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Abstract
Financial markets have always been subject to various risk constraints which are nec-
essary for better market prediction and accurate pricing. In this context, we derive 
stock price distribution subject to first and second moment constraints along with 
the normalization constraint in terms of the q-lognormal distribution. The derived 
distribution is validated against six high-frequency empirical datasets. To charac-
terize the extreme fluctuation of empirical stock returns, we derive an analytical 
expression for complementary cumulative distribution function of the q-Gaussian 
distribution in terms of Hypergeometric2F1 function. However, for the computation 
of the non-extensive parameter ‘q’, we provide a precise algorithm. The estimated 
value of ‘q’ clearly describes the well-known stylized facts such as tail fluctuation, 
non-Gaussian intra-day returns, and cubic power-law behavior. As the option price 
depends on the underlying dynamics of the stock price, we derive a accurate and 
closed expression for option price using q-lognormal distribution.

Keywords q-lognormal distribution · Cubic power-law behavior · Tsallis entropy · 
Generalized JS measure · CCDF

1 Introduction

In the present era, the study of financial markets have extensively emerged as a cor-
nerstone for economic growth and prediction. The dynamics of financial markets 
are uncertain and stochastic in nature due to insufficient information flow among 
the market participants. The advancements in data acquisition equipment and 
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computational techniques facilitate us to understand the intrinsic dynamics of stock 
price which help for a better prediction and accurate pricing. AraúJo and Ferreira 
(2013) proposed a morphological-rank-linear evolutionary technique for stock mar-
ket prediction which does not follow the random walk principle. Efendi et al. (2018) 
have presented a new approach for stock market forecasting with the help of random 
auto-regression time series model. Several authors (Nayak et al. 2020; Verousis et al. 
2018; Eholzer and Roth 2017) have applied different techniques to characterize the 
well-known stylized facts associated with the high-frequency stock price data sets. It 
has been confirmed from the high-frequency trading (Hasbrouck 2018; Seddon and 
Currie 2017), that the empirical data of stock return exhibits the power-law (Riyal 
et  al. 2016; Singh and Karmeshu 2014) which creates an interest among various 
researchers to define a precise model to capture the dynamics of the real data. In this 
perspective, Gerig et al. (2009) proposed a mixture model for the return distribution 
to observe the tail behavior through Student’s t-distribution which is associated posi-
tive degrees of freedom (df). However, the discrete values of ‘df’ cannot describe 
the tail fluctuation of high-frequency data. Thus, it becomes necessary to apply the 
non-extensive concept (Singh and Karmeshu 2014; Singh et al. 2015; Tavayef et al. 
2018) to observe the tail behavior of the stock return. As a result, Borland (2002) 
and Borland and Bouchaud (2004) have used the non-extensive Tsallis’ framework 
in their corresponding stochastic differential equation (SDE) to capture the long 
range memory effets. Stanley (2003) and Buchanan (2012, (2013) have noticed that 
all types of stock market exhibit power-law in the tail region. Pan and Sinha (2008) 
examined the same for Indian market, whereas, multifractal detrended fluctuation 
analysis (MF-DFA) has been performed by Kumar and Deo (2009) to analyze Indian 
market. Jaynes (1957) and Tsallis (2004) have proposed two different entropy con-
cepts where the maximization of Shannon entropy unable to describe tail fluctua-
tion of stock returns. However, maximization of entropy with parameter q, success-
fully describes the the tail behavior of underlying stock returns. It is significant to 
observe the convergence of Tsallis entropy to Shannon entropy as q approaches to 1 
(Mukherjee et al. 2019; Bebortta et al. 2020). Thus, Senapati and Karmeshu (2016) 
have proposed the q-Gaussian distribution subject to entropy optimization for intra-
day stock returns (IDR) in high-frequency trading. They have also validated their 
proposed distribution with six intra-day high-frequency stock return data sets.

As the proposed return distribution captures the tail fluctuation, it is worthwhile 
to calculate the CCDF for the proposed return distribution. Hence in this paper, we 
present a rationale mathematical expression for the CCDF in terms of Hypergeomet-
ric2F1 function to characterize tail fluctuation of underlying returns through differ-
ent values of the non-extensive parameter ‘q’. We have estimated the parameter‘q’ 
from empirical data by minimizing the generalized symmetric Jensen Shannon (JS) 
measure between the return distributions and empirical histograms of six different 
high-frequency data. For the sake of convenience, this article also presents a precise 
algorithm for the estimation of parameter parameter‘q’ . Since option price relies 
on the underlying stock price, we have derived the underlying stock distribution in 
terms of q-lognormal distribution. For ‘q’ equals to one, this stock distribution also 
converges to the well-known log-normal distribution. Consequently, we have suc-
cessfully computed the corresponding non-Gaussian option price. It is interesting 
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to observe, our option pricing model also coincides with the famous Black–Scholes 
option pricing model (Black and Scholes 1973) as q tends to 1.

The remaining of this paper is organized as follows: Sect. 2, describes the com-
putation of non-Gaussian q distribution using the maximum Tsallis’ entropy frame-
work. Section 3, provides a brief description for the computation of Kullback–Lei-
bler (KL) and JS measure. The next section, deals with the procedure regarding the 
estimation of ‘q’ parameter for the Powershares QQQ of NASDAQ 100 index high-
frequency data set. Section  5 examines the tail fluctuation in five different stocks 
viz., SPDR S&P 500 ETF, General Motors, Ever-source Energy, Coca-Cola and NQ 
Mobile Inc., listed in various stock indexes. We provide the stock price distribu-
tion and the option pricing model in Sect. 6. Eventually, we conclude this paper in 
Sect. 7.

2  Entropy Frame Work

2.1  Intra‑day Stock Return Distribution

The intra-day stock return is defined as

The non-extensive Tsallis (Tsallis 2004; Senapati and Karmeshu 2016) entropy for 
the above stock return is expressed as

The first and second moment constraints along with the normalization constraints 
are given below:

where g̃es(R, T) =
{gq(R,T)}

q

∫ {gq(R,T)}q
dR

 defined as the escort probability distribution (Grado-
jevic and Genay 2011; Namakia et al. 2013; Abe and Bagci 2005). Abe and Bagci 
(2005) described the difference between the uses of the general probability distribu-
tion and the escort distribution. This papers also derives the relation between ordi-
nary expectation and q-expectation for randomly varying quantity. The existence of 
the power-law distribution under the non-extensive statistical phenomena is well 
supported by the q-expectation which is validated through their paper. The Lagran-
gian is defined as

(1)R(T) = log

(
ST

S0

)
.

(2)Sq(R, T) =
1

q − 1
−

∫ ∞

−∞

{
gq(R,T)

}q
dR

q − 1

(3)
∫

+∞

−∞

gq(R,T)dR = 1,∫
+∞

−∞

Rg̃es(R,T)dR = 𝜇T , and

∫
+∞

−∞

(R − 𝜇T)2g̃es(R,T)dR = 𝜎2T ,
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with �1 , �2 and �3 being the Lagrangian parameters which are obtained from the 
above constraints. The corresponding Euler–Lagrange equation is given as

Thus solving the Eq. (5), the maximum entropy probability distribution for IDR can 
be obtained :

where the Z represents normalization constant.

It is quite significant to observe that, as q → 1 the gq(R,T) coincide with Gaussian 
distribution. From the Eq. (6), we can also obtain the CCDF as,

For R >> 0 , the asymptotic nature of CCDF is denoted as

where � =
q+1

2(q−1)
 ,    � =

3−q

q−1
,   2F1 is the Hypergeometric2F1 function, and � (.) 

denotes gamma function.
It is also observed that Eq. (9), exhibits power-law behavior which are in excel-

lent agreement with the empirical data sets (Stanley 2003; Pan and Sinha 2008). It 
has been interesting to notice that the t-distribution is also capable of describing the 
power-law behavior of the high-frequency intra-day returns. Therefore in the next 

(4)

L
(
gq,R

)
=

1 −
∞∫

−∞

[
gq(R, T)

]q
dR

q − 1
+ 𝜆1

(
1 − �

+∞

−∞

gq(R,T)dR

)

+ 𝜆2

(
𝜇T − �

+∞

−∞

Rg̃es(R,T)dR

)
+ 𝜆3

(
𝜎2T − �

+∞

−∞

g̃es(R,T)(R − 𝜇T)2dR

)
,

(5)
�L

�gq(R,T)
−

d

dR

(
�L

�g�
q
(R,T)

)
= 0,

(6)gq(R,T) =
1

Z

{
1 −

1 − q

(3 − q)𝜎2T
(R − 𝜇T)2

} 1

1−q

, −∞ < R < ∞,

(7)Z = 𝜎
√
T

�
(3 − q)𝜋

q − 1

𝛤 (
3−q

2q−2
)

𝛤 (
1

q−1
)
, 1 < q < 3.

(8)
Gq(�R� > 𝜉) = ∫
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𝜉

gq(R,T)dR =
2𝜎

√
T

𝛤 (𝛼)Z
𝛽−𝛾𝛾

1

1−q𝛤

�
−
𝛾

2

�

× 2F1

�
−
𝛾

2
,

1

q − 1
, 𝛼, −

𝛾

𝛽2

�
,

(9)
Gq(�R� > 𝜉) =

2𝜎
√
T

𝛤 (𝛼)Z
𝛽−𝛾𝛾

1

1−q𝛤

�
−
𝛾

2

�

× 2F1

�
−
𝛾

2
,

1

q − 1
, 𝛼, −

𝛾

𝛽2

�
∼ 𝜉

−
3−q

q−1 , for 1 < q < 3,



1357

1 3

Computational Modeling of Non-Gaussian Option Price Using…

subsection, we provide some basic properties of the t-distribution in order to exam-
ine the relation between the t-distribution and the q-Gaussian distribution.

2.2  Student’s t‑Distribution

The probability distribution function of Student’s-t (Brach and Dunn 2004) is given by,

where ‘a’ represents the degrees of freedom which can takes only non-negative inte-
gral values. This Eq. (10), is also used to compute the corresponding CCDF and for 
the higher values of return, we obtain the asymptotic nature of CCDF as

It is quite obvious from Eqs. (9) and (11), to have a relation between the exponent of 
the q-Gaussian distribution with the degrees of freedom t-distribution. The relation 
is as follows

3  Computation of q Parameter

In virtue of q-Gaussian distribution, there is a growing interest among various 
researchers to examine different low-frequency financial time series such as monthly 
data, weekly data and the daily data (Gradojevic and Genay 2011; Namakia et al. 
2013). For the calculation of parameter ‘q’, Gradojevic and Genay (2011) have first 
computed the sum of the squares of errors between observed returns distribution 
with the proposed q-Gaussian distribution and then minimized the error. As a result, 
the estimated values of the non-extensive parameter ‘q’ found to be 1.51, 1.54 and 
1.60 of weekly, monthly and daily respectively for TSE, KS11, SSE, DIJA30, NAS-
DAQ100 and S&P 500 respectively. Similarly, Namakia et al. (2013) have found the 
values of q corresponding to monthly, weekly and daily empirical data sets as 1.63, 
1.64 and 1.62 respectively. However, we have provided the estimation procedure for 
‘q’ for different high-frequency stock returns.

(10)𝜙a(R) =
1√
𝜋a

𝛤

�
1+a

2

�

𝛤

�
a

2

�
�
1 +

R2

a

�−
1+a

2

, −∞ < R < ∞,

(11)𝛷a(|R| > 𝜉) =

∞

∫
𝜉

𝜙a(R)dR ∼ 𝜉−a, a > 0.

(12)a =
3 − q

q − 1
.



1358 G. Nayak et al.

1 3

3.1  Evaluation of JS Measure

Nishii (1988), has described the estimation technique for parameter ‘q’ when the true dis-
tribution is unknown. Generally this type of model appears when data available to a family 
containing the exact distribution is not sufficient. Following this method, here we compare 
the proposed q-Gaussian distribution with the histogram of empirical intra-day data sets 
of stock returns. In this situation, Kullback–Leibler (KL) measure plays an important role 
where we calculate the distance between two distributions. This paper calculates KL meas-
ure between our proposed q-distribution and the observed empirical distribution. Accord-
ing to Naudts (2011), the non-extensive generalized KL measure between the empirical 
distribution f(R, T) and the proposed distribution gq(R,T) is defined as,

The intra-day histogram of return data is treated as the discretized form of the 
empirical data. Thus discretizing Eq. (13), we have

Thus to overcome the asymmetric nature of KL measure, we use symmetric JS 
measure (Fuglede and Topsøe 2004) which is expressed as:

We compute the value of parameter ‘q’ by minimizing the JS divergence. The esti-
mated value of non-extensive parameter q provides a close agreement along with 
the empirical returns. The following formula is used to get the precise value of the 
parameter ‘q’ from the empirical stock-return distribution.

(13)

KL
{
gq(R,T)||f (R,T)

}
= ∫

[{
gq(R,T)

}q−1

q − 1
−

1

q − 1

{
f (R,T)

gq(R,T)

}q−1
]
dR

− ∫
{

gq(R,T) − f (R,T)

f (R,T)

}
{f (R,T)}q dR.

(14)

KL
{
gq(R,T)||f (R,T)

}
=
∑
R

[{
gq(R,T)

}q−1

q − 1
−

1

q − 1

{
f (R,T)

gq(R,T)

}q−1
]
�R

−
∑
R

{
gq(R,T) − f (R,T)

f (R,T)

}
{f (R,T)}q �R.

(15)
JS
{
gq(R,T)||f (R,T)

}
=

1

2

[
KL

{
gq(R,T)||

(
gq(R,T) + f (R,T)

)
∕2

}

+KL
{
f (R,T)||(gq(R,T) + f (R,T)

)
∕2

}]
.

(16)D
(q)

QQQ

(
gq||f

)
= argmin

q∈(1,3)

{
JS
(
gq(R,T)||f (R,T)

)}
.



1359

1 3

Computational Modeling of Non-Gaussian Option Price Using…

4  Computation of q for NASDAQ Data

The above discussed method is used to determine the value of parameter q for min-
ute wise IDR data of Powershares QQQ of NASDAQ 100 (http://www.futur estic kdata 
.com). For the ease of computation, 30 min of each trading data has been removed from 
1.12.2004 to 31.12.2008 (Gerig et al. 2009; Liu et al. 1999). Trend behavior of minute 
wise data of Powershares QQQ of NASDAQ has been shown in Fig. 1a. From the given 
data sets, we have calculated the normalized return and the corresponding returns is 
shown in Fig. 1b. However, to show a comparison between our proposed model and 
the empirical returns, we need to classify the range of observed data into individual 
class intervals. For this purpose, we use the famous Struges formula (Martinez and 
Martinez 2002) for determining the bin number as, k = ⌊log2N⌋ + 1 , where ⌊ ⌋ rep-
resents the floor function. Using this formula, we get 25 class intervals for N = O(106) 
number of observations (Fig. 2). It is observed from Fig. 3, that the JS measure between 
our proposed distribution and the empirical data attains minimum value at point A. 
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Fig. 1  a Intra-day trend behavior for Powershares QQQ (NASDAQ 100) representing minute-wise data 
ranging from 01/12/2004 to 31/12/2008, b Plot of JS measure against parameter q for Powershares QQQ 
(NASDAQ 100)
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Fig. 2  Plot of JS measure against parameter q for Powershares QQQ (NASDAQ 100)
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Further, to get an insight, we have presented the computed JS measure values corre-
sponding to different values of q around 1.5 in Table 1. It is clearly observed from the 
table that the JS measure provides a least value at q = 1.513 i.e JSQQQ = 2.9604848 . 
Thus qQQQ = 1.513 is found to be the minimum value of Powershares QQQ of NAS-
DAQ 100 data. We also provide the probability density functions for stock returns cor-
responding to ‘q’ viz., 1.0, 1.5 and 1.513. Algorithm 1, describes the successive steps 
towards the estimation of non-extensive parameter q. We have successfully computed 
all the values of q corresponding to six different stock data sets with the use of the fol-
lowing algorithm 1.
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Fig. 3  a Variation of symmetric JS measure of Fig. 2 around q = 1.5. b Variation of JS symmetric meas-
ure of Student’s t from empirical Powershares QQQ data

Table 1  Tabulated values of JS 
measure for Powershares QQQ 
through various values of q 

The bold values are the estimated minimal values of the parameter q

q-values JS-measure q-values JS-measure

1.511 2.9604857 1.517 2.9604920
1.513 2.9604848 1.518 2.9604956
1.515 2.9604869 1.519 2.9604999
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In addition to this, we also described the asymptotic nature of the underlying 
return distribution at q = 1.513 using the CCDF provided in Eq. (9), for large values 
of ‘ � ’ (Bebortta et al. 2020) and we get, GQQQ(R) ∼ �−2.96.

It is quite interesting to notice that the negative exponent of high-frequency 
return distribution describes the stylized phenomena (Stanley 2003; Buchanan 2012) 
of the cubic law for stock returns. The tabulated JS measure corresponding to the 
non-extensive parameter q around 1.5 for Powershares QQQ is shown in Table 1. It 
can be observed, the minimum JS measure provides the minimum value of q. The 
tabulated JS measure corresponding to the non-extensive parameter q around 1.5 for 
Powershares QQQ is shown in Table 1. It can be observed, the minimum JS measure 
provides the required value of q.

The Fig. 4a, shows the probability density functions of the empirical Powershares 
QQQ along with the q-Gaussian distributions for q = 1.0 , 1.5 and 1.513, Gaussian 
distribution and Student’s t-distribution.

5  Stylized fact analysis

SPDR S&P 500 ETF, General Motors, Ever-source Energy, Coca-Cola and NQ Mobile 
Inc., are also examined to observe the cubic law for high-frequency intra-day returns. 
As discussed earlier, we performed the JS measure between all the given stock intra-
day returns data with our proposed distribution. Thereafter, we determine the parameter 
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q for the respective stock returns. JS measures for all the above stock data against dif-
ferent values of ‘q’ lying in the interval (1, 3) are evaluated.

We have also calculated the JS measure for the Student’s-t distribution correspond-
ing to all the underlying data sets. The divergence values for m = 3, are observed to be 
(1) 2.960543 (QQQ), (2) 5.067457 (SPY), (2) 5.067457 (SPY), (3) 5.176774 (GM), 
(4) 5.648495 (ES), (5) 4.904609 (KO) and (6) 4.858626 (NQ). Further, tabulated 
values for the JS divergence are also given to identify the value of parameter q with 
minimum JS value. For the sake of convenience, the parameter q with minimum JS 
value is represented through bold form in each table. From the Tables 1, 2,   3, 4, 5, 
and 6 the minimum values of the JS divergence are found as (1) 2.9604848 (QQQ), 
(2) 5.0674539 (SPY), (3) 5.1767703 (GM), (4) 5.6484839 (ES), (5) 4.9046019 (KO), 
and (6) 4.8586260 (NQ) obtained for q = 1.513 , q = 1.505 , q = 1.505 , q = 1.508 , 
q = 1.507 , and q = 1.499 respectively. So, using these values of ‘q’, we have obtained 
closed agreements between the empirical data sets and the proposed q-Gaussian distri-
bution. The CCDF obtained in Eq. (9), captures the stylized fact from empirical returns 
with various negative exponents and can be represented as:

The tabulated JS measure corresponding to the non-extensive parameter q around 
1.5 for SPDR S&P 500 ETF is shown in Table 2. It can be observed, the minimum 
JS measure provides the required value of q. The Fig.  5b, shows the probability 
density functions of the empirical SPDR S&P 500 ETF along with the q-Gaussian 

(17)
GSPY (�) ∼ �−3.01, GGM(�) ∼ �−2.96, GES(�) ∼ �−2.94,

GKO(�) ∼ �−2.96, GNQ(�) ∼ �−2.94, for large �.
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Fig. 4  a PDFs of q-Gaussian for q = 1.0, 1.5 and 1.513 together with Student’s t-distribution and Pow-
ershares QQQ of NASDAQ 100 normalized returns, b PDFs of q-Gaussian for q = 1.0 , 1.5 and 1.513 
together with Student’s t-distribution and SPDR S&P 500 ETF (SPY) of NYSE normalized returns

Table 2  Tabulated values of 
JS measure for SPY through 
various values of q 

The bold values are the estimated minimal values of the parameter q

q-values JS-measure q-values JS-measure

1.503 5.0674544 1.509 5.0674570
1.505 5.0674539 1.51 5.0674586
1.507 5.0674548 1.511 5.0674605
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distributions for q = 1.0 , 1.5 and 1.513, Gaussian distribution and Student’s t-distri-
bution. The tabulated JS measure corresponding to the non-extensive parameter q 
around 1.5 for General Motors is shown in Table 4. It can be observed, the minimum 
JS measure provides the required value of q. The Fig. 5a, shows the probability den-
sity functions of the empirical General Motors along with the q-Gaussian distribu-
tions for q = 1.0 , 1.5 and 1.513 and 1.513, Gaussian distribution and Student’s t-dis-
tribution. The tabulated JS measure corresponding to the non-extensive parameter q 
around 1.5 for Ever Source Energy is shown in Table 3. It can be observed, the mini-
mum JS measure provides the required value of q. The Fig. 5b, shows the probabil-
ity density functions of the empirical Eversource Energy along with the q-Gaussian 
distributions for q = 1.0 , 1.5 and 1.513, Gaussian distribution and Student’s t-distri-
bution. The tabulated JS measure corresponding to the non-extensive parameter q 
around 1.5 for Coca-Cola is shown in Table 5. It can be observed, the minimum JS 
measure provides the required value of q. The Fig. 6a, shows the probability density 

Table 3  Tabulated values of JS 
measure for Eversource Energy 
through various values of q 

The bold values are the estimated minimal values of the parameter q

q-values JS-measure q-values JS-measure

1.506 5.6484847 1.512 5.6484862
1.508 5.6484839 1.513 5.6484877
1.51 5.6484844 1.514 5.6484894

Table 4  Tabulated values of 
JS measure for General Motors 
through various values of q 

The bold values are the estimated minimal values of the parameter q

q-values JS-measure q-values JS-measure

1.503 5.1767712 1.509 5.1767726
1.505 5.1767703 1.510 5.1767740
1.507 5.1767708 1.511 5.1767757

Table 5  Tabulated values of JS 
measure for Coca-Cola through 
various values of q 

The bold values are the estimated minimal values of the parameter q

q-values JS-measure q-values JS-measure

1.505 4.9046024 1.511 4.9046050
1.507 4.9046019 1.512 4.9046066
1.509 4.9046028 1.513 4.9046086

Table 6  Tabulated values of JS 
measure for NQ Mobile Inc. 
through various values of q 

The bold values are the estimated minimal values of the parameter q

q-values JS-measure q-values JS-measure

1.497 4.8586269 1.503 4.8586281
1.499 4.8586260 1.504 4.8586294
1.501 4.8586264 1.505 4.8586310
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functions of the empirical Coca-Cola along with the q-Gaussian distributions for 
q = 1.0 , 1.5 and 1.513, Gaussian distribution and Student’s t-distribution. The tabu-
lated JS measure corresponding to the non-extensive parameter q around 1.5 for NQ 
Mobile Inc. is shown in Table 6. It can be observed, the minimum JS measure pro-
vides the required value of q. The Fig. 6b, shows the probability density functions 
of the empirical NQ Mobile Inc. along with the q-Gaussian distributions for q = 1.0 , 
1.5 and 1.513, Gaussian distribution and Student’s t-distribution. It is customary to 
show the CCDF in log-log scale to observe the exponent of power-law from both 
empirical and theoretical model. The slope of the straight line from the CCDF figure 
corresponding to each underlying return data set provides respective exponent meas-
ure. The existence of power-law behavior for six different stock returns is shown in 
the Fig. 7 in terms of corresponding CCDFs.
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eral Motors (GM) of S&P 500 normalized returns, b PDFs of q-Gaussian for q = 1.0 , 1.5 and 1.513 
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6  Stock Price Distribution with Option Price

It has been observed that Glasserman (2013), stock price is governed by the fol-
lowing stochastic differential equation:

which is associated with a Wiener process W, and the parameters � and � represent-
ing the drift and degree of fluctuation respectively. The solution of the above Eq. 
(18), gives rise to the Geometric Brownian Motion (GBM) (Albanese and Campoli-
eti 2006) as,

The log-normal distribution of Eq. (19), is given by,

Hull (2006) have provided a famous option pricing model where stock return exhib-
its Gaussian distribution. However, from the empirical data, it has been shown that 
returns does not follow the Gaussian distribution which has been studied by Sen-
apati and Karmeshu (2016) through six different stocks. Lahmiri (2016) proposed 
modeling and forecasting techniques for intra-day stock price which is highly fluctu-
ating and non stationary in nature.

The q-lognormal distribution of stock price can be obtained using Eqs. (1) and 
(6), as,
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Following Černỳ (2009), we use the risk-neutral probability � = r −
�2

2
 in Eq. (21), 

and we have,

Fig.  8a, shows the plot of the well known lognormal distribution, along with the 
q-lognormal distribution Eq. (22) for q = 1.

Figure 8, represents the plot of q-lognormal distribution Eq. (22), for three dif-
ferent values of parameter q. Now, we wish to determine the non-Gaussian option 
price corresponding to the given stock price distribution Eq. (22). The European 
call price (Albanese and Campolieti 2006; Hull 2006) under risk neutral measure 
Q is given by,

where Ft represents filtration which depends on past information up to time T (Alba-
nese and Campolieti 2006) and K is the strike price at time T. The non-Gaussian 
option price can be obtained by incorporating the proposed q-lognormal distribution 
Eq. (22) with Eq. (23), as,
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Substituting R = log
(
ST∕S0

)
 , we have,

Let y =
R−

�
r−

�2

2

�
T

�
√
T

.

The condition for non-zero option implies that the stock price should be greater than 
the strike price. Thus, we obtain,

Using the above condition, Eq. (26), becomes,

where y1 =
log (K∕S0)−
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�2

2

�
T

�
√
T

 . The option price obtained in Eq. (28), can be repre-
sented in it’s closed form as,
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Figure 9a, depicts the proposed q-Gaussian option price for the Eq. (29), along 
with Black–Scholes price for T = 1.

Figure  9b, shows the proposed q-Gaussian option price Eq. (29), along with 
Black–Scholes price for T = 0.75. Figure 10a, illustrates the proposed q-Gaussian 
option price Eq. (29), along with Black–Scholes price for T = 0.5.
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Figure  10b, depicts the proposed q-Gaussian option price Eq. (29), along with 
Black–Scholes price for T  =  0.25. The convergence of the proposed q-Gaussian 
option price Eq. (29), for q = 1 with the famous Black–Scholes option price for dif-
ferent time periods are shown in Fig. 11.

7  Conclusion and Future Works

It has been an interesting and challenging task to study the dynamical behavior of 
intra-day high-frequency data. For this purpose, we exploited the significance of the 
powerful Tsallis’ framework to obtain q-Gaussian distribution for stock return by 
maximizing Tsallis entropy under first, second moment constraints along with the 
normalization constraint. The generalized JS divergence phenomena is employed 
to compute the parameter ‘q’ for various stocks. We have examined six high-fre-
quency datasets listed in different indices for the validation of the proposed distribu-
tion through different ‘q’ values. For the sake of convenience, a precise algorithm 
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has been proposed for the estimation of parameter ‘q’. The derived distribution has 
clearly explained the cubic power-law stylized fact of the above empirical stock 
returns for the corresponding non-extensive parameter q. For characterizing the tail 
fluctuation, we have successfully computed the CCDF for the underlying return dis-
tribution through Hypergeometric2F1 function. In addition to this, the correspond-
ing stock distribution is derived in terms of q-lognormal distribution which is used 
to provide the non-Gaussian option price.
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