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Abstract
This article analyzes the eigenvalues of financial graphs and discusses different types 
of graphs using random graph theory. We found that the energy-based Rényi index 
is an effective tool for studying the spectrum of financial graphs. The entropy of 
financial graphs is usually different from the theoretical predictions of random graph 
theory, which implies the existence of rich structures. This article also constructed 
some benchmark graphs for comparative analysis through the classic financial mod-
els. The calculations show that the geometric Brownian motion and the one factor 
model correspond to completely different entropy values based on eigenvalues, thus 
providing two extreme cases for characterizing real graph entropy. In particular, we 
find a high correlation between the degree-based Rényi index and the eigenvalue-
based Rényi index based on real market data. This article shows the analysis of the 
structure and complexity of financial graphs from the perspective of graph entropy, 
thus providing a new way to analyze different types of financial graphs.

Keywords  Rényi index · Financial graph · Correlation matrix · Eigenvalues

1  Introduction

In the past two decades, various methods have been developed to extract the struc-
ture of financial correlation matrices in the form of graphs or networks. The main-
stream methods include MST (minimum spanning tree) algorithm, PMFG (planar 
maximally filtered graph) algorithm and threshold method (see Mantegna 1999; 
Tumminello et al. 2005; Yang and Yang 2008; Tse et al. 2010; Song et al. 2011). In 
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previous studies, many researchers have focused on the topological structure of MST 
and PMFG, and found that power law distribution exists widely in financial graphs 
(Vandewalle et al. 2001; Wiliński et al. 2013, 2015).

In addition to using correlation coefficient matrices to construct financial graphs, 
some studies have used some different approaches to construct networks, such as 
partial correlation coefficients (Kenett et al. 2010a; Wang et al. 2018; Meng et al. 
2014), Granger causality (Billio et al. 2012), and VAR models (Yi et al. 2018). In 
addition, some studies have analyzed financial risks from a network perspective, 
such as focusing on tail dependence (Hua et  al. 2019; Gang-Jin and Chi 2016), 
or risk spillover effects (Hautsch et  al. 2014; Gang-Jin et  al. 2017). In particular, 
empirical studies have shown that analysis of the structure of financial networks not 
only helps measure risk, but also enhances portfolio performance (Zhao et al. 2016; 
Pozzi et al. 2013; Enguthaiwat 2018).

This article only analyzes financial graphs based on correlation matrices, which 
is the most widely studied category. In previous studies, the random matrix theory 
(RMT) provides the spectral characteristics of noise-driven correlation matrices 
and is therefore widely used to analyze financial correlation matrices. For exam-
ple, some pioneering studies have revealed some differences between the empirical 
features exhibited by the correlation matrix of real world and the properties pre-
dicted by random matrix theory  (Laloux et al. 1999; Plerou et al. 1999). The spec-
tral analysis of the financial correlation matrix is important for analyzing dynamics 
in the market  (Kumar and Deo 2012; Junior and Franca 2012; Conlon et al. 2009). 
Further, some researchers have combined the theory of random matrix with finan-
cial graphs to analyze the market  (Jiang et al. 2014; Kenett et al. 2010b; Eom et al. 
2009; Song et  al. 2011; Dai et  al. 2016). In summary, the correlation matrix can 
be analyzed from two perspectives of the network and the random matrix, and the 
latter has been widely used to construct a benchmark for evaluating the correlation 
coefficient matrix of the real market, and in particular, to analyze the eigenvalues 
of the correlation matrix. Corresponding to financial graphs, random graph theory 
also provides a benchmark for research. Therefore, similar to applying RMT to study 
correlation matrices, we use random graph theory to discuss the adjacency matrix of 
financial graphs, and focus on the heterogeneity of eigenvalues.

Although many researchers have studied the degree distribution of financial 
graphs in depth, the research on the distribution of eigenvalues of adjacency matri-
ces has not been widely carried out. However, in complex network theory, a large 
number of theoretical and experimental work focuses on the distribution of eigenval-
ues of the adjacency matrix. For example, Farkas et al. (2001); Nadakuditi and New-
man (2013) studied the eigenvalues of adjacency matrices of small world networks 
and scale-free networks. Since real networks often have rich structures, such as com-
munities or modules, some researchers carefully studied the spectrum of networks 
with community or module structures (Chauhan et al. 2009; Zhang et al. 2014; Jalan 
et al. 2011). Sanjeev Chauhan et al. studied the spectrum of adjacency matrices of 
networks with community structures and discussed the application of spectral analy-
sis in community detection (Chauhan et al. 2009). Xiao Zhang et al. analyzed the 
spectrum of networks with conditions of community structure and degree distribu-
tion (Zhang et al. 2014). In addition to undirected networks, studies have shown that 



1151

1 3

Entropy of Graphs in Financial Markets﻿	

spectral analysis is important for analyzing the modular structure of directed net-
works (Jalan et al. 2011). Not only the community structure, the spectral analysis of 
the network can also be applied to the analysis of the microstructure of the network. 
For example, recently, Newman discussed the spectrum of the adjacency matrix of 
networks with short loops (Newman 2019). More details about the spectrum of the 
network can be found in the relevant review (Sarkar and Jalan 2018).

We mainly use the Rényi entropy of the graph to analyze the structure of the 
financial graph. The entropy proposed by Rényi is an important concept in informa-
tion theory and fractal geometry (Rényi 1961; Jiang et al. 2019). Its special cases 
include Shannon entropy and Hartley entropy, as well as several other types of 
entropy. The Rényi entropy can be rewritten into a normalized form ( Rényi index) 
and takes values in the interval [0, 1] (Eliazar 2011). Currently, the Rényi index has 
been used to analyze the topology of financial graphs (Nie et al. 2016; Nie and Song 
2018). The researchers found that the Rényi index of financial graphs in the market 
is usually larger than the value based on Brownian motion, due to the heterogene-
ity of the degree distribution (Nie et al. 2016). Furthermore, previous research has 
shown that the Rényi index can be used in fractal analysis of financial graphs (Nie 
and Song 2018).

In order to study the heterogeneity of the eigenvalues of the adjacency matrix, 
we focus on the absolute value of the eigenvalues and its entropy. Researchers have 
defined generalized graph entropies based on eigenvalues, including Rényi entropy 
and Daròczy’s entropy   (Dehmer et  al. 2015). Here, we still use the normalized 
Rényi entropy (Rényi index) to study the eigenvalues. One of the advantages of 
using the eigenvalues-based Rényi index is that the calculated values are normalized 
so that they can be used well in comparative analysis. Second, the Rényi index can 
be defined by the Lorenz curve, which can be intuitively expressed by the curve-
based index  (Eliazar and Sokolov 2012). Third, the energy is an important concept 
for studying graphs and has been extensively studied as a useful topic   (Li et  al. 
2010). Following the existing research results, there is a direct relationship between 
the Rényi index based on the eigenvalue and the energy  (Dehmer et al. 2015).

We organize this article as follows. After a brief description of the data set, we 
review the Rényi entropy and the graph energy in the method section. We analyze 
the relationship between normalized Rényi entropy (Rényi index) and energy. Then, 
we analyzed the value of the Rényi entropy of the random graph. In the results sec-
tion, we analyzed the entropy values of the three types of financial graphs and com-
pared them with the results generated by the financial benchmark model and the 
random graph model. At last, we dynamically analyze the relationship between the 
degree-based Rényi index and the eigenvalue-based Rényi index.

2 � Data

The S&P500 index is a composite index that is commonly used to show the perfor-
mance of the US market. The index is constructed by the stocks of the top 500 compa-
nies selected by market value. Here we used the daily closing price series of constituent 
stocks of the S&P500 index, which is from 2006/1/3 to 2018/8/15. There are a total of 
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3117 trading days. Since the data for some stocks was missing during the period con-
sidered, we used 432 stocks to construct the financial graphs. The data for all the stocks 
we use is extracted from Yahoo Finance (https://finance.yahoo.com/).

This study focuses on PCC-based graphs, where Pearson correlation coefficient 
(PCC) is generally considered to capture linear correlations. Recently, research on 
the stock market has revealed a relationship between PCC and non-linear measures 
(Hartman and Hlinka 2018). Before constructing a financial graph, the original price 
series needs to be pre-processed as a return series. To describe the method, we assign 
a label to each stock. If there are n stocks, then there are n labels {1, 2,⋯ , n} . We 
assume that the price time series of each stock k is Pk = {Pk(t)} , then its return series 
is Rk = {Rk(t)} (Rk(t) = log(Pk(t + 1)) − log(Pk(t))) , so that the Pearson correlation 
coefficient between stocks k and l is as shown in Eq. 1. Here the symbol ⟨Rl⟩ means 
calculating the mean of the series {Rl(t)}.

If the number of stocks is n, the financial graph generated based on the correla-
tion matrix � = [�(k, l)] has n nodes. To simplify the discussion, stock labels are used 
directly to mark network nodes. Each financial time series is mapped to a node through 
the graph model. The financial graph is a two-tuple G(V, T), where V = {i|i = 1,⋯ , n} 
and T = [T(k, l)] are the node set and the adjacency matrix, respectively. The element 
T(k, l) = 1 , if there is a link between k and l, otherwise it is 0, in addition, T(k, k) = 0.

Here, we use software Pajek to plot all the financial graphs (http://mrvar​.fdv.uni-lj.
si/pajek​/).

3 � Method

3.1 � Classic Benchmark Financial Model

We use geometric Brownian motion (GBM) to simulate the price series of each selected 
component stock, where the mean (�) and standard deviation (�) of the return series are 
used as parameters for the simulated stock price series, as shown in Eq. 2 (Campbell 
et al. 1997). Here St represents the price process and Wt is the Wiener process. In this 
way, for each stock, we can generate a surrogate series, which can further calculate the 
correlation coefficient matrix and the correlation graph, where the correlation structure 
is eliminated. In addition, the simulation steps can be repeated multiple times to gener-
ate benchmarks for financial graphs.

In addition to geometric Brownian motion, we also use the classic one-factor model 
(OFM) to generate simulated return series. The model includes only one factor, the 
market factor Rm(t) , as shown in Eq. 3 (Campbell et al. 1997). As in previous studies 
(Bonanno et al. 2003, 2004; Nie et al. 2016), we estimate the coefficients (�k, �k) of 

(1)�(k, l) =
⟨RkRl⟩ − ⟨Rk⟩⟨Rl⟩�

⟨R2
k
− ⟨Rk⟩2⟩⟨R2

l
− ⟨Rl⟩2⟩

(2)dSt = �Stdt + �StdWt

http://mrvar.fdv.uni-lj.si/pajek/
http://mrvar.fdv.uni-lj.si/pajek/
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Eq. 3 and the standard deviation sk of the random terms, and then use Eq. 4 to gener-
ate a simulated series {Rs

k
(t)} , where �N(0, sk) is Gaussian noise. Finally, we apply 

model-based simulation series to generate correlation matrices and financial graphs.

3.2 � MST and PMFG

The minimum spanning tree (MST) is an important concept of graph theory. At pre-
sent, there are many algorithms for constructing MST, some of which are classical 
algorithms such as Kruskal algorithm and Prim algorithm  (Kruskal 1956; Prim 1957). 
Here we use the Prim algorithm. MST  is a connected graph that connects all nodes 
together, where the total edge weights are minimized. For n nodes, MST includes n − 1 
edges without cycles. Here, we use the classic method proposed by Mantegna to calcu-
late the distance D(k, l) = [2(1 − �(k, l))]1∕2 and generate the MST (Mantegna 1999). 
PMFG is a planar graph with 3-cliques and 4-cliques structures that do not exist in 
MST. Here, we only briefly review the construction method of PMFG, which includes 
the following main steps  (Tumminello et al. 2005).

All upper triangular matrix elements in the correlation coefficient matrix are 
sorted in descending order to generate a set Lsort = {Ll

sort
} , where each element Ll

sort
 

corresponds to a pair of nodes and L1
sort

≥ L2
sort

≥ ⋯L
n(n−1)∕2
sort  . Then, we add the links 

to the n nodes in descending order of Lsort , that is, add links between the nodes cor-
responding to Ll

sort
 , and ensure that the graph after adding the links is a planar graph. 

Finally, a graph comprising 3(n − 2) edges is constructed, where 3(n − 2) is the max-
imum number of edges that a planar graph can include. In general, a graph with a 
genus of g includes at most 3(n − 2 + 2g) edges  (Tumminello et al. 2005).

3.3 � Threshold Network

There are multiple ways to generate a threshold network, which relies on construct-
ing an adjacency matrix from a correlation coefficient matrix or a distance matrix 
(Yang and Yang 2008; Tse et al. 2010). The main difference between different meth-
ods is the way to construct the threshold, such as directly using the correlation coef-
ficient as the threshold (Tse et al. 2010; Boginski et al. 2005), or its absolute value 
as the threshold (Yang and Yang 2008). We use the method proposed in (Yang and 
Yang 2008) here, that is, the off-diagonal elements in the correlation coefficient 
matrix that are greater than or equal to a critical value pth are converted to 1, and 
the other elements are converted to 0. The adjacency matrix Tpth of the threshold net-
work W(V , Tpth) is generated by the rules in Eq. 5.

(3)Rk(t) =�k + �kRm(t) + �k(t)

(4)Rs
k
(t) =�k + �kRm(t) + �N(0, sk)

(5)
Tpth(k, l) = 1, |𝜌(k, l)| ≥ pth

Tpth(k, l) = 0, |𝜌(k, l)| < pth
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In this paper, in order to apply the random graph theory to analyze the threshold net-
work, the threshold pth needs to be converted into the proportion of links between 
nodes. In the calculation, we can calculate p =

∑
k,l Tpth

(k,l)

n(n−1)
 directly from the adjacency 

matrix.

3.4 � Rényi Index

Based on the adjacency matrix T, the degree of node k is dk =
∑

l T(k, l) , and the aver-
age degree is d� = 1

n

∑
k dk . Applying the definition of the Rényi index directly (Eliazar 

2011), the degree-based Rényi index of the network can be defined as Eq. 6 (Nie et al. 
2016), where � is a parameter. In this article � is a real number greater than zero. In 
addition, we use m to represent the number of links in the network, that is, the number 
of non-zero elements in the upper or lower triangular matrix of T.

3.5 � Graph Energy

The energy (�G) of the graph G is defined on the eigenvalues of the adjacency matrix 
(Eq. 7). Here, �m is the eigenvalue of T, and the symbol |�m| means the absolute value 
of �m (Gutman 1978).

The graph energy can also be expressed as an integral form by the Coulson inte-
gral formula (Eq. 8), where i2 = − 1 , and �(x) is the characteristic polynomial of the 
graph G (Li et al. 2010).

In particular, the energy of the Erdős-Rényi’s random graph can be estimated. In an 
Erdős-Rényi random graph, the links between the nodes are independent and the 
probability is p. Then, the energy of almost every Erdős-Rényi graph Gn(p) satisfies 
the relationship as Eq. 9 (Li et al. 2010). Here, o(1) represents a high-order infini-
tesimal of 1.

(6)

R(�) = 1 −

[
n∑

k=1

(
dk

d�

)�(
1

n

)]
1

1−�

, � ≠ 1

R(1) = 1 − exp

{
−

k∑

k=1

[
dk

d�
ln

(
dk

d�

)](
1

1 − n

)}
, � = 1

(7)�G =
∑

m

|�m|

(8)�G =
1

� ∫
+∞

−∞

[
n −

ix��(ix)

�(x)

]
dx

(9)�G = n
3

2

�
8

3�

√
p(1 − p) + o(1)

�
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3.6 � The Rényi Index Based on the Eigenvalues

Dehmer Matthias et al. defined the graph entropy based on Rényi entropy, where � is 
a parameter (Eq. 10)  (Dehmer et al. 2015). In addition, if �� =

∑n

i=1
��i�� is defined, 

Eq. 11 can be derived  (Dehmer et al. 2015).

There is a direct relationship between definition Eq. 10 and the Rényi index. Since 
the adjacency matrix has positive and negative eigenvalues, a suitable choice is 
to define the Rényi index on �+ = {|�i||i = 1,⋯ , n} . Applying the general Rényi 
index to the set �+ , we can define the Rényi index of the graph as Eq. 12, where 
�� =

1

n

∑
k ��k�.

In this way, we can define the Rényi index of the graph in two ways. One is defined 
on the degree sequence of the graph (Eq. 6), and the other is defined on the eigen-
values of the adjacency matrix of the graph (Eq.  12). Therefore, here we call the 
former one is the degree-based Rényi index and the latter is the eigenvalues-based 
Rényi index. In this paper, we only choose � = 2 to calculate the Rényi index, which 
makes it possible to apply the Erdös-Rényi (E − R) random graph theory directly. In 
addition, changes in parameters do not affect the results of the comparative analysis.

It can be proved that the relationship between I� (Eq. 10) and R�(a) (Eq. 12) is as 
shown in Eq. 13. Therefore, the two definitions are equivalent when both m and n are 
determined. In our discussion, m and n of the financial graph are fixed values, where 
the m values of MST and PMFG are equal to n − 1 and 3(n − 2) , respectively. Eq. 13 
is a normalized value that can be used to compare different networks. In this paper, we 
mainly use the form expressed by Eq. 13 for calculation.

We apply a property to simplify the Rényi index when � = 2 . The sum of the squares 
of the eigenvalues is twice the number of edges (Eq. 14) (Bapat 2010). Based on 
the relationship Eq. 14, if we combine Eqs. 11 and 13, R�(2) can be expressed as 
Eq. 15. Eqaution 15 means that when � = 2 , R�(2) is essentially normalized graph 

(10)I� =
1

1 − �
log

�
n�

i=1

�
��i�∑n

j=1
��j�

���
, � ≠ 1

(11)I� =
1

1 − �
log

��

�G
, � ≠ 1

(12)
R�(�) = 1 −

[
n∑

i=1

(
|�i|
��

)�
(
1

n

)]
1

1−�

, � ≠ 1

R�(1) = 1 − exp

{
−

n∑

i=1

[|�i|
��

ln

(|�i|
��

)](
1

1 − n

)}
, � = 1

(13)R�(�) = 1 −
exp

(
I�
)

n
, � ≠ 1
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energy. This indicates that the evenness of the eigenvalues �+ = {|�i|, i = 1⋯ n} 
corresponds to the energy of the graph. Since �G ≤ √

2mn (McClelland 1971), R�(2) 
takes a value in the interval [0, 1]. Therefore R�(2) can be considered as a normal-
ized graph entropy.

3.7 � Entropy of a Random Graph

Since the energy of the random graph has been appropriately estimated (Eq. 9), we can 
estimate the entropy of the random graph (R�(2)) . If the term o(1) in Eq. 9 is ignored, 
there is an approximate relation �G ≈ n

3

2 (
8

3�

√
p(1 − p)) . Combining the definition of 

R�(2) (Eq. 15), the approximate relationship of Eq. 16 can be obtained. There is an 
approximate relationship n2

n(n−1)
≈ 1 when n is a large integer ( limn→∞

n2

n(n−1)
= 1 ). The 

limit form of Eqs. 16 is 17. Approximately, for a random graph with a ratio p, there is 
an approximate relationship Eq. 18. Equation 18 shows that there is a linear relation-
ship between R�(2) and p with a slope of 64

9�2
 (≈ 0.7205) and the intercept term is 

1 −
64

9�2
 (≈ 0.2795).

4 � Results

4.1 � The Rényi Entropy of Financial MST and PMFG

In this section, we analyze the differences between MST and PMFG in real markets 
and model-based financial graphs. First, we select the price data of the constituent 

(14)
n∑

i=1

|�i|2 = 2m

(15)R�(2) = 1 −
�2
G

2mn

(16)

R�(2) ≈1 − n3
64

9�2
⋅

p(1 − p)

2mn

R�(2) ≈1 −
64n2

9�2
⋅

1

2m
⋅

2m

n(n − 1)
⋅ (1 − p)

R�(2) ≈1 −
64n2

9�2
⋅

1

n(n − 1)
⋅ (1 − p)

(17)limn→∞R�(2) =1 −
64

9�2
⋅ (1 − p)

(18)R�(2) ≈1 −
64

9�2
⋅ (1 − p)
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stocks of S&P500 to calculate MST (Fig. 1a) and PMFG (Fig. 1b). Second, we use 
two benchmark models (GBM,  OFM) to simulate the return series and generate 
MSTs (Fig. 1c, e) and PMFGs (Fig. 1d, f)) for comparison.

Below, we separately analyze the distribution of the eigenvalues of the six finan-
cial graphs in Fig. 1. First, we generate the frequency histogram of �+ for each graph 
as shown in Fig. 2. Comparing Fig. 2a with c, we find that the distribution of the lat-
ter is flatter and the maximum is smaller than the former. Similarly, the maximum 
eigenvalue in Fig. 2b is greater than the value in Fig. 2d. Furthermore, the difference 
between the average values of �+ is small, as shown in the second and third columns 
of Table 1.

Then we analyze the Rényi index of the different graphs. According to previ-
ous research, we have known that the degree-based Rényi index of MST and PMFG 
based on real data is usually larger than the value based on geometric Brownian 
motion   (Nie et al. 2016; Nie and Song 2018). Consistent with previous research, 
we found that the degree-based Rényi index of Fig. 1a is greater than that of Fig. 1c, 
and the analysis for Fig. 1b and d is similar.

Similar to the comparative analysis of R(2), we find that the R�(2) value of the 
real data is also significantly larger than the calculated value based on GBM, as 
shown in the fifth column of Table 1. From Eq. 14, if the values of m and n of the 
two graphs are equal, we already know that the smaller R�(2) value corresponds to 
the larger �G . Therefore, the energy values of Fig. 1a and b are smaller than those of 
Fig. 1c and d, respectively.

Previous studies have shown that simulation data based on the one factor model 
can generate MST with super hub nodes (Bonanno et al. 2004; Nie et al. 2016). Fig-
ure 1e illustrates one such type of MST, which includes three hub nodes, resulting in 
a high R(2) value. In particular, here we find that R�(2) corresponding to Fig. 1e is 
also close to 1, which implies a high level of heterogeneity. Similarly, we find that 
the PMFG (Fig. 1f) based on the one factor model also shows an R(2) value close to 
1, and R�(2) = 0.6175 , which indicates that the level of heterogeneity of its set �+ is 
lower than that of network Fig. 1e. Figure 2f shows the set �+ of Fig. 1f, where the 
maximum is significantly larger than the maximum in Fig. 2e (Table 1). This means 
that heterogeneity does not only depend on the maximum eigenvalue.

We can also calculate the value of R�(2) directly from column 6 of Table  1 
(Eq. 14). For example, we calculated R�(2) = 0.4458 based on the energy value of 
the network expressed in Fig.  1a ( R�(2) = 1 − 454.30522∕(432 × 431) ), which is 
consistent with the value calculated from the adjacency matrix in Table 1.

We can find that the heterogeneity of the eigenvalues of financial graphs in the 
real market is between the results based on geometric Brownian motion and the one 
factor model. That is, the model provides two extreme cases that make it possible to 
compare the spectra of different financial graphs.

4.2 � Comparative Analysis of Financial Graphs and Random Graphs

In the previous section we have found that the energy and entropy of financial 
graphs in the market are significantly different from the calculated values provided 
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Pajek

(d)

Pajek

(e)
Pajek

(f)

Fig. 1   The six sub-graphs show the financial graph of the real market and the financial graph generated 
by the models. a, b show the MST and PMFG of the real market. c, d show financial graphs of simulated 
data generated by geometric Brownian motion. e, f show financial graphs of simulated data generated by 
one factor model
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(a) (b)

(c) (d)

(e) (f)

Fig. 2   The frequency histograms of the eigenvalues (�+) of the adjacency matrices, wherein the six sub-
graphs correspond to the six graphs in Fig. 1, respectively

Table 1   The Rényi index 
and energy values of the six 
subgraphs in Fig. 1

Figure max(�+) mean(�+) R(2) R�(2) �
G

Figure 1a 4.7491 1.0516 0.4766 0.4458 454.3052
Figure 1b 11.4792 1.8188 0.4682 0.4461 785.7172
Figure 1c 2.8818 1.1752 0.2196 0.3078 507.6896
Figure 1d 7.4456 1.9508 0.1988 0.3628 842.7469
Figure 1e 13.6417 0.1920 0.9732 0.9815 82.9339
Figure 1f 24.8739 1.5114 0.9296 0.6175 652.9034
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by the two benchmark models. In this section, we use the E − R random graph as the 
benchmark.

The connection densities of MST and PMFG with 432 nodes are 0.0046 and 
0.0139, respectively. We use p = 0.0046 and p = 0.0139 as parameters to generate 
two groups of graphs, each of which includes 1000 random graphs, and calculate the 
R�(2) value of each graph, as shown in Fig. 3.

We find that the R�(2) values of the random graphs corresponding to MST are 
significantly different from those estimated by Eqs. 1 and 2. However, the difference 
between the calculated value and the theoretical value of the random graph with the 
connection density of PMFG is small.

From the frequency histogram, it can be found that the R�(2) values of the ran-
dom graph are significantly different from the predicted values of Eq.  18, where 
the theoretical predicted values are 0.2828 (1 − 64

9�2
⋅ (1 − 0.0046)) and 0.2895 

(1 −
64

9�2
⋅ (1 − 0.0139)) . In addition, we find that the R�(2) value of Fig.  1a is 

greater than 0.4451(ave + 3 × std) , which is statistically different from the entropy 
value of the random graph. Similarly, the R�(2) value of Fig.  1b is greater than 
0.3215(ave + 3 × std).

In summary, we find that there is a large error between the predicted entropy 
value based on the random graph theory and the simulated value when the p value is 
small. The calculations in the next section show that the predicted values of Eq. 18 
agree well with the calculated values with larger p values.

4.3 � Rényi Entropy of the Financial Threshold Network

The structure of the threshold network is related to the threshold, so that we only 
focus on the relationship between the entropy and the threshold. Here, we specify 
a series of pth values and calculate the network sequence Wpth

 , and further study the 
relationship between R�(2) and pth . Figure 4a shows a network with pth = 0.1003 , 
which includes 9339 edges, and a network with a larger pth value includes more 
links.  Figure  4b shows a threshold  network  with the same parameter in the real 
market.

(a) (b)

Fig. 3   a and b Show the R�(2) values of 1000 random graphs, respectively, where a and b correspond to 
p = 0.0046 and p = 0.0139 , respectively



1161

1 3

Entropy of Graphs in Financial Markets﻿	

We find differences between the structures of the two threshold networks. The 
network shown in Fig. 4a is a fully connected network. The threshold network in 
the real market includes a large component, which includes 338 nodes, as shown in 
Fig. 4b. Here we ignore the isolated nodes and small subgraphs. The R�(2) value of 
the network Fig. 4a is equal to 0.3363, while the R�(2) value of the threshold net-
work in the real market is equal to 0.8356, which implies that the threshold network 
of the former is significantly different from the latter.

Next, we calculate the relationship between pth value and Rényi index, as shown 
in Fig.  5. For comparison, we show the relationship between R�(2) and pth based 
on GBM in Fig. 5, where Rényi index and pth are linear in the interval [0.05, 0.95]. 
When the threshold value pth is in the interval [0.01,  0.1], the value of R�(2) 
does not change significantly. If we extract the interval where pth ∈ [0.1, 0.8] , we 
can find that Rényi and pth can be well fitted by the line, where the equation is 
R�(2) = 0.7001 ∗ pth + 0.2531 . The sum of the slope and intercept terms is 0.9531, 
which is close to the predicted value based on the random graph theory (Eq. 18). 
Comparing the solid line with the dotted line, we find that the R�(2) value of the 
threshold network in the real market is different from the reference values based on 
GBM.

4.4 � A Comparative Analysis of the Degree‑Based Rényi Index 
and the Eigenvalues‑Based Rényi Index

In the previous section, we have found that the spectrum of the financial graph of 
the real market is significantly different from the spectrum of the graph used for 
the benchmark, suggesting that the non-trivial structure present in the former leads 
to this difference. We next study the relationship between the degree-based Rényi 
index and the eigenvalues-based Rényi index. The former is an index describing the 

Pajek

(a)
Pajek

(b)

Fig. 4   a Shows the threshold network generated by geometric Brownian motion. b Shows the largest 
connected component in the threshold network of S&P500 constituents
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topological structure, while the latter is an index defined on the eigenvalues. The 
results shown in Table 1 have suggested a correlation between R(2) and R�(2).

In this section, we examine the relationship between the two concepts in detail. 
We slide the time window to calculate the graph sequence so that multiple R(2) and 
R�(2) values can be calculated for comparative analysis. We use data from stocks 
in S&P500 index and specify a window length of 126 days. In addition, the sliding 
window is 5 days, so that a total of 611 MSTs or PMFGs are calculated. Then, we 
calculate the degree-based Rényi index and the eigenvalues-based Rényi index for 
each MST separately. A comparison of the two time series is shown in Fig. 6. Simi-
larly, the Rényi index of PMFG can be analyzed, and the calculation result is shown 
in Fig. 7. Intuitively, a high correlation between the two pairs of time series can be 
observed. In fact, the Pearson correlation coefficients in the two figures are 0.8745 
(Fig. 6) and 0.9381 (Fig. 7), respectively. 

The high correlation between the entropy defined by two different approaches 
implies a deeper connection between the two concepts.

5 � Discussion and Conclusions

5.1 � Discussion

Similar to applying the random matrix theory to analyze the correlation matrix, here 
we use the random graph theory to analyze the correlation-based graph (network). 
Financial graphs show patterns that are different from those predicted by random 
graph theory, thereby suggesting that non-trivial structures can be analyzed using 
spectral theory.

At present, complex network theory has provided some insights based on the 
spectrum of adjacency matrix, such as analysis of community structure (Farkas et al. 
2001; Nadakuditi and Newman 2013; Chauhan et al. 2009; Zhang et al. 2014; Jalan 

(a) (b)

Fig. 5   The abscissa of the figure represents pth , and the ordinate represents the R�(2) value. The solid 
line in a shows the relationship between the R�(2) value and pth of the threshold network based on the 
S&P500 constituent stocks, and the dotted line corresponds to the relationship based on geometric 
Brownian motion. b Shows a part of the dotted line in a, where the pth value belongs to the interval 
[0.1, 0.8]
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et al. 2011). In general, based on the spectrum of the network, we can analyze more 
properties related to the network structure. In this way, we can apply network theory 
to analyze financial networks in a broader sense, not just networks constructed from 
correlation matrices. In particular, for financial networks constructed from time 
series, the surrogate time series generated by classic financial models provide useful 
benchmarks, such as geometric Brownian motion. In addition, previous studies have 
shown that the analysis of the structure of financial graphs helps to discuss some 
classic topics (Zhao et  al. 2016; Pozzi et  al. 2013; Enguthaiwat 2018). A related 
topic is to discuss risk management and asset investment based on structural indica-
tors of spectrum theory.

In this article, we report that there is a high correlation between Rényi indi-
ces defined by two different approaches. However, this is only a statistical corre-
lation and does not mean that the more general cases involving non-planar graphs 
have similar conclusions. The spectrum of the adjacency matrix contains a lot of 

Fig. 6   The figure shows the relationship between R�(2) and R(2) of the MST 

Fig. 7   The figure shows the relationship between R�(2) and R(2) of the PMFG 



1164	 C.-X. Nie, F.-T. Song 

1 3

information related to the network structure, and the Rényi index only describes one 
of its global characteristics. A detailed analysis of the eigenvalues of the financial 
graph may reveal the structure of the financial network more deeply.

5.2 � Conclusions

We study the entropy of financial graphs and its relationship with topological struc-
ture, and find that there is a high correlation between the eigenvalue-based Rényi 
index and the degree-based Rényi index. We use random graphs as a benchmark 
model and find that the entropy of financial graphs in the real market is clearly dif-
ferent from theoretical predictions. In addition, calculations show that the geometric 
Brownian motion and the one factor model provide two extreme cases that allow 
comparative analysis of financial graphs in the market. The extreme cases provided 
by the models allow us to observe the deviation level of a financial graph from the 
model graph.

In summary, our research shows that there is a correlation between the eigenvalue 
distribution of the adjacency matrix and the topological structure. This also shows 
that the entropy based on eigenvalues can be used as an a useful indicator to char-
acterize the properties of financial graphs. In addition, our research provides a new 
perspective that is different from the entropy of studying a single time series, and 
focuses on the entropy of the correlation structure, which helps to analyze the com-
plexity of the graph structure in the market.
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