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Abstract
In this paper, we investigate the pricing problem of barrier options under the Heston

model. We innovatively develop a two-step solution process and present an ana-

lytical approximation formula of high efficiency and accuracy. In specific, upon

assuming that all the future information of the volatility is known at the current

time, the Heston model becomes a time-dependent Black-Scholes model, under

which an analytical approximation for barrier option price is presented. The target

barrier option price is essentially the expectation of the obtained conditional price

with respect to the volatility, working out of which leads to an approximation

involving a Fourier cosines series. Finally, the results of numerical experiments

demonstrate that our formula has the potential to be applied in practice.

Keywords Barrier options � Heston model � Analytical approximation � Fourier
cosine series � Accuracy

1 Introduction

A barrier option is referred to a particular path-dependent option whose payoff is

dependent on whether the underlying price reaches a predetermined level (the

barrier specified in the contract), and it can be further classified into knock-out and

knock-in options, corresponding to the case where the right to exercise the option

ceases and starts to exist when the barrier is touched, respectively. Barrier options

are actively traded in financial markets, since they can help investors as well as

companies to hedge risks while at the same time being cheaper than the
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corresponding vanilla ones, and thus it is very demanding for the accurate and

efficient pricing of these contracts.

The history of option pricing can be dated back to 1900, when Bachelier (1900)

valued stock options after assuming that the stock price process follows a Brownian

motion. However, this simple assumption is obviously not appropriate since it can

lead to negative stock and option prices (Merton 1973). A breakthrough was made

in 1973 by Black and Scholes (1973), who assumed that the underlying price

follows a geometric Brownian option and presented a closed-form pricing formula

for European options. Although the Black-Scholes (B-S) model enjoys great

popularity due to its simplicity and tractability, the simplified assumptions, such as

the constant volatility, made in the B-S model are not appropriate and can lead to

large pricing biases. Therefore, a number of modified models have been proposed,

including jump-diffusion models (Merton 1976; Kou 2002), L�evy models (Carr

et al. 2002; Lin and He 2020; He and Lin 2021), and fractional B-S models

(Golbabai et al. 2019; Golbabai and Nikan 2020). Among all these modifications,

stochastic volatility models (Heston 1993; He and Chen 2021a, b; Lin and He

2021a, b), making the volatility another random variable, have received a lot of

attention.

Unfortunately, with the addition of another stochastic source, it is impossible to

preserve the analytical tractability even for European options under most of

stochastic volatility models, and no closed-form pricing formula has ever been

derived for barrier options under stochastic volatility models. As a result, numerical

methods must be resorted to when pricing barrier options under these models.

Monte Carlo simulation, as one of the most fundamental numerical approaches, is

one of the possible candidates. However, this classical approach is very time

consuming to obtain an accurate result for pricing continuously monitored barrier

options since the barrier may be hit between the discrete computational nodes and a

much smaller time step is required to reach a reasonable degree of accuracy,

compared with the pricing of European options. This implies that there is a trade-off

between the computational time and errors. To overcome this drawback, various

simulation techniques have been introduced, including the adaptive Monte Carlo

method (Dzougoutov et al. 2005), Brownian bridge method (Metwally and Atiya

2002), and the symmetrization methods (Carr and Lee 2009; Akahori and Imamura

2014). On the other hand, an alternative numerical approach to Monte Carlo

simulation is the finite difference method, which also shows slow convergence when

pricing barrier options under stochastic volatility models. To increase the

computational efficiency for pricing barrier options under stochastic volatility

models, a fourth-order smoothing scheme with improved convergence was proposed

in Yousuf (2009), while Chiarella et al. (2012) developed a method of lines

approach.

Although much progress has been made in numerically computing barrier option

prices, these approaches are still computationally expensive, making them difficult

to be implemented in practice. In contrast to numerical approaches, analytical

approximation is another most common tool in derivative pricing, when closed-form

solutions are not available, and this kind of approaches, if appropriately applied, can

spare a lot of computational effort without losing too much accuracy. It has been
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applied to pricing various option contracts, such European options (Zhu and He

2016; He and Zhu 2016), barrier options (Lo et al. 2003; Funahashi and Higuchi

2018) and American options (Ju and Zhong 1999; Evans et al. 2002).

In this paper, we consider the pricing of continuously monitored barrier options

under the Heston model (Heston 1993), a well-known stochastic volatility model

that is widely adopted in today’s financial practice. Unlike the B-S model, where an

analytical pricing formula for barrier options exists (Rubinstein and Reiner 1991), it

is extremely difficult to analytically price barrier options under the Heston model, as

there are two stochastic sources. To cope with this difficulty, we develop a two-step

solution procedure; under the assumption that the future information of the volatility

is given at the current time, we derive an analytical approximation formula for

barrier options using a similar technique adopted in Lo et al. (2003), based on which

the target barrier option price under the Heston model is obtained by making use of

the COS method (Fang and Oosterlee 2008) as well as the density of the volatility.

The efficiency and accuracy of the approximation is demonstrated through

numerical experiments.

The main contribution of this paper can be summarized from two aspects. On one

hand, the two-step solution process we developed splits the difficult task of pricing

barrier options under the Heston stochastic volatility model into two small tasks

which are relatively easier to solve. This approach is possible to be extended to deal

with other complex financial derivative pricing problems. On the other hand, we

present an analytical approximation formula of high efficiency and accuracy for

barrier option prices under the Heston model, showing its great potential in practical

applications.

The rest of the paper is organized as follows. In Sect. 2, the details on how to

derive an analytical approximation formula for barrier option prices under the

Heston model are illustrated. In Sect. 3, numerical examples and discussions are

presented, followed by some concluding remarks in the last section.

2 Analytical Approximation of a Barrier Option

In this section, the pricing of a down and out call option1 is considered under the

Heston model, and a two-step solution procedure is developed; upon assuming that

all the information of the volatility process up to the expiry of the option contract is

known at the current time, we price barrier options under the resulted time-

dependent B-S model, after which the barrier option price under the Heston model is

formulated using the Fourier cosine series and the density of the volatility.

2.1 A Conditional Option Price

If the underlying asset price and the volatility are denoted by St and vt, respectively,
they are assumed to follow the Heston model under a risk neutral measure, i.e.,

1 The extension to other types of barrier options are rather straightforward.
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d ln St ¼ r � 1

2
vt

� �
dt þ ffiffiffiffi

vt
p

dCt;

dvt ¼ kðh� vtÞdt þ r
ffiffiffiffi
vt

p
dBt;

8<
: ð2:1Þ

where k and h are the mean reversion speed and level of the volatility, respectively.

r is the so-called volatility of volatility, r is the risk free interest rate, Ct and Bt are

two standard Brownian motions with correlation q.
As a prior step in deriving the analytical solution, we assume that all the future

information of the volatility is given, or equivalently, all the stochastic sources

contained in the volatility process is deterministic. To realize this, we rewrite the

dynamics in (2.1) as

d ln St ¼ ðr � 1

2
vtÞdt þ

ffiffiffiffi
vt

p ðqdBt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
dWtÞ;

dvt ¼ kðh� vtÞdt þ r
ffiffiffiffi
vt

p
dBt;

8<
: ð2:2Þ

with Wt as another standard Brownian motion being independent with Bt. In this

case, Bt is not stochastic under our assumption, but a time-dependent value, and it

can be expressed as

dBt ¼
dvt � kðh� vtÞdt

r
ffiffiffiffi
vt

p ;

the substitution of which into (2.2) yields

d ln St ¼ r � 1

2
vt �

qk
r
ðh� vtÞ þ

q
r
dvt
dt

� �
dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ffiffiffiffi
vt

p
dWt: ð2:3Þ

Clearly, with the assumption that the volatility values are known in advance, the

underlying price in (2.3) follows a time-dependent B-S model. If Vðy; tjFB
TÞ rep-

resents the corresponding conditional down and out call option price, where yt is

defined as yt ¼ ln St � lnD with D as the barrier and FB
T is filtration of the

Brownian motion Bt up to the expiry t ¼ T , it should follow the following PDE

(partial differential equation) system according to the risk neutral pricing rule

oV

ot
þ 1

2
ð1� q2Þvt

o2V

oy2
þ ½r � 1

2
vt �

qk
r
ðh� vtÞ þ

q
r
dvt
dt

� oV
oy

� rV ¼ 0; y[ 0;

Vðy; TjFB
TÞ ¼ maxðDey � K; 0Þ;

Vð0; tjFB
TÞ ¼ 0:

8>>><
>>>:

To facilitate the computation in the following, we introduce the transform of s ¼
T � t and Vðy; tjFB

TÞ ¼ DUðy; sjFB
TÞ such that the above system becomes

123

1416 X-J.He, S. Lin



oU

os
¼ 1

2
ð1� q2Þvt

o2U

oy2
þ ½r � 1

2
vt �

qk
r
ðh� vtÞ þ

q
r
dvt
dt

� oU
oy

� rU; y[ 0;

Uðy; 0jFB
TÞ ¼ maxðey � K

D
; 0Þ;

Uð0; sjFB
TÞ ¼ 0:

8>>>>><
>>>>>:

ð2:4Þ

As System (2.4) is a heat equation with time-dependent parameters, it is natural for

us to transform it into a standard heat equation. Following Lo et al. (2003), we

define

c1ðsÞ ¼
Z T

t

r � 1

2
vs �

qk
r
ðh� vsÞ þ

q
r
dvs
ds

ds ¼

ðr � qkh
r

Þsþ ðqk
r

� 1

2
ÞhT þ q

r
ðvT � vtÞ;

c2ðsÞ ¼
1

2
ð1� q2ÞhT ;

with

hT ¼
Z T

t

vsds; ð2:5Þ

so that we make the transformation of z ¼ y� y�ðsÞ, where y�ðsÞ ¼ �c1ðsÞ �
bc2ðsÞ with b being an adjusted parameter to be determined later. By denoting

~Uðz; sjFB
TÞ ¼ ersUðy; sjFB

TÞ;

the PDE system (2.4) can be converted into

o ~U

os
¼ 1

2
ð1� q2Þvt

o2 ~U

oz2
� 1

2
ð1� q2Þbvt

o ~U

oz
; z[ � y�ðsÞ;

~Uðz; 0jFB
TÞ ¼ maxðez � K

D
; 0Þ;

~Uð�y�ðsÞ; sjFB
TÞ ¼ 0:

8>>>><
>>>>:

ð2:6Þ

The time-dependent parameters contained in the PDE of (2.6) can be eliminated if

we assume n ¼ c2ðsÞ, and in this case (2.6) can be reformulated as

o �U

on
¼ o2 �U

oz2
; z[ � y�ðsÞ;

~Uðz; 0jFB
TÞ ¼ e�

b
2
z maxðez � K

D
; 0Þ;

�Uð�y�ðsÞ; njFB
TÞ ¼ 0;

8>>>>><
>>>>>:

ð2:7Þ

with the transformation of
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�Uðz; njFB
TÞ ¼ e�

b
2
zþb2

4
n ~Uðz; sjFB

TÞ:

Although it seems straightforward now as the PDE in (2.7) is a standard heat

equation, the problem of finding �Uðz; njFB
TÞ is still not an easy task, because we

now have a time-dependent barrier. To overcome this difficulty, we aim to find an

appropriate b such that y�ðsÞ is always a good approximation for 0 when s 2 ½0; s�,
in which case the time-dependent barrier is approximately 0. What we choose here

is

b ¼ � c1ðsÞ
c2ðsÞ

; ð2:8Þ

so that y�ðsÞ ¼ 0. This is different from the one used in Lo et al. (2003), and it paves

the way to derive the analytical formula for the down and out call option price to be

presented later. By doing so, the solution to (2.7) can be approximated by the

solution to the following system

o �U

on
¼ o2 �U

oz2
; z[ 0;

~Uðz; 0jFB
TÞ ¼ e�

b
2
z maxðez � K

D
; 0Þ;

�Uð0; njFB
TÞ ¼ 0:

8>>>>><
>>>>>:

By utilizing the method of images and the fundamental solution, the approximation

solution can be expressed as

�Uðz; njFB
TÞ ¼

Z þ1

0

1ffiffiffiffiffiffiffiffi
4pn

p e�
ðz�xÞ2
4n e�

b
2
x maxðex � K

D
; 0Þdx�

Z 0

�1

1ffiffiffiffiffiffiffiffi
4pn

p e�
ðz�xÞ2
4n e

b
2
x maxðe�x � K

D
; 0Þdx;

which can be further simplified to

�Uðz; njFB
TÞ ¼ e

1
4
ð2�bÞ2nþ1

2
ð2�bÞzN

zþ ð2� bÞn� lnðKDÞffiffiffiffiffi
2n

p
� �

� K

D
e
1
4
b2n�1

2
bzN

z� bn� lnðKDÞffiffiffiffiffi
2n

p
� �

�e
1
4
ð2�bÞ2n�1

2
ð2�bÞzN

�zþ ð2� bÞn� lnðKDÞffiffiffiffiffi
2n

p
� �

þ K

D
e
1
4
b2nþ1

2
bzN

�z� bn� lnðKDÞffiffiffiffiffi
2n

p
� �

;

with Nð�Þ representing the standard normal distribution function, after some alge-

braic calculations. Expressing in original variables, the conditional barrier option

price can finally be formulated as
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Vðy; tjFB
TÞ ¼ De�rsþyþc1ðsÞþc2ðsÞNðd1Þ � Ke�rsNðd2Þ

�De�rsþðb�1Þ½yþc1ðsÞ�þðb�1Þ2c2ðsÞNðd3Þ þ Ke�rsþb½yþc1ðsÞ�þb2c2ðsÞNðd4Þ;
ð2:9Þ

where

d1 ¼
yþ c1ðsÞ þ 2c2ðsÞ � lnðKDÞffiffiffiffiffiffiffiffiffiffiffiffiffi

2c2ðsÞ
p ; d2 ¼

yþ c1ðsÞ � lnðKDÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2ðsÞ

p ;

d3 ¼
lnðDKÞ � ½yþ c1ðsÞ þ 2ðb� 1Þc2ðsÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi

2c2ðsÞ
p ; d4 ¼

lnðDKÞ � ½yþ c1ðsÞ þ 2bc2ðsÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2ðsÞ

p :

The formula presented in (2.9) has a similar expression as the down and out call

option price under the B-S model. However, our task of pricing the down and out

call option under the Heston model has not been completed, as the one we have

derived is under the assumption that the values of the volatility before expiry are

given at the current time, whereas we are certainly unable to predict the future

information of the volatility. In the next subsection, the details on how to remove

this particular assumption while still preserve the analytical tractability will be

presented.

2.2 The Fourier Cosine Series Solution

This subsection is devoted to deriving the down and out call option price when both

of the underlying price and the volatility are stochastic, based on the results

presented in the previous subsection. In fact, the target option price, V(y, v, t), is an
expectation of the condition price presented in (2.9), i.e.,

Vðy; v; tÞ ¼ E½Vðy; tjFB
TÞjFB

t �;

which seems to be an impossible task to analytically work it out, especially given

the convoluted expression of Vðy; tjFB
TÞ. However, it should be noted that hT

defined in (2.5) and vT are the only two random variables contained in the formula

of Vðy; tjFB
TÞ, when the volatility is no longer deterministic. Having realized this, if

we denote

MðhT ; vTÞ ¼ Vðy; tjFB
TÞ;

the option price can be alternatively expressed as

Vðy; v; tÞ ¼ E½MðhT ; vTÞjvt�;

solving which yields the desired solution. This is however not straightforward at all,

as hT and vT are dependent on each other. To overcome this difficulty, instead of

directly working on the expectation, we apply the tower rule of the expectation so

that
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Vðy; v; tÞ ¼ EfE½MðhT ; vTÞjvt; vT �jvtg:

This implies that the first step is to compute the inner expectation, with the terminal

value of the volatility, vT , being regarded as known in advance.

If we define

Vðy; v; tjvTÞ ¼ E½MðhT ; vTÞjvt; vT �;

the involved expectation only contains one random variable, hT , and it can certainly

be represented by

Vðy; v; tjvTÞ ¼
Z þ1

0

MðhT ; vTÞf ðhT jvt; vTÞdhT ; ð2:10Þ

with f ðhT jvt; vTÞ being the corresponding conditional density. Of course, further

steps need to be taken to derive this conditional price, as f ðhT jvt; vTÞ is not available
in closed-form. We now truncate the domain of ½0;þ1Þ into [a,b] such that the

semi-infinite integral in (2.10) can be approximated by

Vðy; v; tjvTÞ �
Z b

a

MðhT ; vTÞf ðhT jvt; vTÞdhT ; ð2:11Þ

with which we are able to seek for a solution in the form of a Fourier cosine series,

using the COS method (Fang and Oosterlee 2008). In particular, the density function

is firstly expanded into a Fourier cosine series as

f ðhT jvt; vTÞ ¼
1

2
A0ðvt; vTÞ þ

Xþ1

k¼1

Akðvt; vTÞ cosðkp
hT � a

b� a
Þ; ð2:12Þ

where the coefficients, Akðvt; vTÞ; k ¼ 0; 1; 2:::, have the expression of

Akðvt; vTÞ ¼
2

b� a

Z b

a

f ðhT jvt; vTÞ cosðkp
hT � a

b� a
ÞdhT ; k ¼ 0; 1; 2::: ð2:13Þ

Substituting (2.12) into (2.11) yields

Vðy; v; tjvTÞ ¼
Z b

a

MðhT ; vTÞ½
1

2
A0ðvt; vTÞ þ

Xþ1

k¼1

Akðvt; vTÞ cosðkp
hT � a

b� a
Þ�dhT :

Interchanging the summation and the integration further leads to

Vðy; v; tjvTÞ ¼
1

2
A0ðvt; vTÞV0 þ

Xþ1

k¼1

Akðvt; vTÞVk; ð2:14Þ

where

Vk ¼
Z b

a

MðhT ; vTÞ cosðkp
hT � a

b� a
ÞdhT ; k ¼ 0; 1; 2; :::

Clearly, the only unknown terms involved in (2.14) are the coefficients of the
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Fourier cosine series, Akðvt; vTÞ; k ¼ 0; 1; 2:::, and the formula (2.14) will become

analytical once they have been derived. However, the integral presented in the

definition of Akðvt; vTÞ; k ¼ 0; 1; 2:::, (2.13), still requires the information of the

density f ðhT jvt; vTÞ, which poses an obstacle for its analytical derivation. Fortu-

nately, making use of the relationship between the characteristic function and the

density function can result in

Akðvt; vTÞ ¼
2

b� a
Real½gð kp

b� a
jvt; vTÞe�j kapb�a�; k ¼ 0; 1; 2; :::;

where gð/jvt; vTÞ is the characteristic function of hT , with a closed-form expression

(Broadie and Kaya 2006) as

gð/jvt; vTÞ ¼E½ej/hT jvt; vT �

¼
Iqf

ffiffiffiffiffiffiffiffi
vtvT

p 4nð/Þe�
1
2
nð/ÞðT�tÞ

r2½1�e�nð/ÞðT�tÞ�g

Iqf
ffiffiffiffiffiffiffiffi
vtvT

p 4ke�
1
2
kðT�tÞ

r2½1�e�kðT�tÞ�g
� nð/Þe�1

2
½nð/Þ�k�ðT�tÞ½1� e�kðT�tÞ�
k½1� e�nð/ÞðT�tÞ�

�e
vTþvt

r2
fk½1þe�kðT�tÞ �

1�e�kðT�tÞ �nð/Þ½1þe�nð/ÞðT�tÞ �
1�e�nð/ÞðT�tÞ g

:

Here, q ¼ 2kh
r2

, nð/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2jr2/

p
, and Iqð�Þ is the modified Bessel function of

the first kind with order q.
Till now, the down and out call option price conditional up the information of vT

formulated in (2.14) is completely analytical, and thus the remaining task is to take

the expectation of Vðy; v; tjvTÞ with respect to vT , i.e.,

Vðy; v; tÞ ¼ E½Vðy; v; tjvTÞjvt�:

As the density function of vT have an analytical expression as

pðvT jvtÞ ¼ ge�g½vte�kðT�tÞþvT �½ vT
vte�kðT�tÞ�

q
2Iq½2ge�

1
2
kðT�tÞ ffiffiffiffiffiffiffiffi

vtvT
p �;

with g ¼ 2k

r2½1� e�kðT�tÞ�, we can finally arrive at

Vðy; v; tÞ ¼
Z þ1

0

Vðy; v; tjvTÞpðvT jvtÞdvT ¼
Z þ1

0

½1
2
A0ðvt; vTÞV0

þ
Xþ1

k¼1

Akðvt; vTÞVk�pðvT jvtÞdvT :
ð2:15Þ

We have now successfully presented an analytical approximation of the down and

out call option price under the Heston model in (2.15). However, once an

approximation is made, it is necessary to check its accuracy to ensure its safe

applications in practice. This will be discussed in the following section.
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3 Numerical Examples and Discussions

In this section, the speed of convergence and the accuracy of the formula will be

investigated through numerical examples. Unless otherwise stated in the following,

the mean reversion speed k, the mean reversion level h and the volatility of volatility
r are assumed to take the values of 2, 0.02 and 0.1, respectively. Both of the current

underlying price St and the strike K are 100, while the barrier level D is equal to 90.

Other parameters include r ¼ 0:1; q ¼ �0:5; v ¼ 0:01; s ¼ 1. It should be noted that

the truncated domain [a, b] used in the Fourier cosine series expansion should also

be determined such that (2.11) is a good approximation to (2.10). In this case, the

value of a should be close to 0 and it is thus allocated as 1e-4. The value of b should

be large enough such that the integrand in (2.10) is approximately 0, according to

which it is chosen as 3EðvT jvtÞT .
As our formula involves a series solution, its speed of convergence is an

important factor that needs to be considered in practice, especially given the recent

trend of algorithmic trading. As a result, Table 1 exhibits the option prices

calculated with different number of terms used in the series solution. One can

clearly observe that our formula actually converges very rapidly, with 15-term price

already being very close to the converged one, as the maximum absolute difference

(AD) between 14-term and 15-term prices is less than 0.002. The fast speed of

convergence is further demonstrated by 49-term and 50-term prices, with the

maximum AD between the two prices being in the order of 1e-9, and this implies

that it suffices to use 50 terms in the series solution to produce the option prices. On

the other hand, to figure out the accuracy of our approximation, we use the results

obtained from the Monte Carlo (MC) simulation with 1,000,000 sample paths and

10,000 time steps accompanied by a 98% confidence interval as a benchmark.

Obviously, our approximation using 50 terms is almost the same as the MC price

when the time to expiry is very small, with the relative error (RE) between the two

Table 1 The speed of convergence

s 0.1 0.3 0.5 0.6 0.8 1

14 terms 1.8783 4.2009 6.2847 7.2737 9.1610 10.9386

15 terms 1.8781 4.2009 6.4198 7.2742 9.1598 10.9370

AD 2.3e-4 1.1e-5 5.3e-4 8.0e-4 1.3e-3 1.5e-3

19 terms 1.8786 4.2013 6.2845 7.2733 9.1606 10.9390

20 terms 1.8786 4.2013 6.2846 7.2734 9.1608 10.9393

AD 1.9e-5 4.0e-5 1.0e-4 1.4e-4 2.3e-4 2.9e-4

49 terms 1.8785 4.2013 6.2846 7.2735 9.1609 10.9392

50 terms 1.8785 4.2013 6.2846 7.2735 9.1609 10.9392

AD 2.8e-12 2.7e-10 2.1e-9 4.1e-9 6.4e-9 2.9e-10

MC 1.8786 4.1958 6.2650 7.2400 9.0357 10.7151

(±0.005) (±0.010) (±0.013) (±0.015) (±0.020) (±0.024)

RE(%) 0.01 0.13 0.31 0.46 1.39 2.09
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prices being only 0.01%. Of course, one can observe that the RE increases when the

time to expiry is enlarged. However, such an increase is not very significant, and the

RE is just around 2%, when the time to expiry reaches 1, which is also a clear

evidence of the accuracy.

To further show the reliableness of our approximation, we compare our

approximation with the corresponding MC results for a wide range of strikes and

correlations in Table 2. Overall, our formula approximates the down and out call

option prices quite well, with the maximum RE between our price and MC price

being less than 2.5%. In particular, an interesting phenomenon that can be observed

is that our approximation becomes more accurate when the correlation between the

underlying price and volatility increases, and the corresponding RE is even less than

0.25% when the correlation is equal to 0.5, no matter the option is in the money, at

the money or out of money. It should also be pointed out that for different

correlations, our approximation always tends to work better for out of money

options than in the money ones.

4 Conclusion

In this paper, the solution procedure for deriving an analytical approximation

formula for pricing barrier options under the Heston model is presented. Instead of

directly working on this complicated problem, we divide the process into two steps;

an approximation for the option price is obtained conditional upon all the future

information of the volatility in the first step, taking expectation of which in the

second step yields the desired formula, which involves a Fourier cosines series.

Through numerical experiments, the newly derived formula is demonstrated to

Table 2 The accuracy across

different strikes and correlation
K 95 100 105 110 115

q ¼ 0:5

Ours 14.2372 10.6475 7.5781 5.1522 3.3656

MC 14.2230 10.6335 7.5747 5.1405 3.3578

(±0.029) (±0.026) (±0.023) (±0.020) (±0.017)

RE(%) 0.10 0.13 0.04 0.23 0.23

q ¼ 0

Ours 14.0457 10.5995 7.5672 5.1018 3.2520

MC 14.1603 10.6827 7.6039 5.1342 3.2602

(±0.028) (±0.025) (±0.022) (±0.019) (±0.015)

RE(%) 0.81 0.78 0.48 0.63 0.25

q ¼ �0:5

Ours 14.5220 10.9392 7.7652 5.1560 3.1818

MC 14.1791 10.7151 7.6358 5.1125 3.1542

(±0.027) (±0.024) (±0.021) (±0.018) (±0.014)

RE(%) 2.42 2.09 1.69 0.85 0.88
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converge very rapidly and be able to produce accurate results, implying its potential

for practical applications.
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