nonparametric regression is to estimate the unspecified relationship f(x)
using a random sample ðx1; y1Þ; :::; ðxn; ynÞ drawn from (X, Y). Hence, under the

hypothesis of random sampling we have

yi ¼ f ðxiÞ þ �i; i ¼ 1; :::; n; ð2Þ

where �1; :::; �n are i.i.d. random errors with Eð�iÞ ¼ 0. Moreover, we assume

independence between �i and xi. This is generally a strong assumption but, as we

will see in Sect. 3, it is satisfied in the context of our calibration method.

For simplicity, assume that the input X is univariate. So, given an arbitrary

evaluation point x0 belonging to the domain of X, we want to estimate f ðx0Þ using
the information available for f(x) at the observed points xi, where each point is given
a different weight according to its distance from x0. Loosely speaking, if x0 is closer

to xi, then the estimate f̂ ðx0Þ will be closer to yi.
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The weights assigned to each observation i are determined by a kernel function

K : R ! R, which should satisfy regularity conditions such asZ
KðzÞdz ¼ 1;

Z
zKðzÞdz ¼ 0; 0\

Z
z2KðzÞdz\þ1: ð3Þ

There are many options available for K. In the following we will use the popular

parabolic or Epanechnikov kernel

KðzÞ ¼ 3=4ð1� z2Þ if jzj � 1

0 otherwise

�
: ð4Þ

Hence, given the evaluation point x0, a bandwidth h[ 0 and a polynomial degree

p� 1, the local polynomial regression5 estimate of f ðx0Þ is

f̂ ðx0Þ ¼ b̂0 þ
Xp
j¼1

b̂jx
j
0; ð5Þ

where the b̂0; :::; b̂p solve the following problem:

min Qðb0; :::; bpÞ ¼
Xn
i¼1

K
�x0 � xi

h

��
yi � b0 �

Xp
j¼1

bjx
j
i

�2

: ð6Þ

Problem (6) is basically a weighted least squares estimation where squared residuals

are weighted by the kernel function. Upon resolving it, we can in fact write

f̂ ðx0Þ ¼ bðx0ÞðB0RBÞ�1B0R y; ð7Þ

where bðx0Þ ¼ ð1; x0; x20; :::; x
p
0Þ, B is an n� ðpþ 1Þ matrix whose ith row is

bðxiÞ ¼ ð1; xi; x2i ; :::; x
p
i Þ, R is an n� n diagonal matrix whose element (i, i) is given

by Kððx0 � xiÞ=hÞ, and y ¼ ðy1; :::; ynÞ0. Hence, the local polynomial regression

estimator is a linear smoother, as it can be written as

f̂ ðx0Þ ¼
Xn
i¼1

wiðx0; x1; :::; xn; hÞyi: ð8Þ

A crucial aspect of this method is the choice of the bandwidth h. In fact, from

Eq. (4) we can see that the higher jx0 � xij=h, the lower is the weight assigned to

observation i by the kernel function. In particular, if jx0 � xij=h[ 1 the weight is

zero. Thus, for larger values of h the local polynomial regression will be smoother,

because also points that are distant from x0 will be taken into account (over-

smoothing). Conversely, when h is smaller the estimated function f̂ ð�Þ will track

more closely the observed values of Y (undersmoothing).
Local polynomial regression estimators have good statistical properties. It can be

shown that f̂ ðx0Þ is correct for f ðx0Þ up to an error which is decreasing with the

polynomial order p in Eq. (5), which means that the higher p, the smaller the bias

5 When p ¼ 1 this method is called local linear regression.
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(even though the variance increases with p). Moreover, under certain regularity

conditions the bias of f̂ ðx0Þ has an upper bound proportional to the bandwidth h,
whereas its variance has un upper bound proportional to 1/h. This implies that

decreasing h will reduce the bias but will increase the variance (Tsybakov (2009),

ch. 1).

The technique extends easily to higher dimensions. In Sect. 4 we will consider

the case of a bivariate input X in which the residuals at problem (6) depend on the

powers of both elements of X and the weights are computed as Kðjjx0 � xijj=hÞ,
where jjx0 � xijj is the Euclidean norm of the difference vector x0 � xi.

3 The Calibration Method

The method we are going to expose can be applied to the calibration of the structural

parameters of an ABM for any choice of the data D and metric dð�Þ.
Unless the ABM is deterministic, the artificial data Dm computed on the output of

a single simulation of the model are not only a function of the model parameters

h 2 H,6 but also of random numbers r.7 As a consequence, the distance between real
and simulated data for a single run of the ABM can be written as

dðDr;Dmðh; rÞÞ � dðh; rÞ: ð9Þ

Hence, given the set of data, the metric and the parameter space H, we can define

the regression function of dð�Þ on H as

dðhÞ ¼ Erðdðh; rÞjH ¼ hÞ: ð10Þ

Definition (10) represents the average distance between the real data and the arti-

ficial data produced by the ABM when we initialize it with the parameter vector

h 2 H. Thus, our goal is to find the vector h� that minimizes such a distance.

To achieve this goal the ABM has to be run for different parameter vectors h. The
process, however, is made more complicated by randomness. To compute distance

(10) (and its minimum) we could therefore use Monte Carlo replications, that is for

each h 2 H we could run the model k times with the same parameter vector but with

different streams of random numbers, thus obtaining k instances of the distance

dðh; rkÞ, and then take the Monte Carlo average d̂ðhÞ ¼ k�1
P

k dðh; rkÞ to average

out the influence of random numbers. However, to avoid the enormous computa-

tional costs necessary to compute Monte Carlo averages for every point of H, we

will instead estimate the regression function (10) through a nonparametric

regression meta-model using few parameter vectors hi drawn from H.8

6 For exposition convenience we suppose the parameter space H to be univariate.
7 We will ignore the role of initial conditions. If the ABM is ergodic, this is totally legitimate.
8 The whole procedure, including the calculation of the local polynomial estimators, was implemented in

MATLAB. The code is available upon request.
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3.1 Estimating the Distance

Given the output of a single run of the ABM, we can represent the associated

distance (9) by an auxiliary meta-model such as

dðh; rÞ ¼ f ðhÞ þ uðrÞ: ð11Þ

Equation (11) represents the essence of the meta-modeling approach we are fol-

lowing (Saltelli et al. 2008, ch. 5): we basically approximate the unknown and

surely complicated relationship between the model parameters and the distance with

a simpler one upon which we decide to place certain reasonable restrictions. The

convenience of this representation of the distance is that it allows to split it into two

parts: a systematic part f ðhÞ that depends on the structural parameters and a

unsystematic part u(r) (the error) that depends only on the stream of random

numbers. The central point of our approach is that we treat the numbers r in Eq. (11)
just as omitted explanatory variables influencing dð�Þ through the error term. If a

parametric model is chosen for f ðhÞ, the hypothesis of errors not depending on the

parameters would be equivalent to assuming that the meta-model (11) be correctly

specified. Although the meta-model can be augmented with as many non-linear

functions of h as we want and functional form misspecification can be tested (for

instance by Ramsay’s RESET), the assumption of correct specification may still be

likely to fail if function dðhÞ is highly non-linear. Hence, in the present paper we

propose a radical solution to this problem: we simply leave the function f ðhÞ
unspecified, basically moving to a nonparametric setting. Consequently, we can

always assume that the function f ðhÞ is correctly specified and that the error u
depends only on the stream of random numbers r. Moreover, if Covðh; uÞ ¼ 0 we

have

ErðdjhÞ ¼ Erðf ðhÞjhÞ þ ErðuðrÞjhÞ
ErðdjhÞ ¼ f ðhÞ;

ð12Þ

showing that the meta-model f ðhÞ is exactly the regression function of d on h
expressed by Eq. (10). As we are allowed to assume that the errors do not directly

depend on h, the validity of Covðh; uÞ ¼ 0 will depend entirely on the sampling

scheme used to draw the parameter vectors hi and the stream of numbers ri.
Following Chen and Desiderio (2018), to estimate the meta-model we randomly

generate from uniform distributions n couples ðhi; riÞ, where hi is a parameter vector

sampled from the parameter space H and ri is a stream of random numbers.

Practically speaking, to generate a random stream ri we have to randomly select the

seed of the random number generator when we run a simulation of the ABM with a

given hi. Hence, we are basically treating the seed of the random number generator

as an additional parameter that needs to be sampled along with h. Then, for each
vector hi and stream ri we simulate the agent-based model once, thus obtaining n
values DmðiÞ for the simulated data.

After that, for each of the n values DmðiÞ we calculate the corresponding distance

from the real data Dr:
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dðDr;DmðiÞÞ ¼ dðhi; riÞ � di: ð13Þ

Finally, given a bandwidth h[ 0 and a polynomial order p� 1, using the samples

for di and hi we can estimate by local polynomial regression the relationship

di ¼ f ðhiÞ þ uðriÞ; i ¼ 1; :::; n: ð14Þ

Thus, for all the points h0 belonging to the parameter space we can obtain

f̂ ðh0Þ ¼
Xn
i¼1

wiðh0; h1; :::; hn; hÞ di ð15Þ

as in Eq. (8), with di, hi and h0 replacing respectively yi, xi and x0. Because of the

random sampling of both hi and ri, we have Covðhi; riÞ ¼ 0, which also implies

Covðhi; uiÞ ¼ 0. But then f̂ ðh0Þ coincides with the estimated distance d̂ðh0Þ (see

Eqs. 10 and 12). Hence, we can choose the parameter vector corresponding to the

smallest f̂ ðhÞ as our estimate of the ‘‘best’’ vector h� minimizing Eq. (10).

Random sampling of hi and ri has also another important consequence:

observations are independent and, therefore, also the error terms. But this means

that the assumptions of the basic setup in Sect. 2 are satisfied,9 with uðriÞ in place of

�i in Eq. (2). As a consequence, f̂ ðh0Þ will possess the nice statistical properties that,
under these assumptions, characterize local polynomial regression estimators.

In summary, the procedure can be described by the following algorithm (refer to

Section 6 for more operational algorithms):

Algorithm 1

1. Define the parameter space H.

2. Randomly sample n vectors hi 2 H with equal probability.

3. For each hi, run the ABM for T periods. Before each simulation the seed of the

random number generator is randomly selected (random sampling of the

numbers ri).
4. From the output of each simulation i, take the data DmðiÞ and compute the

distance di as in Eq. (13).

5. Using the samples fhigni¼1 and fdigni¼1, estimate by local polynomial regression

the in-sample fitted values d̂i to choose the best bandwidth h� (see Sect. 3.2).

6. Using the samples fhigni¼1 and fdigni¼1 and bandwidth h�, estimate by local

polynomial regression Eq. (14), obtaining the sample regression function

f̂ ðhÞ 8 h 2 H.

7. Choose the vector ĥ
� 2 H associated with the smallest estimated distance f̂ ðhÞ.

9 Although we can say nothing about heteroskedasticity in the error terms. Even when present, however,

this issue can just decrease the efficiency of the estimators.
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3.2 Choosing the Bandwidth h

As already mentioned in Sect. 2, the choice of the bandwidth h is crucial for

obtaining the local polynomial regression estimator. In fact, different h will produce

different f̂ ðhÞ and, in general, different estimated minimum-distance vectors ĥ
�
.

There is no hard rule for choosing the bandwidth, so in Sect. 4 we will use four

different methods. Basically, after generating the sample fhi; digni¼1, we will

estimate the in-sample fitted values f̂ ðhÞ for all h and, based on the in-sample

residuals fdi � f̂ ðhiÞgni¼1, assign a score to each h. This means that a bandwidth h
could get different scores according to the method considered. Finally, for each

method we select the h with the highest score to estimate f̂ ðhÞ for all h 2 H.

Method 1: Cp criterion.

This is one of the most common approaches to choose h: the idea is to find the

estimator (in practice, a bandwidth) associated with the smallest mean integrated

squared error, which is a common measure of the goodness of an estimator.

For given h, the point-wise mean squared error (MSE) of the estimator at h0 is

MSEðh0Þ ¼ E
�
ðf̂ ðh0Þ � dðh0ÞÞ2

�
� ½Biasðf̂ ðh0ÞÞ	2 þ VARðf̂ ðh0ÞÞ; ð16Þ

and its mean integrated squared error (MISE) is defined as

MISE ¼
Z
h2H

MSEðhÞ dh: ð17Þ

Parameter h influences both the bias and the variance of the estimator monotoni-

cally, but in opposite ways. The presence of such a trade-off therefore implies the

existence of a certain value h� which minimizes the MISE.

In practice, in applications we have to use the discretized version of the MISE

1

n

Xn
i¼1

ðf̂ ðhiÞ � f ðhiÞÞ2: ð18Þ

The discretized MISE however cannot be computed because it depends on the

unknown f ðhiÞ. Hence, based on the sample fðdi; hiÞgni¼1 we use the Cp criterion

CpðhÞ ¼
1

n

Xn
i¼1

ðdi � f̂ ðhiÞÞ2 þ
2r2

n

Xn
i¼1

wðhi; hÞ; ð19Þ

where wðhi; hÞ is the weight assigned to observation i when estimating f̂ ðhiÞ and r2

is the error variance (to be estimated from the residuals). Since CpðhÞ is an unbiased

estimator for the discretized MISE up to a shift r2 not depending upon h, the
optimal bandwidth can be chosen as the one that minimizes the Cp criterion

(Tsybakov (2009), ch. 1.9).

Method 2: leave-one-out cross-validation criterion.

This method is also common. Given the in-sample fitted values
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f̂ ¼ Wd ð20Þ

defined as the product between the n� n matrix W and the vector of sample values

for the distance d,10 we choose the bandwidth h that minimizes the leave-one-out

cross-validation criterion

CVðhÞ ¼ 1

n

Xn
i¼1

ðdi � f̂�iðhiÞÞ2; ð21Þ

where f̂�iðhiÞ is the estimate of f ðhiÞ without using observation i. This statistic can

be conveniently re-written simply as

CVðhÞ ¼ 1

n

Xn
i¼1

�di � f̂ ðhiÞ
1�Wii

�2

; ð22Þ

where Wii is the diagonal element of matrix W that determines f̂ ðhiÞ. Basically, the
statistic CVðhÞ measures the ability of the estimator to correctly predict each

EðdjhiÞ without using the sample value di.
Method 3: normality of the residuals.

The third method is unconventional: we pick as optimal bandwidth the one

producing residuals whose distribution is closest to a normal distribution. To

measure normality we will use the the Kolmogorov-Smirnov normality test, whose

null hypothesis is that the residuals are normally distributed. Hence, we will choose

the h for which the p-value is larger.

Method 4: averaging over h.
The last method is also unconventional: instead of searching for some ‘optimal’

h, we use several of them. We first choose a suitable set of values H for the

bandwidth and compute the sample regression function f̂ ðx; hÞ 8 h 2 H. Then, we

choose the vector h� minimizing the average

�f ðhÞ ¼ 1

nh

X
h2H

f̂ ðh; hÞ; ð23Þ

where nh is the cardinality of H. The reason why we employ this method is that it

avoids both oversmoothing and undersmoothing.

Before turning to the illustrative examples, we suggest a heuristic way to apply

our method. As in fact in true calibration exercises the minimum-distance parameter

value will remain unknown, we can apply the method using different combinations

of polynomial degrees and bandwidth-selection criteria getting as many estimated

parameters (in the cases below we will have eight estimates). Then, for each of the

estimated parameters we can calculate the actual distance by Monte Carlo

simulations and select the one estimate corresponding to the lowest Monte Carlo

distance. If the method works, we can be confident that among the estimated

parameters there will be the actual minimum-distance parameter or some other

value close to it.

10 The i-th in-sample fitted value f̂ ðhiÞ is just Eq. (15) with hi replacing h0.
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4 Illustrative Examples

As a mere illustrative example, in this section we are going to apply the proposed

calibration method to the agent-based model of Chen and Desiderio (Chen and

Desiderio 2018, 2020), which we refer to for details.

The model represents a closed economy populated by firms, households and one

commercial bank that operate on the markets for labor, consumption and credit. In

the following we will focus on three parameters. The first one is the upper bound a
of the stochastic wage increase offered by firms, the second parameter is the

consumers’ marginal propensity to consume b and the last one is the minimum

interest rate c set by the monetary authority.11 When not varying for calibration

purposes, the default values of these parameters are respectively 0.05, 0.8 and 0.01.

To obtain a very low execution time for a single simulation, the ABM is always run

for 300 periods with only 10 firms and 60 households.

Below we perform four calibration exercises: first we calibrate the three

parameters separately, and finally we calibrate at the same time a and c.12 The

metric dð�Þ will be the Euclidean distance computed between real and simulated

data relative to the real GDP average growth rate (g) and the average inflation rate

(p), that is:

dðh; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgr � gmðh; rÞÞ2 þ ðpr � pmðh; rÞÞ2

q
; ð24Þ

where gmðh; rÞ and pmðh; rÞ are time averages computed on a single 300-period

simulation of the ABM.13 Hence, our calibration exercises are examples of the

method of simulated moments.

4.1 Univariate Case 1: a

Here we have h ¼ a belonging to the parameter space A ¼ ½0:005; 0:2	, made of 100

equally-spaced points.14

To have an idea of the potentialities of our approach, before estimating the

distance using our method we first compute the (pseudo) actual distance and the

associated minimum point by using 100 Monte Carlo replications for each point of

A. The resulting average distances dðaÞ ¼ 100�1
P100

k dða; rkÞ are reported in Fig. 1

as a function of a, with a minimum at a� ¼ 0:0267.
Now we are going to use our procedure. We randomly sample n ¼ 100 values ai

from A ¼ ½0:005; 0:2	, and for each of them we run the ABM for 300 time steps,

11 Note that here we use different symbols from the original papers in order to avoid confusion with other

variable and parameter names.
12 Estimating the distance function over the whole parameter space takes a fraction of second in all the

univariate cases and less than one second in the bivariate case.
13 As real data we used average U.S. quarterly macro data retrieved from FRED dataset, obtaining

gr ¼ 0:0078 and pr ¼ 0:0077.
14 The definition of the boundaries of the parameter space and its discretization are open issues in

calibration that we cannot resolve here. For all the three parameters we simply chose a reasonable range

of values such that the ABM did not show a degenerated behavior.
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choosing randomly the seed of the random number generator at every run. Then,

from each simulation i we compute the distance di as in Eq. (24), thus obtaining our

sample fdi; aig100i¼1.

Just to understand the importance of the bandwidth, in Fig. 2 we report the scatter

plots for both the observed di and its estimate f̂ ðaiÞ, this one obtained with

bandwidth h ¼ 0:2 and h ¼ 0:05 (in both cases using a second-order polynomial

degree). Comparing the two pictures with the actual distance in Fig. 1, we can see

that panel (a) is probably an example of oversmoothing as the fitted distances lie

almost along a straight line, while in panel (b) the fitted values follow more closely

the observed distance. It is therefore clear that the search for the minimum-distance

a� is strongly influenced by the choice of the bandwidth.

Now we apply our procedure using the four methods for the choice of the

bandwidth h illustrated in Sect. 3. The pre-selected set H ¼ ½0:01; 0:05	 for the

bandwidth is made of 100 equally-spaced points.15 For all the four methods we try

both a first-order and a second-order polynomial degree (for p larger than 2 we

could not notice much difference). Results are shown in Table 1.
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Fig. 1 Actual distance for
parameter a 2 ½0:005; 0:2	
obtained with 100 Monte Carlo
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a� ¼ 0:0267
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Fig. 2 Observed (blue dots) and in-sample estimated (red dots) distances: a with h ¼ 0:2; b with
h ¼ 0:05
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We can see that the first-order local polynomial regression estimator with

Methods 1 and 2 performs better, producing an estimated minimum-distance a ¼
0:0227 which is just 15% lower than the true a� ¼ 0:0267. Moreover, the absolute

difference between estimated and actual minimum point (i.e. 0.004) is very small if

compared with the extent of the parameter space A (i.e. 0:2� 0:005 ¼ 0:195). We

also point out that practically speaking there is no difference between the estimated

a ¼ 0:0227 and a� because the distance attained at the former is almost equal to the

minimum distance corresponding to the latter (see Fig. 1). As for the second-order

local polynomial regression estimator, its estimate (a ¼ 0:0208) is less precise but

still quite close to the actual a�. Thus, as far as the case of parameter a is concerned,

we deem our calibration method successful, as we were able to get very close to the

actual minimum-distance parameter value using only 100 simulations of the ABM,

against the 10000 necessary to calculate Monte Carlo averages for the whole

parameter space.

4.2 Univariate Case 2: b

Here we have 100 values for h ¼ b belonging to the parameter space B ¼ ½0:1; 0:9	.
In Fig. 3 we report the actual distance obtained with 100 Monte Carlo replications

for all b 2 ½0:1; 0:9	, showing a minimum at the corner value b� ¼ 0:1.
We now repeat our calibration procedure: we randomly sample n ¼ 100 values bi

from B ¼ ½0:1; 0:9	, for each of them we run the ABM for 300 time steps and

compute the distance di, thus obtaining the sample fdi; big
100
i¼1. Table 2 shows the

results, after choosing H ¼ ½0:05; 0:2	.
Again the local linear regression estimator performs much better than its

quadratic counterpart, and correctly estimates the minimum-distance b� in three

cases out of four. Conversely, the second-degree estimator gets close to b� in two

cases but also very far in other two cases. Such inconsistent results are mainly due to

the high sensitivity of the second-degree estimator to an outlier fdig that

unfortunately is present in our sample (whereas the linear estimator is by

construction less sensitive to ‘‘noisy’’ data). Nonetheless, increasing the sample

size to n ¼ 200 observations (which is still a small number of simulations) we were

able to correctly estimate b� ¼ 0:1 also by the second-degree estimator, and this

15 In all the examples the boundaries of H are based on the boundaries of the parameter space. If in fact h
is too small, then perfect collinearity issues do not allow to invert the matrix B0RB in Eq. 7, whereas if h is
too large the estimated regression function trivially becomes a straight line.

Table 1 Estimated minimum-

distance a. Actual a� ¼ 0:0267
Polynomial degree p ¼ 1 p ¼ 2

h a h a

Method 1 0.0112 0.0227 0.01 0.0208

Method 2 0.0116 0.0227 0.05 0.0208

Method 3 0.0496 0.0109 0.0104 0.0208

Method 4 – 0.0188 – 0.0208

123

1470 S. Chen, S. Desiderio



despite the actual distance function being very corrugated and studded with local

minima.

4.3 Univariate Case 3: c

Here we have 100 values for h ¼ c belonging to the parameter space

C ¼ ½0:001; 0:05	. In Fig. 4 we report the actual distance obtained with 100 Monte

Carlo replications for all c 2 ½0:001; 0:05	, showing a minimum at c� ¼ 0:0460.

Again, with the same procedure we generate a sample fdi; cig100i¼1 of 100

observations and estimate the minimum-distance c�, choosing H ¼ ½0:005; 0:01	.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
beta

8

8.5

9

9.5

10

10.5

11

11.5

M
C

 d
is

ta
nc

e

10-3Fig. 3 Actual distance for
parameter b 2 ½0:1; 0:9	
obtained with 100 Monte Carlo
replications. Minimum at
b� ¼ 0:1

Table 2 Estimated minimum-

distance b. Actual b� ¼ 0:1
Polynomial degree p ¼ 1 p ¼ 2

h b h b

Method 1 0.1212 0.1 0.0561 0.9

Method 2 0.1212 0.1 0.1621 0.1323

Method 3 0.2 0.1 0.0727 0.9

Method 4 – 0.1242 – 0.1404
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Fig. 4 Actual distance for
parameter c 2 ½0:001; 0:05	
obtained with 100 Monte Carlo
replications. Minimum at
c� ¼ 0:0460
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Table 3 shows the results: in no case we were able to find exactly the actual

minimum-distance parameter value, but all the estimates are pretty close to it,

specially with p ¼ 2 and using method 1 and method 4. In fact, the best estimate

c ¼ 0:0475 is only 3% higher than c�, and their difference is very small when

compared with the length of the parameter space C. Moreover, the actual distance in

c ¼ 0:0475 is very similar to the minimum distance attained at c�, which makes the

two values practically equivalent.

In conclusion, the results from the univariate examples show the reliability of the

proposed calibration method as in all of the three cases we were able to find either

the minimum-distance parameter value (in case 2) or a very close value (cases 1 and

3).

4.4 The Bivariate Case

In this section we are going to show how our calibration procedure extends to a

multivariate setting (see end of Sect. 2). To this scope we will simultaneously

calibrate parameters a and c belonging to the parameter space H given by Table 4.

The pseudo-actual distance surface obtained with 100 Monte Carlo replications is

shown in Fig. 5, whose minimum of about 0.0019 is attained at

ða�; c�Þ ¼ ð0:0227; 0:0045Þ.
As the parameter space is now much larger than in the univariate cases (104

points against 100 points), to have a better coverage of it we will generate a random

sample of n ¼ 200 observations. Thus, we apply our multivariate procedure to the

random sample fdi; ai; cig200i¼1 with a pre-selected set of values for the bandwidth

H ¼ ½0:03; 0:1	. Fig. 6 shows two examples of estimated distance surfaces: again,

the choice of the polynomial degree and of the bandwidth turns out to be crucial for

the search of the minimum-distance parameter values.

The estimates are reported in Table 5: we can see that the results obtained do not

appear to be much consistent with each other, even though all the estimates indicate

a small value for a. The point ða; cÞ ¼ ð0:0208; 0:001Þ obtained by Method 2 and

Table 3 Estimated minimum-

distance c. Actual c� ¼ 0:0460
Polynomial degree p ¼ 1 p ¼ 2

h c h c

Method 1 0.01 0.05 0.0089 0.0475

Method 2 0.01 0.05 0.01 0.0485

Method 3 0.0058 0.0480 0.0074 0.0480

Method 4 – 0.0490 – 0.0475

Table 4 Parameter space H
Parameter N. of values Range

a 100 [0.005–0.2]

c 100 [0.001–0.05]
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p ¼ 2 is associated with the smallest actual distance among the eight candidates. We

therefore take this point as our estimate of the optimal parameter value. Although

we did not find the actual minimum-distance parameter vector, our solution is pretty

close to it (in fact, the actual value 0.0227 is just the next value of 0.0208 inside the

domain of a). In addition, the distance associated with our estimate is about 0.0021,

which is only slightly higher than the actual minimum distance (about 0.0019).

Indeed, both points belong to a small basin of the parameter space where the actual

distance is about the same for all the parameter values ða; cÞ.
In conclusion, we consider our calibration procedure as successful for two

reasons. First, it was able to identify a solution belonging to an area of the parameter
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Fig. 6 Estimated distance surface for p ¼ 2: a with h ¼ 0:03; b with h ¼ 0:1

Table 5 Estimated minimum-distance ða; cÞ

Polynomial degree p ¼ 1 p ¼ 2

h ða; cÞ h ða; cÞ

Method 1 0.1 (0.005,0.0327) 0.1 (0.0129,0.05)

Method 2 0.03 (0.0188,0.001) 0.0349 (0.0208,0.001)

Method 3 0.0894 (0.005,0.0188) 0.0958 (0.0148,0.05)

Method 4 – (0.005,0.001) – (0.0208,0.05)
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space where the actual distance is smaller. Second, it is very efficient in terms of

computational time, as it allowed to find a satisfactory solution using relatively few

runs of the ABM (200 against 106 necessary to compute the Monte Carlo distances).

Specially in case of large-scale ABMs, this characteristic in particular may give our

procedure a substantial advantage over other more time-consuming calibration

methods.

5 Conclusive Remarks

In the last few decades the application of agent-based models has become more and

more popular among economists. Unlike mainstream models, however, taking

ABMs to the data is still very challenging for researchers. Such an uncomfort-

able situation is basically due to two reasons: (1) there is still a lack of a sound

validation procedure and (2) the model parameters cannot be estimated by common

statistical techniques. The second issue has recently lead to the development of

several indirect calibration methods based on the simulated minimum distance

approach, which consists in finding those parameter values that minimize the

distance between real and simulated data. However, the typical complexity

characterizing ABMs makes such methods computationally demanding.

In this paper we have proposed a new indirect calibration method based on

simulated minimum distance that extends the parametric technique introduced by

Chen and Desiderio (2021). In essence, instead of calculating the distance over the

whole parameter space we estimate a nonparametric regression meta-model

introduced to approximate the relationship between model parameters and distance

metric. The meta-model is estimated by local polynomial regression techniques on a

small sample of parameter vectors drawn from the parameter space of the ABM.

Finally, once the distance has been estimated for the whole parameter space we can

pick the parameter vector minimizing it. Results are promising and pave the way for

future developments of this approach.

The strategy adopted to sample the parameter vectors is the one first introduced

in (Chen and Desiderio 2018, 2020) for sensitivity analysis purposes and

subsequently also employed for parameter calibration (Chen and Desiderio 2021).

Its innovative feature consists in sampling at the same time both the parameters and

the seed of the random numbers generator in a random fashion, which allows to

average out the effect of randomness without resorting to Monte Carlo simulations.

The great advantage of our method over other calibration procedures based on

search algorithms is first and foremost its speed, because it requires the simulation

of the ABM only for the parameter vectors used to estimate the meta-model. This

feature makes the method particularly suitable for computationally demanding

large-scale ABMs. In addition, the use of nonparametric estimation techniques

makes it more flexible and accurate than the parametric counterparts such as kriging

method (Salle and Yildizoglu 2014), and only slightly more complicated. Of course,

more advanced nonparametric techniques such as wavelets may be used, but we

believe local polynomial estimation to be a good compromise between precision and
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ease of application. Finally, it is well-known that nonparametric methods are not

optimal when the number of dimensions is high. Hence, to tackle this problem

refinements of our method could contemplate the use of structured regression

models such as additive models that are built starting from the univariate estimators,

or the use of simpler tools such as nearest-neighbors estimators. This would reduce

precision but increase the speed.

Appendix

In this section we propose the general implementation of our method in pseudo-

code, divided into four algorithms (Tables 6, 7, 8 and 9). The pseudo-code is

intended to be completed using all the relevant formulas and equations presented in

the paper.

Table 6 Algorithm A to

generate samples fhigni¼1 and

fdigni¼1

Table 7 Algorithm B to choose

the optimal bandwidth h�
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