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Abstract
Because of their complexity, taking agent-based models to the data is still an

unresolved issue. In this paper we propose a method to calibrate the model

parameters on real data that is based on a novel global sensitivity analysis proce-

dure. The innovative feature of this procedure is that it allows to estimate regression

meta-models for the relationship between model parameters and model output

without resorting to Monte Carlo simulations to eliminate the effect of randomness.

This is achieved by sampling at the same time both the parameters and the seed of

the random numbers generator in a random fashion. If correctly specified, the meta-

models can be directly used to consistently estimate the average response of the

ABM to any parameter vector input by the modeler and, as a consequence, also the

distance between real and simulated data. The advantage of the proposed method is

twofold: it is very parsimonious in terms of computational time and is relatively

easy to implement, being it based on elementary econometric techniques.
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1 Introduction

Unlike mainstream economic models, taking agent-based models (ABMs) to the

data is still an unresolved issue.

Generally speaking, agent-based (or also ‘multi-agent’) models are analytical

frameworks used to describe and analyze complex systems populated by many

heterogeneous and interacting units (i.e. the agents). The application of ABMs to

economics has given birth to the so-called agent-based computational economics

(ACE), which is basically the use of computer simulations to study evolving

artificial economies composed of many autonomous interacting agents such as

consumers and firms (Judd and Tesfatsion 2006). Applications are uncountable and

range from the study of single markets, such as the financial market and the labor

market, to the study of an entire multi-market economy.

Formally speaking, ABMs are systems of stochastic difference equations that in

general cannot be analytically solved because of their complexity. Once designed,

therefore, an AB model must be coded and turned into a software, initialized and

then simulated with the help of a computer for a given number of time steps. Then,

from simulations the modeler obtains statistics that can be analyzed in order to

assess the model’s properties, which in general will depend on the initial conditions,

on the parameter values and on the stream of random numbers used along the

simulation (for a deeper theoretical treatment see e.g. Delli Gatti et al. 2011, 2018).

An important phase of the model analysis is its empirical validation, that is the
comparison of the model with empirical data aimed at evaluating its degree of

realism (Fagiolo et al. 2007). There are essentially three types of validation (Judd

and Tesfatsion 2006; Bianchi et al. 2007):

1. Input or ex ante validation, ensuring that the model characteristics exogenously

input by the modeler (such as agents’ behavioral equations, initial conditions,

random-shock realizations, etc.) are empirically meaningful and broadly

consistent with the real system being studied through the model.

2. Descriptive output validation, assessing how well the model output matches the

properties of pre-selected empirical data.

3. Predictive output validation, assessing how well the model output is able to

forecast properties of new data (out-of-sample forecasting).

The most common procedure is descriptive output validation, which is carried out

by visually and statistically evaluating the model’s ability to replicate (qualitatively

and/or quantitatively) some stylized facts such as for instance firm-size distributions

(as in Bianchi et al. 2007, 2008) or macroeconomic co-movements (as in Delli Gatti

et al. 2011). Recently, more advanced methods to validate ABMs have been put

forth. For example, Guerini and Moneta (2017) propose to compare the causal

structures implied by a structural VAR model estimated on both real and simulated

data, while Lamperti (2018) introduces a new measure of divergence to quantify the

1 Some authors distinguish between calibration and estimation (e.g. Grazzini and Richiardi 2015), but to

us the difference is more conceptual than factual.
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similarity between the dynamics of real-world time series and the dynamics of

model-generated time series.

Related and instrumental to validation is calibration (or also ‘estimation’), which

is the process of choosing particular values for the model parameters in order to

make the model output as realistic as possible.1 As in general ABMs are

complicated models that cannot be analytically solved, their parameters cannot be

calibrated through direct estimation as it happens for regression models. Hence,

ABMs are commonly calibrated by indirect methods such as indirect inference

(Gourieroux et al. 1993) and the method of simulated moments (McFadden 1989),

which are special cases of the simulated minimum distance approach (Grazzini and

Richiardi 2015).

Many different variants of calibration through indirect methods exist in ACE

literature, including among the others2 those proposed by Gilli and Winker (2003),

Bianchi et al. (2007, 2008), Fabretti (2013), Recchioni et al. (2015), Grazzini and

Richiardi (2015) and Lamperti (2018). In essence, however, indirect methods

always consist of three phases (Richiardi 2018):

1. Choosing a set of statistics S ¼ ðS1; S2; . . .; SqÞ0 computable both on real data

(Sr) and on simulated data (Sm);
3

2. Choosing a metric dð�Þ to measure the distance between Sr and Sm, that is the
degree of realism of the model;

3. Choosing by simulations those model parameters that minimize the distance

dðSr; SmÞ.

All the three phases of the above scheme present their own issues, but the one that is

more problematic from the computational point of view is the minimization

procedure. For most of ABMs, in fact, the minimization of the distance cannot be

achieved by solving a system of first-order conditions. Calibration therefore would

require in principle a point-by-point exploration of the parameter space of the ABM

aimed at calculating by simulations the value of the objective function dðSr; SmÞ. In
this way the modeler can find the ‘‘best’’ parameter vector, that is the one associated

to the smallest distance. If the model is simple, a complete exploration of the

parameter space can be done at reasonable computational costs. However, for most

of ABMs this is hardly the case, as two difficulties arise.

A first difficulty encountered during this exploration is created by the typical

over-parametrization that characterizes ABMs and the ensuing high-dimensionality

of the parameter space. For example, if in a model there are just 10 relevant

parameters and each parameter can take on 10 different values (a rather simplifying

assumption indeed), then the parameter space is composed of 1010 parameter

vectors.

But a second difficulty adds to the search for the best parameter vector: the

interference of randomness on the model output. Given in fact the set of statistics S,

2 See for example Fagiolo et al. (2017) and Lux and Zwinkels (2018) for two extensive surveys.
3 The relevant information needs not to be necessarily summarized by statistics, also entire time series

and cross-sectional data can be used.
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the statistic Sm computed on the output of a single simulation of the model will be in

general a function of the model parameters h belonging to the parameter space H, of

initial conditions I0 and random numbers r. Ignoring for simplicity the initial

conditions (which can be done if the model is ergodic), we can write

Sm ¼ Smðh; rÞ: ð1Þ

Hence, when computing the distance dð�Þ between real and simulated data, also this

will be a function of the parameters and the random numbers:

dðSr; SmÞ � dðh; rÞ: ð2Þ

Definition (2) highlights the second difficulty afflicting calibration, that is the

influence of the numbers r on the magnitude of distance d. The typical way of

getting rid of this influence is to perform Monte Carlo simulations. Basically, the

model needs to be simulated k times with the same parameter vector but with

different streams of random numbers, obtaining k statistics Smðh; rkÞ, so that the

Monte Carlo average ŜmðhÞ ¼ k�1
P

k Smðh; rkÞ can be taken. Finally, the distance d

is computed using ŜmðhÞ, from which the influence of random numbers has been

possibly averaged out.

Clearly, computing Monte Carlo averages for each parameter vector h 2 H is

computationally demanding, if anyway workable (in the example above it would

require k � 1010 simulations of the model). Hence, in order to reduce the

computational burden approaches to calibration have been developed that explore

only suitable sub-sets of the parameter space, where the sub-set can be

endogenously selected via optimization procedures based on search algorithms

(Nocedal and Wright 1999, is a good reference to the vast literature about this

topic). Because of the typical complexity of ABMs, however, a major drawback of

the application of search algorithms is that they can easily get stuck into local

solutions. In other words, the solution depends on the starting point of the search.

Hence, this approach may still require many simulations of the model because the

researcher needs to repeat the search for different starting points. For instance,

Recchioni et al. (2015) is a recent application of a gradient-based search algorithm

to the calibration of a financial agent-based model requiring thousands of

simulations. Another strategy adopted to avoid the complete exploration of the

parameter space is to employ genetic algorithms as for instance in Fabretti (2013).

Also genetic algorithms, however, are computationally demanding.

A different approach to calibration that avoids to simulate a computational model

(including ABMs) for the whole parameter space is based on the concept of meta-
modeling. Meta-modeling, mainly used in sensitivity analysis, is the process of

approximation of an unknown complicated relationship between input factors (the

parameters h) and model output (the statistics Sm) with a simpler one of known

shape (Saltelli et al. 2008, ch. 5). In this paper we will present a novel calibration

method based on the global sensitivity analysis procedure proposed by Chen and

Desiderio (2018, 2020), which belongs precisely to the meta-modeling approach.

Our method requires the estimation of an auxiliary regression meta-model (the

model of a model, also called ‘emulator’) for the statistics of interests by running the
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ABM only for some parameter vectors. Once estimated, the meta-model can be used

to calculate approximated statistics Ŝm for the whole parameter space without

further simulations of the original computational model. This approach bears strong

resemblance to indirect methods and consists of four phases:

1. Choosing a set of statistics S ¼ ðS1; S2; :::; SqÞ0 computable both on real data (Sr)

and on simulated data (Sm);
2. Choosing and estimating a meta-model Sm ¼ MMðhÞ for the relationship

between the model parameters h and Sm;
3. Choosing a metric dð�Þ to measure the distance between Sr and the fitted values

Ŝm of the meta-model;

4. Choosing those model parameters that minimize the distance dðSr; ŜmÞ.

The advantage of such a method is that the ABM is simulated only for a limited

number of parameter vectors at point 2 in order to estimate the meta-model.

Calibration procedures based on meta-modeling such as ours are therefore intended

to increase the speed of the calibration process at the expenses of its accuracy,

because the statistics Sm are approximated by the fitted values of the meta-model.

Hence, calibration through meta-modeling makes specially sense for computation-

ally demanding large-scale ABMs, in which case some accuracy may well be

sacrificed in exchange of a gain in speed.

To our knowledge, there are only three examples of calibration through meta-

modeling in agent-based economics: Salle and Yildizoglu (2014), Barde and van der

Hoog (2017) and Bargigli et al. (2020), basically all sharing the same methodology.

The novelty introduced by our method, and also the essential difference with respect

to the one used in the above-mentioned works, is its sampling strategy for the

parameter vectors, which allows to eliminate the noise caused by the random

numbers without resorting to Monte Carlo replications. In this way the computa-

tional burden is greatly reduced. Moreover, our sampling strategy is very simple and

can in principle be applied to any other technique based on meta-modeling. Another

important feature of the method is its simplicity of implementation, as it is based on

simple econometric techniques that are at the average economist’s reach.

The paper continues as follows: the calibration method is explained in Sect. 2,

and in Sect. 3 it is applied as example to calibrate two parameters of the ABM

presented in Chen and Desiderio (2018, 2020). Section 4 concludes.

2 The Calibration Method

Let us suppose that we have already chosen the set of statistics S and the metric dð�Þ,
and that the statistic Sm computed on the output of a single simulation of the agent-

based model is a function of the model parameters h 2 H and random numbers r.
Hence, our goal is to find the vector h� that minimizes the distance given by Eq. (2).
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Doing this requires first a crucial intermediate step, that is the estimation of an

auxiliary regression meta-model:

Sm ¼ f ðh; bÞ þ uðh; rÞ; ð3Þ

where f ð�Þ is a linear regression function depending on the meta-parameters b,
which measure the partial effect of the model parameters h on Sm.

4

In principle, the regression error u may depend both on the stream of random

numbers and on the model parameters. For simplicity, we can assume that the error

does not depend on h. This last assumption is equivalent to assuming that the meta-

model (3) is correctly specified, and can be tested using a regression specification

error test such as Ramsey’s RESET. In case the hypothesis of correct specification is

rejected, model (3) can always be augmented with non-linear functions of h until a

satisfactory meta-model is found. Hence, in the following we will suppose that the

error u depends only on the stream of random numbers r:

Sm ¼ f ðh; bÞ þ uðrÞ: ð4Þ

The convenience of this representation of the statistic Sm is that it allows to split it

into two parts: one that depends on the random numbers (u(r)) and one which does

not (f ðh; bÞ). Moreover, if Covðh; rÞ ¼ 0 we have EðSmjhÞ ¼ f ðh; bÞ, that is the

meta-model f ðh; bÞ is the average value of Sm for given h. In other words, and this is
the crucial point we want to stress, if Covðh; rÞ ¼ 0 the meta-model f ðh; bÞ repre-
sents exactly the average response of the ABM to the parameter vector h, which is

precisely what the researcher wants to obtain when resorting to Monte Carlo sim-

ulations aimed at eliminating the noise generated by the random numbers.

In order to estimate the meta-model we have to generate n vectors hi randomly

sampled from the parameter space H and n streams of numbers ri randomly selected

as well. Then, for each vector hi and stream ri we simulate the agent-based model

once, obtaining n values SmðiÞ for the statistic of interest. In practice, when for a

given hi we run a simulation of the agent-based model to generate the corresponding

SmðiÞ, we have to randomly choose the seed of the random number generator.

Consequently, using the samples for Sm and for the parameters h we can estimate,

for instance by OLS, the relationship

SmðiÞ ¼ f ðhi; bÞ þ uðriÞ; 8i ¼ 1:::n; ð5Þ

obtaining estimated meta-parameters b̂, from which we can compute the sample

regression function

Ŝm ¼ f ðh; b̂Þ: ð6Þ

Clearly, these estimates will depend on the unobserved sequences of random

numbers. However, the central point of our approach is that we treat the numbers ri
in Eq. (5) simply as omitted explanatory variables influencing SmðiÞ through the

error term. And as the stream ri was randomly selected, necessarily it is uncorrelated

4 For clarity’s sake we will suppose that Sm is a scalar. If Sm is multidimensional, then a meta-model

needs to be estimated for each element of Sm.
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with the regressors hi, which therefore are not even correlated with the error ui.
Hence, under the assumption that the regression model (5) is correctly specified, the

OLS estimators b̂ applied to it are consistent for b when n ! þ1.

In addition, as we have Covðhi; riÞ ¼ 0 for each observation i, equation (6) is

nothing else than the consistent estimate of the expectation of Sm conditional on the

parameter vector, that is

Ŝm�!
P
EðSmjhÞ: ð7Þ

Once the meta-model is estimated we can therefore use it to directly compute the

average value of the statistic Sm for every parameter vector hj 2 H without addi-

tional simulations.

Finally, for each parameter vector hj 2 H and statistic ŜmðhjÞ we can calculate

the distance

dðSr; ŜmðhjÞÞ � dðhjÞ ð8Þ

and use it to rank all the vectors. At this point, the vector corresponding to the

smallest distance dðhjÞ will be our estimate of the ‘‘best’’ vector h�.
To make things even simpler, we suggest to search for the best vector directly

among the n vectors hi used to estimate the meta-model. This is in fact legitimate as

the n vectors are randomly sampled and, therefore, provide a fair coverage of the

whole parameter space H.

In summary, the procedure can be described by the following algorithm:

Algorithm 1

1. We sample randomly n vectors hi 2 H.

2. For each hi we run the ABM for T periods. Before each simulation the seed of
the random number generator is randomly selected.

3. On the output of each simulation i we calculate the statistics SmðiÞ.
4. Using the samples fhigni¼1 and fSmðiÞg

n
i¼1 we estimate by OLS Eq. (5), obtaining

the sample regression function Ŝm (Eq. 6).

5. For each parameter vector hj 2 H we compute the fitted value ŜmðhjÞ, which is
the estimate of the average response of the ABM to the input hj.

6. Using the fitted values and real data Sr, for each vector hj we determine the

distance dðhjÞ ¼ dðSr; ŜmðhjÞÞ.
7. After ranking all the vectors, we choose the one associated with the minimum

distance dðhjÞ.

3 An Example

As a mere illustrative example, in this section we are going to apply the proposed

calibration method to the agent-based model of Chen and Desiderio (2018, 2020),

which we refer to for details.
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In that model a closed economy is populated by firms, households and one

commercial bank. The households supply labor, buy consumption goods and hold

deposits at the bank. The firms demand labor, produce and sell consumption goods,

demand bank loans and hold deposits. The bank receives deposits and extend loans

to firms. In particular, firms with open vacancies raise their offered wage by a

stochastic percentage in order to attract workers. This stochastic percentage is

parametrized by an upper bound hn. In addition, the bank extends credit to firms

according to a ‘‘lending attitude’’ parameter k (the higher k, the lower the credit

supply).

Suppose now to want to calibrate the parameters k and hn on real data, so that

h ¼ ðk; hnÞ, with the relative parameter space H given by Table 1.5 Moreover,

suppose that the statistics S are the average growth rate of real GDP and the average

inflation rate, and that the metric dð�Þ is simply the euclidean distance.6 Then, we

have to specify the meta-model (4) for the two statistics, for which we choose a

quadratic model with a pairwise interaction term:

Sm ¼ b0 þ b1kþ b2hn þ b3k
2 þ b4h

2
n þ b5khn: ð9Þ

At this point, we randomly sample n ¼ 200 vectors hi (indeed, with n ¼ 100 results

are quite similar), and for each of them we run the ABM for 500 time steps,

choosing randomly the seed of the random number generator at every run. From

each simulation we take the statistics SmðiÞ and we estimate by OLS the two meta-

models reported in Table 2. Finally, we compute the estimate Ŝm for the whole

parameter space H and with it also the distance dðSr; ŜmÞ, which we report in Fig. 1.

In conclusion, the resulting estimate of the minimum-distance vector h� turns out to
be ðk; hnÞ ¼ ð0:1; 0:005Þ. Notice that if we searched only among the 200 vectors

used to estimate the meta-models, we would obtain a quite close solution of

ðk; hnÞ ¼ ð0:1242; 0:016Þ.

3.1 Discussion

The merit of our approach is its speed and ease of implementation, obtained

however at the price of a loss of accuracy caused by the use of approximated

simulated statistics. So, is the found solution the real minimum-distance vector? To

Table 1 Parameter space
Parameter No. of values Range

k 100 [0.1–0.9]

hn 100 [0.005–0.2]

5 The type of discretization used for the parameter space is another issue we do not consider here.
6 As real data Sr we used U.S. quarterly macro data retrieved from FRED dataset.
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answer this question one should run Monte Carlo simulations for the whole

parameter space H, which is not feasible.7 Thus, in Table 3 we report both

estimated and real distances only for 6 selected points: our solution (0.1, 0.005), the

Table 2 Meta-models for: (1)

real GDP average growth rate;

(2) average inflation rate

Regressors (1) (2)

k - 0.0049624** - 0.0180914*

hn - 0.0137434* - 0.0842037***

k2 0.0019759 0.0043077

h2n 0.0515377 0.4830279***

k � hn - 0.0056052 0.2319219***

constant 0.0043626*** 0.0105176***

R2 0.2933 0.6917

Observations ¼ 200. Significant at 1% :���; at 5% :��; at 10% :�

0
0.9

0.005
0.01

0.8

0.015

0.20.7

0.02

0.180.6

0.025

0.16

0.03

0.140.5 0.12

0.035

0.4 0.1

0.04

0.080.3 0.060.040.2 0.020.1 0

Fig. 1 Estimated distance between real and simulated data for the whole parameter space

Table 3 Distance for selected

parameter vectors
(k; hn) Estimated distance Actual distance

(0.1,0.005) 0.0041 0.0076

(0.1242,0.016) 0.0043 0.0053

(0.5,0.1) 0.0072 0.0057

(0.1,0.2) 0.0094 0.0141

(0.9,0.005) 0.0113 0.0311

(0.9,0.2) 0.0352 0.0366

Actual distances are Monte Carlo averages over 50 runs of the ABM

7 Running the ABM for 500 time steps on our computer takes approximately 10 s. Hence, 50 MC

replications for all the 10000 points of H would require about 1390 computer-hours.
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near-solution (0.1242, 0.016) found among the points used to estimate the meta-

models, the other three corner points of H and also its middle point (0.5, 0.1).

Among those points, we can see that the smallest actual distance is achieved at

the near-solution (0.1242, 0.016), while the solution (0.1, 0.005) is outperformed

also by the middle point. Nonetheless, the found solution is still far better than the

other three corner points, in line with the ranking obtained using the estimated

distance. In addition, the estimated distance for the point (0.9, 0.2) is very close to

the actual one.

The above outcome is only a partial failure of the procedure. We have in fact to

consider three things. First of all, the procedure was still able to identify a solution

belonging to an area of the parameter space where the distance is lower, as signaled

by the actual distance associated with the near-solution (0.1242, 0.016) and other

several nearby points that we tried (which we do not report). Secondly, the solution

depends heavily on the quality of the meta-models employed to approximate the

statistics. In Table 2 we can see in fact that their fitting (as measured by the R2) is

not particularly good, specially for the GDP growth rate. Hence, choosing a better

meta-model by adding more non-linear functions of the parameters would probably

increase the accuracy of the procedure. Last but not least, the method is intended to

reduce the computational time of calibration, and under this respect it is very

successful. Then, what the modeler should prefer between speed and accuracy

clearly depends on the circumstances: if the ABM is simple a more accurate

calibration procedure may be preferred, but if the computational model requires

hours to be simulated, then a faster albeit less precise procedure as ours could be the

best choice.

3.2 Robustness

As a robustness check, we now proceed with a brief comparison with the closely-

related approach followed by Salle and Yildizoglu (2014), Barde and van der Hoog

(2017) and Bargigli et al. (2020) (SBB, henceforth), which differs from ours mainly

in three aspects: (1) the meta-model employed (SBB use the kriging method); (2) the

object approximated by the meta-model; (3) the sampling method used to estimate

the meta-model. As the innovative feature of our calibration method is the sampling

strategy employed to estimate the meta-model, below we focus on the last point.

Moreover, in the end we will also touch briefly upon the second point.8

The sampling strategy used by SBB is the so-called nearly-orthogonal latin

hypercube approach (NOLH), devised to reduce the computational effort of meta-

model estimation (Cioppa, 2002; Cioppa and Lucas 2007). This method allows to

construct very small samples from the parameter space which nonetheless have very

good space-filling properties and mitigate the problem of multicollinearity. To make

a comparison we therefore re-estimate model (9) using the NOLH sample for two

variables taken from the spreadsheet available in Sanchez (2005). This sample

involves only 17 observations hi of the parameter space given above in Table 1.

8 We do not consider the first point as our sampling strategy can be applied to the estimation of any meta-

model, including the one used by SBB.
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Table 4 reports the results, which are quite different from the estimates obtained

through our method. In principle, we cannot tell whether these estimates are better

than ours. Hence, we repeat the estimation using the same NOLH sample but, to

refine the quality of the simulated data, for each of the 17 observations hi we run 20

Monte Carlo replications to eliminate the influence of randomness. From Table 5

we can see that, by using more precise data, the estimated coefficients look now

much closer to what we obtained by our method (cf. Table 2).9 However, to obtain

similar results we had to run the agent-based model 17 � 20 ¼ 340 times (against the

200 runs formerly used with our method). In addition, our approach is sounder from

a theoretical point of view: as in fact we use random samples, we can invoke basic

econometric theory to support the validity of our OLS estimates, whereas nothing

can be said about the statistical properties of the OLS estimates obtained using the

NOLH sample. All of this suggests that, at least in the limited context of this

example, the NOLH approach to meta-model estimation is not better than ours.

Finally, we briefly take into consideration also the second point above. SBB, in
fact, use a meta-model not to approximate the model statistics but the distance

metric. Hence, as an additional robustness check we follow this way by estimating

meta-model (9) to approximate the distance. Basically, this means that we will have

d̂ðSr; SmÞ instead of having dðSr; ŜmÞ. The estimated distance surface thus obtained

(which we do not report) is very similar to Fig. 1 and the resulting minimum-

Table 4 NOLH without Monte

Carlo replications. Meta-models

for: (1) real GDP average

growth rate; (2) average inflation

rate

Regressors (1) (2)

k 0.0128415 �0:0791399�

hn �0:153954 �0:2852023���

k2 0.0031917 0.0586363

h2n 0:9102199� 1:493021��

k � hn �0:1585562 0:3159219�

constant 0.0065299 0:0281999�

Observations ¼ 17. Significant at 1% :���; at 5% :��; at 10% :�

Table 5 NOLH with 20 Monte

Carlo replications. Meta-models

for: (1) real GDP average

growth rate; (2) average inflation

rate

Regressors (1) (2)

k �0:0012879� �0:0360332�

hn �0:0211525 �0:0010871

k2 �0:0011459 0.0221187

h2n 0.0794909 �0:0494504

k � hn �0:0080553 0:2047044���

constant 0:0041076�� 0:013206��

Observations ¼ 17. Significant at 1% :���; at 5% :��; at 10% :�

9 Using these coefficients to estimate the distance the best vector is (0.1646, 0.005), with basically the

same real distance of the vector (0.1, 0.005).
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distance vector turns out to be (0.1, 0.1035), with an estimated distance of 0.0028.

However, after running 50 MC replications of the ABM for this parameter vector,

the actual distance results in 0.0062, higher than the actual distance obtained in

correspondence of the near-solution (0.1242, 0.016) and not much lower than the

actual distance relative to (0.1, 0.005). Thus, using a meta-model directly for the

distance did not improve our prediction of the best parameter vector. Nonetheless,

whether the meta-model should be used for the statistics or for the distance is a topic

that would deserve further attention.

4 Conclusive Remarks

Taking agent-based models to the data for predictions or for mere validation

purposes is a phase that still poses many challenges to the researcher. In particular,

no consensus on which parameter calibration method should be used has emerged

thus far. This is essentially due to the complexity of ABMs, which requires

enormous computational efforts and is very likely to cause search algorithms to

remain stuck into local solutions. Moreover, none of these methods is of easy

implementation.

In this paper we have proposed a new method to calibrate the parameters on real

data that is based on the global sensitivity analysis procedure introduced by Chen

and Desiderio (2018, 2020). This method consists in estimating regression meta-

models for the relationship between model parameters and simulated statistics using

relatively few simulations. The central point of the method is that, if correctly

specified, the meta-models can be directly used to consistently estimate the average

response of the ABM to any parameter vector input by the modeler and, as a

consequence, also the distance between real and simulated data. The novelty of our

method with respect to other meta-modeling approaches is the way to sample the

parameter vectors. The trick lies in sampling at the same time both the parameters

and the seed of the random numbers generator in a random fashion, which allows to

eliminate the effect of randomness without resorting to Monte Carlo simulations.

The advantage of the proposed method is twofold: it is very parsimonious in terms

of computational time and is relatively easy to implement, being it based on

elementary econometric techniques. We point out, however, that our procedure is

intended to increase the speed of the calibration process at the expenses of its

accuracy and that, consequently, it makes more sense when applied to computa-

tionally demanding large-scale ABMs, for which the gain in speed is well worth the

loss in accuracy.

The validity of our method relies on the crucial assumption embodied in Eq. (4),

that is the correct functional form specification of the meta-models. If this is not

true, the method may bring to very misleading conclusions, but we remark that the

correct functional form specification is an issue characterizing all the techniques

based on meta-modeling. However important, the correct specification of the model

can be easily tested, and the researcher is free to choose any functional form to find

a good fit between parameter vectors and simulated statistics. Moreover,
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misspecification is the only concern for the researcher, as there are no other sources

of endogeneity that could afflict the meta-models.

There are many other issues which we have not touched upon, like for instance

the choice of the statistics S and the estimation technique.

As for the statistics, we think that the researcher may better use those that are

more sensitive to the ABM parameters. To discover which statistics are more

influenced by the parameters a preliminary global sensitivity analysis may be

performed using the very same method proposed in this paper. At any rate, the

statistics should at least be ergodic and stationary within a given run of the ABM.

The choice of the statistics, however, is a problem that is common to any calibration

procedure based on indirect methods. The same applies to the choice of the distance

metric.

As for the estimation technique, we deem OLS as adequate. As the parameters hi
and the streams of random numbers ri are randomly sampled, in fact, no serial

correlation among the n simulations exists. Heteroskedasticity may be present,

however, and a FGLS may be considered to improve efficiency. The well-known

drawback of FGLS, however, is that it works better than OLS only if

heteroskedasticity is correctly specified, which is hardly true in practice. To

increase efficiency also a seemingly unrelated regressions (SUR) approach may be

used if correlation exists among the statistics S. Finally, nonparametric techniques

may be used to increase estimation precision (at the expenses of higher

computational costs, though). This is left for future research.
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