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Abstract
Economic interdependencies have become increasingly present in globalized pro-
duction, financial and trade systems. While establishing interdependencies among 
economic agents is crucial for the production of complex products, they may also 
increase systemic risk due to failure propagation. It is crucial to identify how net-
work connectivity impacts both the emergent production and risk of collapse of eco-
nomic systems. In this paper we propose a model to study the effects of network 
structure on the behavior of economic systems by varying the density and centrali-
zation of connections among agents. The complexity of production increases with 
connectivity given the combinatorial explosion of parts and products. Emergent 
systemic risks arise when interconnections increase vulnerabilities. Our results sug-
gest a universal description of economic collapse given in the emergence of tipping 
points and phase transitions in the relationship between network structure and risk of 
individual failure. This relationship seems to follow a sigmoidal form in the case of 
increasingly denser or centralized networks. The model sheds new light on the rel-
evance of policies for the growth of economic complexity, and highlights the trade-
off between increasing the potential production of the system and its robustness to 
collapse. We discuss the policy implications of intervening in the organization of 
interconnections and system features, and stress how different network structures 
and node characteristics suggest different directions in order to promote complex 
and robust economic systems.
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1  Introduction

1.1 � Production Networks and Risk

As highly complex and networked systems, the properties of economies are charac-
terized by the behavior and interdependencies of their components (Kremer 1993; 
Bar-Yam 1997; Hidalgo et  al. 2007; Barrat et  al. 2008). Whether they arise from 
investments, trade or supply chains, interdependencies are increasingly important in 
contemporary economic systems, and fundamental for risk assessment and evalua-
tion (Schweitzer et al. 2009). Interconnections enable the diversification of outputs, 
improve efficiency of economies, and increase the growth of economic complex-
ity (Hidalgo et al. 2007). However, at the same time, they also introduce paths for 
risk contagion and generate large-scale vulnerabilities to systemic failure (Harmon 
et  al. 2010, 2011). Strategic interdependencies, or complementarities, can gener-
ate aggregate volatility (Jovanovic 1987). Given the current context of increasing 
international trade, financialization and globalization in economies, it is crucial to 
understand the effects of connectivity on networked economies and its relationship 
to economic collapse.

Traditional economic studies focus on explaining collapse by the contribution of 
different factors such as bankruptcy (Battiston et al. 2007), bank loans (Stiglitz and 
Greenwald 2003), inter-bank credits (Allen and Gale 2000), and changes of asset 
prices (Kiyotaki and Moore 1997). Risk contagion in supply chains and production 
networks has seen important analyses on credit contagion (Jorion and Zhang 2009), 
default contagion in financial networks (Elliott et al. 2014), liquidity risk (Cifuentes 
et al. 2005), and development disruption (Brummitt et al. 2017). How idiosyncratic 
shocks propagate at the macroeconomic level, and the structure of production net-
works has been studied notably by Ciccone (2002), Levchenko (2007), Jones (2011) 
and Levine (2012), a literature surveyed by Carvalho (2014). Roukny et al. (2018) 
show that interconnections in bank systems through credit contracts and subject to 
correlated external shocks constitute a source of uncertainty in systemic risk assess-
ment. Additional studies have indeed emphasized on the need for understanding the 
impact of network structure on the probability of collapse (Schweitzer et al. 2009; 
Iyer et al. 2013; Albert et al. 2000). Battiston et al. (2012b) emphasized the identifi-
cation of important nodes through feedback centrality with debt ranking. Billio et al. 
(2012) established important econometric statistics to measure connectedness, and 
evaluate system risk in financial sectors. Recently, Elliott et al. (2020) linked supply 
network formation and fragility in this context. These studies show an inherent rela-
tionship between the structure of the network and its robustness and vulnerability 
to selected attacks and random errors independently of their nature. Stressing the 
systemic complexity of economic networks may contribute to the design and imple-
mentation of policies leading to higher diversity and efficiency without undermining 
the robustness of economic systems (Schweitzer et al. 2009; Battiston et al. 2012b).
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In this paper we develop a model to show that while the creation of interdepend-
encies among economic agents is fundamental for the growth of economic complex-
ity, it also amplifies the risk of collapse during adverse conditions, and we character-
ize how the structure of the interdependencies shape the macroeconomic variables 
of the system. We show that the structure of interconnections among economic 
agents increases the fragility of economic systems despite an apparent improvement 
of their production complexity. We explore multiple ways in which systems can be 
interconnected. The first one is the density of the network, which refers to the num-
ber of connections that are drawn among agents independently. The second one is 
the network centralization, which refers to the emergence of highly connected nodes 
that bridge across large parts of the network. The third one is synthesized models of 
supply chain networks, which create instances of typical multilayer supply chains. 
Finally, we apply our models to international trade and supply chain networks cre-
ated using real data. The results on realistic simulations and real data are consist-
ent with the more generalized network framework. The networks based on density 
and centralization simplify and generalize previous literature specifications, focus-
ing on a large variety of theoretical and empirical networks. Studying network den-
sity and centralization allows to account for this variety of structures in an unified 
framework. While different in nature, these directions show how nodes can become 
increasingly dependent on one another, either directly or indirectly (through sec-
ondary connections). We found that the transition to collapse is universal and inde-
pendent of a specific network structure, including those that are built from real data. 
Instead the transition results from the accessibility of nodes one to another and the 
contagion of their failure.

We put an emphasis on the impact of network structure over systemic risk and 
aggregate productivity, across many different network structures, leaving out of 
this paper the question of network formation in the presence of shock. In the con-
text of production webs, see Levine (2012), Rostek and Weretka (2015), Acemo-
glu and Azar (2017) in endogenous production networks, Brummitt et  al. (2017); 
Baqaee (2018) for an influential model of cascading failures in production networks, 
Bimpikis et al. (2019), Yang et al. (2019). Cabrales et al. (2017), Elliott et al. (2018), 
Erol et al. (2018), Erol and Vohra (2018), Jackson and Pernoud (2019) studied net-
work formation in finance. More specifically, Kranton and Minehart focused on 
buyer-seller networks, and Gale and Kariv (2009) on intermediation relationships. 
Link formation with contagion of risk was studied by Blume et al. (2011), who early 
identified the trade-off at the heart of our model: “each agent receives benefits from 
the direct links it forms to others, but these links expose it to the risk of being hit by 
a cascading failure that might spread over multi-step paths”, concluding that optimal 
networks were situated right beyond a phase transition in the behavior of cascad-
ing failure. In a related approach, we take a broader look at the impact of network 
structure on cascading failures, without restricting our results to the identification of 
optimal networks.

The architecture of economic networks is crucial to study their efficiency and 
vulnerabilities to systemic failure (Jackson et  al. 2017), and full financial integra-
tion may not be desirable as it creates new risks (Stiglitz 2010). For example, if a 
vital firm within a supply chain suddenly ceases to exist, all producers linked to the 
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failing element become unable to produce their output. The present analysis aims 
at quantifying both robustness and performance of production networks for various 
levels of individual node failure, and for various degrees of density and centraliza-
tion in the network. Buldyrev et al. (2010), Tang et al. (2016) and Yang et al. (2019) 
studied different transmission mechanisms in supply chains, interdependent net-
works, giving rise to phase transitions. Interconnections may under certain condi-
tions increase the complexity of production. However, as we introduce a non-zero 
probability of failure, the expected diversity and productivity decreases, leading the 
way to economic collapse. Even in most standard models of network production 
such as Acemoglu et al. (2012), such fragilities exist (Elliott et al. 2020), and moti-
vated associations between physics of self-organized criticality and economics in the 
building of “sandpile” macroeconomic models (Scheinkman and Woodford 1994).

There is a large literature on network robustness to internal failure and external 
attacks on nodes or edges. Previous studies have mainly focused on two particu-
lar network topologies: the Erdos–Rényi random graph (Erdos and Rényi 1960) and 
Barabási’s scale-free network (Barabási and Albert 1999; Barabási and Bonabeau 
2003). Albert et al. (2000) studied error tolerance and attack impact, notably testing 
both web robustness to targeted attacks on well connected nodes, and to removal of 
a given fraction of nodes. Crucitti et al. (2003) study network robustness to failure 
and targeted attacks. Iyer et al. (2013) likewise analyze how interconnections struc-
ture evolves with the removal of vertices, for a variety of networks types. Lorenz 
et al. (2009) developed a general framework to describe systemic risk with cascad-
ing failures processes in networks through node fragility. Pichler et al. (2018) inves-
tigated the issue of systemic risk in the context of efficient asset allocation in the 
form of a network optimization problem. Caccioli et al. (2018) recently provided a 
thorough review of research in network models of financial systemic risk. Buldyrev 
et  al. (2010) extended the framework of network cascading failure analysis to the 
case of interconnected networks transmitting failure from one to another. In the 
spirit of Albert et al. (2000) who focused on two models: the Erdos–Rényi random 
network model (Erdos and Rényi 1960) and the scale-free web (Barabási and Albert 
1999; Barabási and Bonabeau 2003), the present paper extends the investigation on 
the robustness of networks models to a more general framework, including the tran-
sition from random to scale-free networks and further centralization, as well as the 
effects of density of connections.

1.2 � Production and Collapse

Various indicators of network robustness, and by consequence its fragility, have been 
extensively used in the literature. Identification of important nodes in contagion pro-
cesses as occupied a central position in research on these topics (Billio et al. 2012; 
Battiston et al. 2012b; Thurner and Poledna 2013). The communication capacity of 
the network after nodes removal has been analyzed by Crucitti et al. (2003). Albert 
et al. (2000) used the average shortest path length among nodes in the network as 
a indicator of failure reachability. Iyer et al. (2013) and Callaway et al. (2000) ana-
lyzed robustness as percolation efficiency on networks. Lorenz et al. (2009) used the 
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fraction of stable nodes after removing the failed ones as a measure of systemic risk. 
Rather than providing an indicator of fragility, we show the space of possible behav-
iors of networked production systems in terms of diversity of outcome and probabil-
ity of collapse for different scenarios regarding conditions to failure and structure of 
interdependencies.

Collapse may be framed as a comparison of the current state of the system with 
respect to a reference one. We define the reference state as the situation of autarky 
or network-free environment, where agents have no interaction with each other. A 
production below such reference state could be considered as collapse, i.e. a sys-
temic failure of the network to achieve the network-free production levels. Because 
the reference state is defined without knowledge of the networked structure of the 
system, collapse is interpreted in our model as the inability of the system to achieve 
the autarky production level. Our results can be generalized and are consistent with 
other definitions of collapse.

This article is organized as follows. Section  2 describes the network genera-
tion algorithms and the production model. Section 3 presents the results of model 
simulations in terms of productivity and collapse probability across multiple net-
work topologies. Their discussion, implications and relations to previous literature 
are provided in Sect. 4. Section 5 concludes on the impact of network connectivity 
structure on global production and risk of failure in economic systems.

2 � Model

We design a simple economic model of production, structured by a network of part-
nerships or supply chains. Nodes are represented as economic agents, such as indi-
viduals, firms or countries. Links indicate economic interdependencies. In order to 
produce goods, networked agents need the input from their connections. Each node 
has an individual error probability, analogous to the possibility of node removal in 
previous literature. Errors propagate through cascades across the network. We con-
sider two network generation processes respectively based on the density or centrali-
zation of connections. Additionally, a multilayer structure is considered in the next 
sections. In this section we present the network generation processes, and define the 
mechanisms for production and collapse.

2.1 � The Density Network Model

In order to analyze the impact of network density over production and risk of failure, 
we create a network generation model inspired from the network fragility literature 
(Crucitti et  al. 2003; Albert et  al. 2000; Lorenz et  al. 2009. Nodes are randomly 
distributed in a torus space. Their connections depend on their distance to each 
other and a threshold denoted reach. Nodes first create a link with a randomly cho-
sen node within the reach distance, denoted target, and second create links with all 
nodes linked to the target node. The probability of a node i to initially create a link 
to a node j at distance xij is as follows:



1332	 A. Vié, A. J. Morales 

1 3

where r indicates the reach radius and N(r) represents the total number of nodes at 
reach from i. The number of potential target nodes N(r) increases proportionally to 
the reach parameter r. The density of the network ( � ) indicates the ratio between 
the number of existing edges divided by the total number of possible edges in the 
network. Low reach values yield only a few connections. As the reach parameter 
increases, so does the number of connections and the network density. Figure  1 
illustrates networks that result from different model parameters. The density of the 
networks increase from left to right.

2.2 � The Centralized Network Model

The centralized network model generates graphs with different levels of centraliza-
tion. For this purpose, we generalize the preferential attachment mechanism (Bara-
bási and Albert 1999) with an exponent that controls for the emergence and impor-
tance of hubs—ranging from no centralization (independently distributed edges) to 
perfectly centralized networks (in one or a couple hubs). In between the two extreme 
cases, we obtain a wide range of scale-free networks where several hubs are present 
with different relative importance in the graph.

The network generation process consists in creating edges as a function of the 
attachment probability. The probability of node i to create an edge with node j is as 
follows:

where kj is the number of connections of node j and � is the exponent we use to con-
trol the influence of the preferential attachment mechanism. If � = 0 , the attachment 
probability becomes equal among all nodes and we obtain a random network with 

(1)pij(xij) =

{
1

N(r)
if xij ≤ r

0 if xij > r

(2)pij ∝ k�
j

Fig. 1   Visualization of network topologies from the density model. Panels show networks that result 
from different model parameters. The density of the networks increase from left to right. The node color 
is proportional to the degree (from black to green). Reach r = 4 and density � = 0.028 in the left panel. 
Reach r = 10 and density � = 0.053 in the middle panel. Reach r = 16 and density � = 0.058 in the right 
panel
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no central hub similar to the Erdos–Ranyi model. If � = 1 , we obtain the standard 
Barabási–Albert network with a few hubs. If � = 2 , we create a network with full 
centralization where all nodes are linked to a single central one. This extension of 
the preferential attachment mechanism magnifies the degree heterogeneity among 
nodes for 𝛼 > 1 , and reduces such attractive force for any 𝛼 < 1 . An illustration of 
the model variants is shown in Fig. 2.

2.3 � Production and Collapse

The production mechanism is invariant across both network generation methods. In 
order to run simulations, we create 100 economic agents and interconnect them fol-
lowing the steps described in Sects. 2.1 and 2.2 respectively. Once the networks are 
created, we simulate both production and failure.

Agents produce goods with uniform and constant production technology. We 
consider production inputs as received endowments, without introducing stock con-
straints or resource extraction. Agents produce as many goods as possible, under the 
constrains imposed by the piece-wise production function described as follows:

where qi denotes production of node i, and ki its degree (number of connections). A 
node without connections ( ki = 0 ) will only produce 1 good. We define this state as 
autarky. A node of n connections will be able to produce 2n goods (assuming no fail-
ure). The hypothesis behind introducing a production scaling parameter is derived 
from the view of production as a combinatorial process (Hidalgo et al. 2007). Eco-
nomically speaking, it may account for increasing returns to scale, heterogeneity in 
marginal cost or differences in production efficiency. More generally, it corresponds 
to traditionally assumed positive gains from connections (Blume et al. 2011).

(3)qi =

{
1 if ki = 0

2n if ki = n, n ∈ ℕ
>0

Fig. 2   Visualization of network topologies from the centralized model. Panels show networks that result 
from different model parameters. From left to right the centralization of the network increases. The node 
color is proportional to the degree (from white to green). The left panel shows a decentralized network, 
similar to the Erdos–Rényi model ( � = 0 ). The middle panel shows a scale-free network, similar to the 
Barabasi–Albert model ( � = 1 ). The right panel shows a perfectly centralized network ( � = 2 ). The num-
ber of edges and density is constant across all networks ( � = 0.02 ). (Color figure online)
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Agents have an identical and exogenous failure probability p. It conveys the 
individual probability of encountering issues in the production process and not 
providing any output at a given period. This modelling simplification can be 
related to error tolerance (Albert et al. 2000), discontinuous changes in asset val-
ues (Elliott et al. 2014), default probability (Jorion and Zhang 2009; Elliott et al. 
2014) and removal probability (Crucitti et al. 2003). We define this phenomenon 
as individual failure. Individual failure may happen due to resource shortage, 
production tools dysfunction, or any other exogenous event leading to null pro-
duction. Global failure arises as individual failures cascade across the network. 
Individual failure is denoted failure probability, while global failure is denoted 
collapse probability.

Individual failure spreads across the network through direct connections, i.e. to 
the economic partners directly linked to the failing node. We do not spread failure 
to neighbors of neighbors in this simple contagion mechanism. Our node-driven 
approach is closely related to Battiston et  al. (2007, 2012a) who start from local 
interactions to study systemic failure, providing a new framework for understanding 
failure propagation. Our direct propagation framework enables the analysis of cas-
cading failures, which is an essential phenomenon to be considered in the study of 
network robustness (Crucitti et al. 2013).

Accounting for failure probability p, and with ki nodes directly linked to node i, 
the piece-wise conditional expected production function E(qi|p) can be defined as 
follows:

If ki = n > 0 , node i’s production is equal to 2n with probability (1 − p)n and equal 
to 0 with probability 1 − (1 − p)n . A sub network of n directly connected agents has 
a collective probability (1 − p)n of not failing (i.e. all nodes produce). With prob-
ability 1 − (1 − p)n , at least one node fails and the entire sub network is not able to 
produce. Given that the production scales by a factor of 2n, the expected produc-
tion function takes the value 2n(1 − p)n for any n > 0 . For an autarkic node i, for 
which the number of neighbors ki is null, the productivity is equal to 1, adjusted 
to the probability p of failing at each experiment. The expected production at each 
experiment for such node is thus equal to (1 − p) . This model specification simpli-
fies greatly the economic structure present in the literature, aiming to illustrate the 
trade-off we examine between inter-connectivity and risk. It can however be related 
to these more sophisticated specifications as in Elliott et al. (2014) with the network 
value, and discontinuous changes in asset values. In their model, organizations held 
assets such as investments and factors of production, and mutual shares.

This production function specification illustrates the trade-off we examine 
between inter-connectivity and risk. In the density model, higher connectivity 
results in both better possible production, but also increased risk on the entire sup-
ply chains. In the centralized network, the central node has the potential to deliver a 
huge output, but is vulnerable to the failure of any other node it is connected to. The 
indicators developed in the next subsection allow us to measure these phenomena.

(4)E(qi|p) =
{

(1 − p) if ki = 0

2n(1 − p)n if ki = n, n ∈ ℕ
>0
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2.4 � Measuring Collapse and Efficiency

The model is run for a given number of independent periods or experiments. We 
consider the failure and contagion processes as being transient. The failure of a node 
at a given experiment does not affect its state on the next experiment. This choice of 
simplicity identifies the impact of the network structure over systemic risk and pro-
ductivity. We define the system’s total production T at each experiment t as the sum 
of the individual agent production levels qi as follows:

where N is the total number of nodes in the network.
At a given experiment, we define collapse as the situation where the total produc-

tion of the system Tt is below a reference level � , which is the expected production 
of the system in the autarky regime.

The production level �(N, p) does not depend on the network structure. It enables 
the performance analysis of any network topology with respect to the autarky case, 
and evaluate whether any particular system architecture is expected to yield higher 
or lower production. Through numerical simulations of the model, we apply Monte-
Carlo to estimate the collapse probability over 10.000 independent experiments for 
each possible set of the model parameters, including different levels of failure prob-
ability and network topologies.

The model is implemented in the agent-based environment Netlogo (Wilensky 
1999). We use the Pattern Space Exploration and Sampling algorithms from the 
OpenMole platform (Chérel et al. 2015; Reuillon et al. 2010, 2013) to identify areas 
of high variation in the model results and improve both tractability and validation. 
More details about the model implementation and simulation methodology can be 
found in the Supplement (Section S1).

3 � Results

3.1 � Mapping System Productivity

We define the system productivity level � as the ratio of the system average produc-
tion (Eq. 4) and the reference autarky production level. A production level of � = 2 
indicates that the system is able to double the autarky output level. Figure 3 shows 
the production levels (colored regions) of different network structures as a function 
of individual probability of failure (x-axis) and the parameters (y-axis) of the den-
sity (left) and centralized (right) models respectively. Red regions in Fig.  3 indi-
cate high production, and green and blue regions indicate lower production. In the 

(5)Tt =

N∑

i=1

qi

(6)�(N, p) = N(1 − p)



1336	 A. Vié, A. J. Morales 

1 3

Supplement (subsection S2) we provide additional figures from the Pattern Space 
Exploration procedure used to determine areas of variation.

In both models, increasing the density or centralization of network connections 
results in higher production levels when the probability of failure is low (red regions 
near the vertical axis), given the possibility of agents to establish interdependencies 
and combine elements to create more complex products. However, as the probabil-
ity of failure increases, the average output decreases with the density or centraliza-
tion of connections. This effect is more abrupt in centralized systems (right panel). 
Therefore, increasing the number of interdependencies may increase the complexity 
of the economic systems but it also makes them more fragile to individuals’ failure.

3.2 � Mapping the Collapse Probability

While interconnections enable the creation of economic complexity, they also 
increase the probability of failure propagation and consequently the risk of global 
collapse. Figure 4 provides a precise mapping of system collapse probability as a 
function of network structure (given the parameters of the network density and cen-
tralization models) and probability of failure. Blue regions indicate very low risk of 
collapse. Red areas show very high risk of collapse. In both models, there is a region 
where the probability of collapse is low (blue). In these regions the productivity of 
the system is also high, as we previously noticed in Fig. 3. The probability of col-
lapse increases when we either increase the probability of failure, for a given net-
work setup, or when we increase the number of interdependencies, for probabilities 
of failure that are not close to zero.

Fig. 3   Network productivity as a function of model parameters. Color indicates average productivity (log 
unit) in units of the autarky level on logarithmic scale. The left panel shows the outcomes of the density 
model. The right panel shows the outcomes of the centralized model. The x-axis represents the probabil-
ity of individual failure in both panels. The y-axis represents the network density (left panel) or centrali-
zation (right panel). Scale shown in Fig. 
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The transition from robust (blue) to fragile (red) systems seems to be very sharp 
(yellow and green regions in Fig. 4). This indicates the existence of tipping points 
for each network setup. Moreover, the location of the tipping point changes as we 
modify the network structure or failure probability. It comes closer to the vertical 
axis as we increase the density or centralization of the network. Denser or more cen-
tralized networks are more sensitive (or fragile) to individual failure.

In Fig.  3 we showed that the highest levels of production take place when the 
density or centralization of connections is highest and the probability of failure low-
est (upper left corner). In Fig. 4 we notice that such region is also the most fragile to 
an increase of the probability of failure. Notice that the number of links is constant 
in the centralized model and only the centralization of edges around hubs changes as 
we increase the parameter � . Therefore, two radically different network models pre-
sent remarkable similarities in their behavior, which shows that centralizing inter-
dependencies in a few nodes is just as potentially harmful as creating an excess of 
them in a distributed manner.

3.3 � Productivity and Network Structure

Despite their similarities, the results presented in Figs. 3 and 4 also show differences 
between the two network models. These differences are manifested in the way sys-
tem productivity changes as we vary failure probability. Figure 5 shows system pro-
ductivity (Log unit) as a function of network density (left) and centralization (right) 
for various values of individual failure probability (color). The curves exhibit non 
linear behaviors.

In the density model (left panel in Fig. 5) there seem to be two distinct behav-
iors depending on the individual failure probability (color). If individual failure 

Fig. 4   Probability of systemic collapse as a function of model parameters. Color indicates the collapse 
probability. The left panel shows the outcomes of the density model. The right panel shows the outcomes 
of the centralized model. The x-axis represents the probability of individual failure in both panels. The 
y-axis represents the network density (left panel) or centralization (right panel). Scale shown in figure
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probability is below 0.4 (blue), the curves are concave downward and present a 
maximum value at density values that depend on the failure probability (for exam-
ple at � = 0.02 for p = 0.2 or � = 0.0175 for p = 0.2 ). The interval in which net-
work density has a positive effect on productivity becomes narrower as individual 
failure probability increases. Above a failure probability of 0.4, the curves change 
their behavior and become concave upward (green, yellow and red). In this case, 
higher density results immediately in a decrease of productivity values regardless of 
the initial network density. On the other hand, in the network centralization model 
(right panel in Fig. 5), the curves are always concave downward and monotonically 
decreasing. In this case, an inflection point that accelerates the decrease of produc-
tivity appears when hubs start to gain more importance in the network ( 𝛼 > 1).

3.4 � Collapse Probability and Network Structure

In Fig. 6, we analyze the behavior of the collapse probability as a function of indi-
vidual failure probability by horizontally slicing the surface shown in Fig. 4 at dif-
ferent values of density (left panel) or centralization (right panel).

In both cases, the curves are monotonically increasing, showing that the risk of 
spreading failure is aligned with both network density and centralization. However, the 
behavior is non-linear. For small values of failure probability (dark blue curves) there 
is an interval of network density or centralization in which the system seems robust. In 
the case of the density model, the robust interval coincides with the location of maxi-
mum productivity points shown in Fig. 5a. As the networks get denser or more cen-
tralized (green, yellow and red curves in Fig. 6) the extent of the robust interval gets 

Fig. 5   System productivity and network properties. Productivity is measured in units of the reference 
level of production in the autarky regime (y-axis). The x-axis shows the network density (left panel) or 
centralization (right panel). Dots show the results of model simulations. Solid lines show the fitted curve 
using Polynomial Regression. Colors indicate distinct values of failure probability. Scale in figure. (Color 
figure online)



1339

1 3

How Connected is Too Connected? Impact of Network Topology…

narrower, confirming that the excess of interdependencies increases the fragility of the 
system. Such decrease occurs more rapidly in the case of centralized networks.

Using data from the Observatory of Economic Complexity, we apply the model to 
estimate the vulnerability of international trade networks from 1962 to 2012. Nodes 
represent countries and edges are present if they have traded on a given year above a 
significant threshold. Figure 7 shows that the the expansion of interconnections among 
countries has increased the global sensitivity to failure from 1962 to 2012, with a peak 
in 2007 just before the last major economic crisis. The figure outlines as well the fragil-
ity of trade networks. Certain systemic collapse is attained from a country failure prob-
ability of 0.02, i.e. 2%.

3.5 � Universality of Collapse

The curves in Fig. 6 suggest that the relationship between collapse and interdependen-
cies (either in the form of density or centralization) can be modeled by a sigmoid func-
tion, with the following form:

where a determines the slope of the transition and b the location of the inflection 
point. In Fig. 8, we present the results of fitting the sigmoid function to the collapse 
probability as a function of failure probability for both network models, at various 
levels of density (left) and centralization (right) respectively. In order to collapse the 
curves we normalize the original failure probability (p) by subtracting the location 
parameter of the sigmoid function (b), such that p∗ = p − b.

(7)f (x) =
1

1 + e−a(x−b)

Fig. 6   Collapse probability and network properties. The y-axis represents the collapse probability as 
explained in Sect. 2.4. The x-axis represents the probability of failure. Dots show the results of model 
simulations. Colors indicate distinct values of network density (left) and centralization (right). Scale in 
figure. (Color figure online)
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Fig. 7   5-year evolution of systemic risk in trade networks computed using our model. Data from the 
Observatory of Economic Complexity

Fig. 8   Universal behavior of collapse probability. The left panel shows the results for the density model. 
The right panel shows the results for the centralized model. Dots represent the resulting collapse prob-
ability (y-axis) of model simulations. The solid lines show the fit to the sigmoid function. Colors indicate 
the respective model parameters (scale inset). The x-axis represents the normalized failure probability 
( p∗ ), after subtracting the location parameter of the sigmoid curve
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The ubiquity of sigmoidal patterns in the transition to collapse on such different 
network models and various parameters suggests the existence of a universal behav-
ior. As shown in Fig. 6, the sigmoid curves are present in both types of networks and 
increasing interdependencies simply moves the inflection point closer to the origin 
and yields steeper slopes, which indicates higher sensitivity to errors and system 
fragility. These results indicate that two radically different economic systems, such 
as centralized and decentralized economies, may fail because of one consistent rea-
son which lies in the dynamics of failure propagation across networks and excess 
of direct or indirect interdependencies. Like in other complex systems, universali-
ties represent the general structure in which phenomena take place. While individ-
ual instances may present different and heterogeneous details, i.e. prices, markets, 
bureaucracy, etc., there is an underlying structure that is common among them and 
in which they develop. In order to achieve effective solutions, we must understand 
and intervene in such structure. Otherwise, there is a risk of spending efforts in 
designing solutions based on the particularities of each case without considering the 
relevant variables.

4 � Alternative Production Mechanisms with Lower Gains 
from Connections

The results on the trade-off between interconnections through network density and 
centralization, and productivity as well as stability, has been outlined in Figs. 3 and 
4 for a production scaling of 2 in Eq. 4. That is, when connected and not affected 
by failure, a node connected to n neighbors will produce 2n goods. We here present 
simulation results when this value is lowered to 0.5 and 1 (Figs. 9, 10, 11).

Fig. 9   Network productivity in the density model as a function of model parameters, with a production 
scaling of 0.5 (left) and 1 (right). Color indicates average productivity (log unit) in units of the autarky 
level on logarithmic scale. The x-axis represents the probability of individual failure in both panels. The 
y-axis represents density. Scale shown in figure
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As the gains from connections is reduced, so is the network productivity (see 
the supplementary material section S3). The trade-off and areas where the network 
structure offers improved productivity and robustness to failure shocks, are sim-
ilar. Changing the values of the production scaling dramatically impacts the rep-
resentation of collapse probability of the network. Lowering the gains from inter-
connections makes attaining the autarky level of production more difficult. Hence, 

Fig. 10   Network productivity in the centrality model as a function of model parameters, with a pro-
duction scaling of 0.5 (left) and 1 (right). Color indicates average productivity (log unit) in units of the 
autarky level on logarithmic scale. The x-axis represents the probability of individual failure in both pan-
els. The y-axis represents centralization. Scale shown in figure. (Color figure online)

Fig. 11   Probability of systemic collapse in the density model as a function of model parameters, with a 
production scaling of 0.5 (left) and 1 (right). Color indicates the collapse probability. The x-axis repre-
sents the probability of individual failure in both panels. The y-axis represents density. Scale shown in 
figure. (Color figure online)
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intuitively, the blue region of low collapse risk is wider when gains from intercon-
nections are higher than when they are lower (2 in Fig. 4b). This change appears of 
high magnitude between a production scaling of 0.5 and 1, showing high sensitiv-
ity of centralized production networks to the gains from connections in our model. 
When production scaling is as low as 0.5 in the centralization model, most leaves-
nodes cannot meet their autarky level of production as in Fig. 12a. In Fig. 12b, when 
production scaling is equal to unity, these nodes when not affected by failure meet 
their autarky production, and provide positive externalities to central nodes, making 
robustness to production collapse less of a stretch in the parameters space.

5 � Application to Empirical Supply Chain Multilayer Networks

As recently outlined by Elliott et al. (2020), and quite commonly before in the lit-
erature, production networks in the context of supply chains are not only defined by 
density, or centralization, but also by specific structure. We devote attention to the 
analysis of a typical supply chain network presented graphically in Fig. 13. We con-
sider a production network with several layers. The green node (say primary good 
producer) supplies the blue nodes (intermediate producers), who supply the white 
nodes (final producers). Here, supply and demand relationships are accounted by 
undirected links, and our model applied in this structure. Figure 14 confirms that our 
previous results hold with such particular, and typical network architecture. The sig-
moidal transition between node probability of failure and systemic outcomes (col-
lapse probability and network productivity) we identified are visible. The production 
scaling parameter, i.e. the gains from interconnections, impact these curves. When 
gains from interconnections are low, the network hardly meets the autarky level of 

Fig. 12   Probability of systemic collapse in the centrality model as a function of model parameters, with 
a production scaling of 0.5 (left) and 1 (right). Color indicates the collapse probability. The x-axis rep-
resents the probability of individual failure in both panels. The y-axis represents centralization. Scale 
shown in figure. (Color figure online)
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production, especially for higher chances of individual failure. When production 
scaling is higher, the parameter window in which the multilayer structure is both 
robust, and efficient from the production point of view, is larger.

Fig. 13   An instance of a multilayer supply chain network. This network model is based on the work of 
Elliott et al. (2020)

Fig. 14   Probability of systemic collapse and Network productivity in the multilayer model as a func-
tion of model parameters. The x-axis represents the probability of individual failure in both panels. The 
y-axis represents collapse productivity (left) and average production in log unit (right). Scale shown in 
figure
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We move from abstract to empirical networks, by applying our model of cascad-
ing failures on 38 real-world supply chain networks. We use the data and networks 
originally published by Willems (2008) and notably studied by Fang et al. (2018). 
The data set is comprised of multiple multi-echelon supply chain networks, in a high 
variety of goods, services and economic sectors, ranging from cereals up to aircraft 
engines. The networks vary widely in size, spanning from a a couple dozens up to 
thousands of nodes. They have also various levels of complexity, in terms of the 
number of interconnections, and network features such as average path length. These 
networks allow to check the robustness of our theoretical insights on real-world 
webs of economic interdependencies among providers and producers. The results 
of applying the model to these networks are shown in Fig. 15. They are remarkably 
consistent with our theoretical findings, and replicate the sigmoidal relationship we 
identified before. Using the normalization technique previously applied in Fig. 16, 

Fig. 15   Collapse probability as a function of node probability of failure in the 38 empirical supply-chain 
networks (blue), with sigmoidal fits (red). Network 1, 2 and 3 giving identical results were collapsed to 
form subfigure 1 (top left). Networks are numbered from left to right, top to bottom. (Color figure online)
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we confirm the universality of the relationship between systemic risk, network struc-
ture and node probability of failure.

6 � Discussion

6.1 � Too Interconnected to Thrive?

Simulations show that production networks get increasingly sensitive to the propa-
gation of individual failure as their topologies get denser and agents linked to each 
other. The resulting production may decrease faster than linearly with respect to 
failure probability. Sparser networks may have a lower productivity but are more 
resilient to probability of failure. Previous research has investigated the risks of cre-
ating agents “too big to fail”, or more recently “too central to fail” (Battiston et al. 
2012b). In the continuity of this observation, our model emphasizes that without 
further hypotheses, economic agents may in some situations become too intercon-
nected to thrive.

This observation from model results, notably drawing from Fig.  4a (density 
model), emphasizes the existence of positive returns to interconnections in system 
robustness below a given density tipping point. Above such a threshold, returns to 
interconnections play a negative role. Such a mapping of production performance 
and systemic risk in the sense of global failure appears relevant in tackling efficient 
asset allocation and minimization of systemic risk as a network optimization prob-
lem (Pichler et al. 2018).

Fig. 16   Collapsed sigmoidal curves for the 38 empirical supply-chain networks. Collapse probability as a 
function of failure probability (normalized). (Color figure online)
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These results on returns to interconnections also allow us to replicate in a more 
general context the findings of Albert et al. (2000) on error tolerance of scale-free 
networks. Their results indicate that systems exhibit strong robustness below a level 
of error of 5%. This is consistent with the results we obtain in the centralized model 
( � = 1 ) when the probability of individual failure p = 0.05 (Fig. 4b). In such net-
works the collapse probability is low and average production is satisfied. Our analy-
sis thus successfully replicates their findings, while generalizing the study of net-
work robustness to a larger range of organizations and organizing principles.

6.2 � Risk Diversification or Containment?

As noted in the founding work of Schweitzer et  al. (2009), traditional economic 
theory often concludes that dense networks enable risk diversification to counter-
balance failure (Allen and Gale 2000). Risk diversification remains relevant in the 
context of production, as producers may prefer to protect themselves against the fail-
ure of suppliers or trade partners (Harmon et al. 2011). Battiston et al. (2007) identi-
fied instead that systemic risk may increase with network coupling strength between 
nodes in credit chains and production networks during bankruptcy propagation. 
Contrary to the more general policy implications of Allen and Gale (2000), Battis-
ton et al. (2012c) identified that risk diversification not always reduces systemic risk.

Our model contributes to this debate extending the observations over a larger 
set of networks topologies. As illustrated in Fig. 4a, our model identifies parameter 
intervals in which increased density is not detrimental to systemic risk, here denoted 
as collapse probability of the production system, pointing back to the findings of 
Allen and Gale (2000). The dark blue region of collapse probability in the density 
model (Fig. 4a), show that the increasing network density through risk diversifica-
tion, here understood as the creation of additional connections, is not harmful to 
system robustness if individual probabilities of failure are low. This extent, denoted 
”density threshold”, differs according to network topologies.

Risk diversification through increased density may be beneficial for the expected 
productivity in certain intervals of network density and individual failure probabili-
ties (Fig.  3a). However, in environments characterized by higher individual risks, 
increasing network density may lead to major changes in collapse probability, push-
ing the system towards unstable situations (red regions in Fig.  4a). These results 
are in line with previous research of Battiston et  al. (2012a, (2012c). They show 
endogenous emergence of systemic risk because of feedback effects resulting from 
an excess of interdependencies. Our model shows that risk diversification improves 
global robustness only in an interval of individual risk of failure and outlines that 
systems may become sensitive too sensitive to individual failure if density and cen-
tralization are too high. We show that the transition is not smooth and instead it uni-
versally follows a sigmoid behavior. Analogue phase transition process are shown in 
the model of Lorenz et al. (2009). Our model extends this study with networks dis-
playing centralization (Fig. 4b). In this case, the collapse probability increases more 
abruptly and is more sensitive to the risk of individual failure.
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6.3 � Policy Implications

Previous literature on systemic risk has raised important suggestions for policy 
actions. Protection measures have been pointed as necessary through identifica-
tion of essential nodes (Battiston et al. 2012b). Others opted for a systemic risk tax 
(Leduc and Thurner 2017b), in order to make bank networks robust to insolvency 
cascades, or through an adequate credit default swap market, where CDS assets are 
taxed according to their contribution to systemic risk (Leduc et  al. 2017a). Other 
scholars have emphasized on the importance of taking networks of interdependen-
cies into account for improving systems’ resilience (Buldyrev et al. 2010) in the con-
text of contagion (Marsiglio et al. 2019).

Barriers to contain risk contagion may improve global robustness, whether imple-
mented around a centralized node, or distributed across the decentralized network. 
Further research on such implementation may shed new light on the impact of safety 
barriers on different network topologies. However, action in centralized networks 
cannot be reduced to protection on the central node, and may have less effect than 
expected, as expressed by Braha and Bar-Yam (2006).

7 � Conclusion

In summary, we analyzed the effects of establishing interdependencies among eco-
nomic agents on arising production complexity and systemic risk. We show that 
while interdependencies are beneficial for creating more complex products, they 
also create paths for failure propagation and amplify the fragility of the system–an 
effect often overlooked in the literature of economic complexity. Our results show 
that different network topologies, such as dense or centralized networks, show uni-
versal patterns of behavior, due to the common dynamics of cascading propagation 
through direct and indirect connections. Understanding universalities is critical in 
order to achieve effective solutions beyond the particular characteristics of individ-
ual cases. Further research accounting for additional policies such as the enforce-
ment of new types of interdependencies, more sophisticated node behavior and stra-
tegic network formation mechanisms, may contribute to identify opportunities for 
improving the functioning and complexity of economic systems without compro-
mising their robustness and resilience.
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