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Abstract
In this paper, we analyze the inherent evolutionary dynamics of financial and energy 
markets. We study their inter-relationships and perform predictive analysis using an 
integrated nonparametric framework. We consider the daily closing prices of BSE 
Energy Index, Crude Oil, DJIA Index, Natural Gas, and NIFTY Index representing 
natural resources, developing and developed economies from January 2012 to March 
2017 for this purpose. DJIA and NIFTY account for the global financial market 
while the other three-time series represent the energy market. First, we investigate 
the empirical characteristics of the underlying temporal dynamics of the financial 
time series through the technique of nonlinear dynamics to extract the key insights. 
Results suggest the existence of a strong trend component and long-range depend-
ence as the underlying pattern. Then we apply the continuous wavelet transforma-
tion based multiscale exploration to investigate the co-movements of considered 
assets. We discover the long and medium-range co-movements among the hetero-
geneous assets. The findings of dynamic time-varying association reveal interesting 
insights that may assist portfolio managers in mitigating risk. Finally, we deploy a 
wavelet-based time-varying dynamic approach for estimating the conditional corre-
lation among the said assets to determine the hedge ratios for practical implications.
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1 Introduction

For nonlinear, nonparametric, and time-varying financial markets across the 
world, understanding the temporal dynamics for deeper analysis is an extremely 
arduous task. The volatility in stock markets largely influences capital flow, 
which affects investors (Cipollini et al. 2015; Abounoori et al. 2016; Tiwari et al. 
2019). Hence, it is essential to analyze different financial assets at a microscopic 
level for trading, portfolio management, and resource allocation. Globalization 
and rapid growth in information and communication technology have given impe-
tus to continuous interaction and volatility contagion among financial markets. 
Empirical investigations for examining the efficient market hypothesis and pre-
dictability of equity markets have garnered a lot of attention (Zhang et al. 2015; 
Mensi et  al. 2017). The literature reports usage of the variety of conventional 
econometric methods for accomplishing the objectives (Panda and Deo 2014; 
Ghosh and Kanjilal 2016). However, the major shortcoming such as inabil-
ity to deal with the nonlinear pattern and conducting granular level inspection 
have spurred the active utilization of nonconventional frameworks ranging from 
Econophysics (Mantegna and Stanley 1999), machine learning (Wang et al. 2011; 
Kao et al. 2013; Ghosh et al. 2019), wavelet analysis (Sharif et al. 2017; Jammazi 
et al. 2017), and deep learning (Zhao et al. 2017) in modelling the financial time 
series. Global market uncertainty and the financial crisis have surged researchers 
worldwide to come up with different strategies for portfolio management and rea-
lignment (Das et al. 2019). The proper discovery of dynamic association among 
heterogeneous financial assets plays a pivotal role in risk mitigation. Recently, 
the dynamic conditional correlation (DCC) based analysis of the return series has 
emerged as an attractive approach to meet the goal (Basher and Sadorsky 2016; 
Creti et al. 2014; Jones and Olson 2013; Kim et al. 2016).

Crude oil and natural gas have significant impacts on socio-economic develop-
ment and social stability (Jones and Kaul 1996; Henriques and Sadorsky 2008). 
The causal nexus between crude oil prices and energy has been observed as well 
(Reboredo et al. 2017). Due to their inherent chaotic characteristics and sensitive-
ness to outside shocks, forecasting future figures requires robust predictive frame-
works capable of mining uncertain and nonlinear patterns. It is essential to assess 
the association among these highly volatile markets and stock markets at the short 
and long runs time intervals for effective strategic investment.

The objectives of this research are threefold. The first objective is to analyze 
the underlying evolutionary dynamics of individual markets using nonlinear 
dynamics tools. It is critical to detect the occurrence of the random walk in the 
time series. The predictive analytic models are of no use for financial markets 
exhibiting complete Brownian motion. We classify the time series into a random 
walk and biased random walk models by estimating the fractal dimensional index 
and the Hurst exponent. The second objective is to assess the dynamic associa-
tions among the said assets over different time intervals by employing the con-
tinuous wavelet transformation-based wavelet coherence analysis. For portfolio 
diversification and hedging, these findings are important.
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The third objective is to estimate the dynamic association among the selected 
return time series for estimating hedging ratios for portfolio diversification. For 
this purpose, maximal overlap discrete wavelet transformation (MODWT) is used 
to decompose a time series into a set of time-varying linear and nonlinear compo-
nents. Then the dynamic conditional correlation-generalized autoregressive condi-
tional heteroscedasticity (DCC-GARCH) is applied on disentangled components 
to uncover the dynamic correlation to estimate hedge ratios. This paper presents a 
neoteric framework of nonlinear dynamics, wavelet analysis, and DCC-GARCH to 
accomplish research endeavors. The outcome of the fractal modeling sets the plat-
form for wavelet coherence analysis to identify the dynamic dependence among the 
energy, crude oil, and equity market. It justifies the deployment of DCC-GARCH for 
obtaining hedge ratios.

The rest of the article is structured as follows. Section 2 presents the previous lit-
erature. Section 3 emphasizes the key statistical properties of the dataset and ascer-
tains the nature of key properties. Section 4 explicitly elucidates the research models 
utilized in this paper. Section 5 discusses the overall findings of the study in terms of 
behavioral characteristics of temporal dynamics of assets, association, and dynamic 
conditional correlation among the said assets for obtaining hedge ratios. Finally, 
Sect. 6 provides conclusions.

2  Previous Research

A growing section of literature has actively discussed the empirical analysis and 
causal analysis of different financial markets. We highlight the findings of some 
major research work using nonlinear methodologies in allied areas.

2.1  Studies on Nonlinear Dynamics Based Empirical Inspection

Wang and Ma (2011) analyzed the non-linear dynamics of gold prices by utilizing 
fractal dimension analysis and Hurst exponent. For forecasting gold prices, they 
designed a variant of artificial neural network techniques. Priyadarshini and Babu 
(2012) used a conventional rescaled range based fractal modeling to test the random 
walk hypothesis for mutual funds and stock markets. They observed that the frac-
tional Brownian motion governs the said markets. Yin et  al. (2013) examined the 
fractal behavioral of the gold market of China and proposed a forecasting approach 
to predict future figures. Ghosh et al. (2017) presented an integrated framework of 
fractal inspection for examining the temporal dynamics of NIFTY 50, Hang Seng, 
NIKKEI, and NASDAQ indexes.

2.2  Studies on Dynamic Dependence

Fink and Fink (2013) have shown the upward revisions of major tropical storms pos-
itively influenced the returns of an index of petroleum firms in the northwest Gulf 
of Mexico. Khalfaoui et al. (2015) have analyzed the volatility spillover and hedging 
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between the stock markets of G-7 countries and crude oil by applying the wavelet-
based multi-resolution analysis and GARCH-BEKK model. Liu et al. (2015) have 
demonstrated the importance of indicators of the oil market in forecasting the excess 
return of the S&P 500 index. Genc (2017) have modeled the dynamic effect of oil 
price movements on-demand before and post-global financial crisis. Liu et al. (2017) 
have explored the volatility spillover between the oil and stock market by applying 
the GARCH-BEKK model in conjugation with wavelet analysis. The results indi-
cated that the linkage between the oil and S&P 500 index weakens in the long term. 
The relationship is completely reverse for the MICEX index and the oil market.

Reboredo et  al. (2017) have studied the association and causal inter-relationship 
between oil prices and renewable energy stock through wavelet-based econometric 
modeling. Their study revealed different types of causality at different time intervals 
between the assets. Mensi et al. (2017) have investigated the dynamic dependence in a 
pairwise manner by applying a wavelet-based copula method. Sharif et al. (2017) have 
examined the relationship between economic growth and electricity generation in Sin-
gapore based on wavelet analysis and econometric methods. Jammazi et al. (2017) have 
explored the time-varying causality between stock returns and oil price change of six 
oil-importing countries using wavelet-based multi-resolution analysis. Significant causal 
links appeared at the high frequencies and in periods of financial turmoil. Basher and 
Sadorsky (2016) applied DCC, asymmetric DCC (ADCC), and generalized OGARCH 
(GO-GARCH) approaches to unveil the conditional correlation between VIX, gold, and 
oil bonds with stock prices. The findings of these three approaches were applied sepa-
rately to estimate hedge ratios. Pan et al. (2014) used the regime-switching ADCC (RS-
ADCC) tool to examine the effect of hedging among gasoline, heating oil, and crude oil.

A review of existing research dedicated to testing random walk models suggests 
the usage of traditional econometric techniques, fractal modeling, recurrence anal-
ysis, etc. separately. It is hard to find studies reporting nonparametric frameworks 
combine multiple research methods to test the randomness of financial markets. 
Fractal Modelling can capture the presence of long or short-range dependence in 
time series. On the contrary, a large segment of literature dealing with causal inter-
actions do not address any practical implications from empirical findings. In this 
paper, we utilize nonlinear dynamics for inspecting the evolutionary dynamics. 
We apply wavelet coherence analysis and wavelet-based DCC-GARCH to discover 
causal interactions and estimate hedge ratios for portfolio diversification. Most of 
the above studies focused on exploring the causal interrelationships among hetero-
geneous financial assets confined to equity and commodity markets, ignoring the 
country-specific sectoral index. We try to bridge this gap by assessing the role of 
country-specific Energy Index on overall interaction among considered markets.

3  Data and Key Statistical Properties

We collect the daily closing price of BSE Energy Index, Brent Crude Oil, DJIA 
Index, Natural Gas, and NIFTY Index from January 2012 to March 2017 from 
the ‘Metastock’ database for financial markets. DJIA and NIFTY act as proxies 
for the equity market of the USA and India, respectively. The BSE Energy Index 



507

1 3

Co-movement and Dynamic Correlation of Financial and Energy…

represents the sectoral level energy index of the Indian energy market, reflecting 
sentiments of companies classified as members of the energy sector. Brent Crude 
Oil, primarily refined in Northwest Europe, is a benchmark for the worldwide 
crude oil price. It is comparatively lighter and sweeter than WTI. Table 1 presents 
the key statistical parameters of the said financial time series.

The results of Jarque–Bera, Shapiro–Wilk, and Hegazy–Green tests reject the 
normality assumption of the considered time series. Augmented Dickey–Fuller 
(ADF) and Philips Peron (PP) tests further reveal that none of the time series are 
stationary. To assess the presence of nonlinearity, we have used Terasvirta’s and 
White’s neural network tests. Both the test statistics indicate the presence of non-
linear trends at different significant levels except for the closing prices of Natural 
Gas. Terasvirta’s test suggests the existence of nonlinear behavioral movement 
in the closing price of Natural Gas, while White’s test rejects this hypothesis. 
Therefore, most of the considered time series exhibit complex nonstationary pat-
terns, which entail the usage of sophisticated research methodologies for gaining 
insights. Figure 1 portrays the temporal movements.

4  Research Methods

This section enumerates the utilized research models. For fractal modeling and 
wavelet coherence analysis, we consider the original daily closing price series of 
respective assets. For DCGARCH, we consider the daily return series. Section 4.3 

Table 1  Descriptive statistics

H–G Hegazy–Green test
# Not significant; ***significant at 1%; **significant at 5%; *significant at 10% levels of significance, 
respectively

BSE energy Crude oil DJIA Natural gas NIFTY

Minimum 1938.76 1844 12,118.57 100.70 4831.25
Maximum 3431.30 7507 21,005.71 386.20 9237.85
Mean 2470.21 4663.74 16,214.55 190.29 7055.73
Median 2443.05 4992.50 16,483.47 182.70 7437.78
Variance 99,216.89 1,654,774.20 4,367,662.34 2255.88 1,650,153.58
SD 314.99 1286.38 2089.90 47.50 1284.58
Skewness 0.695 − 0.351 − 0.211 0.539 − 0.105
Kurtosis − 0.138 − 0.956 − 0.785 0.114 − 1.535
Jarque–Bera 92.0796*** 83.8115*** 42.7251*** 48.2027*** 130.2585
Shapiro–Wilk 0.9543*** 0.9366*** 0.9505*** 0.975*** 0.9009***
H–G test 0.0447*** 0.0624*** 0.0481*** 0.0245*** 0.0985***
ADF test − 2.1142# − 1.6276# − 2.3897# − 1.7291# − 2.1451#

PP test − 11.9701# − 4.5721# − 14.3# − 7.5389#

Terasvirta’s test 8.4294** 9.3062*** 6.8614** 5.3531* 9.15**
White’s test 7.0926** 8.0968*** 5.6247* 1.1322# 7.3464**
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explains the process of estimating the return series. We test the Brownian motion 
hypothesis on each series through fractal modeling.

4.1  Fractal Modeling

We use fractal modeling for inspecting the efficient market hypothesis of various 
financial assets. In most of the cases of long duration, markets behave inefficiently. 
We use the Fractal Dimensional Index (D) and rescaled range (R/S) analysis to esti-
mate the Hurst Exponent (H) for detecting the occurrence of short or long memory 
structure.

Fig. 1  Plots of a BSE Energy, b Crude Oil, c DJIA, d Natural Gas price, and e NIFTY
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R/S analysis Hurst (1951) proposed this nonparametric approach. Mandelbrot and 
Wallis (1968) have improved the approach later. The R/S analysis is carried out in 
the following way:

Step 1 Segment the time series  RN of length N into d subseries of length n.
Step 2 Compute the expected value  (Ed) of individual subseries  Rk,d.
Step 3 Find the sum of deviation of each element of the respective subseries from 
their mean as follows:

Step 4 Find the range as

Step 5 Find the s.d. of each subseries as

Step 6 The average rescaled range value comprising all sub-series is

Hurst exponent (H) The relationship between the Hurst coefficient (H) and the 
estimated R/S statistic is as follows:

The magnitude of H is given by

The magnitude of H can vary from 0 to 1. For a given sequence, an estimated 
value of 0.5 of H infers that the sequence purely follows an i.i.d. random walk pro-
cess; otherwise, it is governed by fractional Brownian motion. The short and long 
memory trends correspond to H < 0.5 and H > 0.5, respectively.

Fractal dimensional index (D) It is a non-integer dimension that can character-
ize all chaotic systems and provide a detailed representation of how objects take up 
space. Now, D and H have the following relationship:

(1)Xk,d =

k∑
i=1

(
Ri,a − Ed

)

(2)Rd = max
(
Xk,d

)
− min

(
Xk,d

)

(3)Sd =

√√√√(1∕n)

n∑
k=1

(
Rk,d − Ed

)2

(4)(R∕S)n = (1∕A)

D∑
d=1

(
Rd∕Sd

)

(5)(R∕S)n = C ∗ nH

(6)log
(
R

S

)
n
= H log n + logC.

(7)D = 2 − H.
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As H varies between 0 to 1, D varies between 1 to 2. D = 1.5 indicates a pure 
random walk. For 1 < D < 1.5 , the time series shows a long memory trend and for 
1.5 < D < 2 , short memory trend. The value of D ≈ 1 indicates ‘JOSEPH’S EFFECT,’ 
and D ≈ 2 indicates ‘NOAH’S EFFECT’ in the time series.

Correlation between periods (CN) CN represents the magnitude of persistence or 
anti-persistence trends.

For CN = 0 , the time series is perfectly random, for CN < 0 , the time series is anti-
persistent and for CN > 0 , the time series is persistent. If CN = 0.8 , say, then 80% of the 
dataset is influenced by its historical information.

Next, we present the wavelet-based inspection framework incorporating wavelet 
coherence analysis for evaluating the degree of the association at different timescales.

4.2  Continuous Wavelet Transformation Based Wavelet Coherence Analysis

Wavelet analysis is a powerful quantitative modeling tool that enables carrying out 
multi-resolution analysis of the nonstationary time series. It has been widely used for 
studying dynamic interactions and making predictions on a scale by sale manner (Han 
and Ge 2017; Das et al. 2018; Singh et al. 2018). We outline the continuous wavelets, 
cross wavelet transformation, and wavelet coherence processes and report the major 
findings.

Wavelet transformation generates father ( �(t) ) and mother ( �(t) ) wavelets on a 
scale-wise manner by translating and dilating the original function ( f (t) ). The mother 
wavelet is a square-integrable function that generates a family of daughter wavelets. Its 
mathematical for is as follows:

where s is the scaling parameter, and � is the location parameter. The ‘Wavelet-
Comp’ package in R helps in performing the analyses. The package uses ‘Morlet’ 
wavelet for analyses as follows:

Continuous wavelet transform (CWT) CWT provides a detailed assessment of the 
temporal evolution of frequency components. Its mathematical form is:

where ∗ represents the operation of the complex conjugate.
Wavelet Coherence To assess the dynamic dependence among the financial time 

series at the microscopic level, cross wavelet transform, wavelet coherence, and wavelet 

(8)CN = 2(2H−1) − 1.

(9)��,s(t) =
1√
s
�

�
t − �

s

�

(10)�(t) = �
−

1

4 eiw0te
−

t2

2

(11)Wx(s) =

∞

∫
−∞

f (t)
1√
s
�∗

�
t

s

�
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power spectrum are applied. The cross wavelet of two-time series a(t) and b(t) having 
CWT, Wa

n
(s) and Wb

n
(s) is determined as:

The wavelet coherence coefficient ( R2
n
(s) ) used to measure co-movements between 

two series across frequencies over time can be computed as (Torrence and Webster 
1999):

The wavelet coherence coefficient ranges from 0 to 1. If the value is close to 0, 
then there exists a weak dependence. If the value close to 1, then there exists a strong 
dependence. The wavelet coherence phase difference is calculated to understand the 
nature of the association, and the lead-lag relationship (Torrence and Webster 1999):

where ℑ and ℜ represent the imaginary and real components of the power spectrum.
Arrows indicate phase relationships in the coherence phase. The right arrows indi-

cate a positive correlation, whereas the left arrows indicate a negative correlation and 
out of phase of the series. For in-phase case, downward pointed arrows signify the sec-
ond series leads the first series by �∕2 while upward-directed arrows are evidence of 
the first series leads the second by �∕2 . The exact opposite phenomenon is evident for 
out of the phase case.

4.3  Wavelet Based Dynamic Conditional Correlation and Hedging

To ascertain the dynamic correlation and subsequently delve into portfolio manage-
ment, the study first uses wavelet-based multi-resolution analysis to capture the sort and 
long-run temporal dynamics. The DCC-GARCH technique is then applied on time-
varying components to comprehend the dynamic association among returns of BSE 
Energy, Crude Oil, DJIA, Natural Gas, and NIFTY.

Wavelet decomposition It is used to conduct the multi-resolution analysis through 
the decomposition of the original time series y(t) into different time scales as follows:

where the father ( �) and mother ( � ) wavelets account for the low and high-fre-
quency components of the series; sj,k , dj,k,…, d1,k are wavelet coefficients. Now, y(t) 
can be approximated by a J-level multi-resolution decomposition analysis as:

(12)Wab
n
(s) = Wa

n
(s)Wb∗

n
(s)

(13)R2
n
(s) =

|||
(
s−1Wab

n
(s)

)|||
2

(
s−1||Wa

n
(s)||2

)(
s−1||Wb

n
(s)||2

)

(14)�xy(s) = tan−1

(
ℑ
(
s−1Wab

s
(s)

)

ℜ
(
s−1Wab

s
(s)

)
)

(15)

y(t) =
∑
k

sj,k�j,k(t) +
∑
k

dj,k�j,k(t) +
∑
k

dj−1,k�j−1,k(t) +⋯ +
∑
k

d1,k�1,k(t)
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where frequency components Dj (detailed scales) account for short, medium or 
long-lived variations at 2j time scale, Sj (approximation level) denote the determined 
residual after removing the detailed components from the original signal. The com-
ponents of the lower frequency range prevail for longer periods, while higher fre-
quency components prevail for shorter durations. We consider the multi-resolution 
analysis of 6 levels for decomposition, thus generating one approximation and six 
detailed components. The MODWT technique has been used to compute the respec-
tive coefficients. The decomposition has been carried out through the Daubechies 
least asymmetric filter of length eight (LA8), which outperforms traditional ‘Haar’ 
wavelet filters for obtaining smoother and uncorrelated coefficients across scales 
(Gencay et al. 2002; Cornish et al. 2006). Table 2 presents the time scale resolution 
of decomposition.

MODWT based time series decomposition has been carried out initially to 
enable the DCC-GARCH approach for critically delving the conditional correla-
tion dynamically in a time-varying multiscale manner. The wavelet framework 
generates the decomposed time series. Table  2 shows them. DCC-GARCH is 
applied separately on the respective decomposed series to gain deeper insights. 
The DCC-GARCH requires the return series of the respective financial time 
series. So, it is necessary to compute the daily returns of the selected five assets 
beforehand.

The steps of enabling the DCC-GARCH to explore the dynamic association 
and performing in a time-varying manner are as follows:

Step 1 Estimate the daily return series as

where Rt denotes the return at time t while Pt−1 and Pt represent closing prices at 
time (t-1) and t, respectively.
Step 2 Decompose the original daily return series of BSE Energy, Crude Oil, DJIA, 
Natural Gas, and NIFTY into six levels (d1, d2, …, d6) using the MODWT frame-
work applying LA8 filter.

(16)y(t) = Sj(t) + Dj(t) + Dj−1(t) +⋯ + D1(t)

(17)Rt =
Pt − Pt−1

Pt−1

Table 2  Time interpretation of 
wavelet scales

Detail Wavelet Scale Duration (week)

d1 1 2–4
d2 4 4–8
d3 8 8–16
d4 16 16–32
d5 32 32–64
d6 64 64–128
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Step 3 Apply the DCC-GARCH on three levels—d1, d3, and d6 to gain insights 
about the granular dynamic correlation existing between the return series of con-
sidered assets. Among the decomposed components, d1 and d3 represent the 
short-run dynamics, while d6 represents the long-run dynamics. Thus, the out-
come of DCC-GARCH on the three levels of decomposed return series of the 
respective assets would reflect the nature of association in the long and short-run 
effectively.
Step 4 Estimate the hedge ratios on decomposed components—d1, d3, and d6 to 
identify hedging opportunities.

DCC-GARCH DCC-GARCH technique (Engle and Sheppard 2001; Engle 2002) 
helps in assessing the conventional conditional correlation among the financial time 
series through estimation of historical correlations and conditional volatilities. It 
decomposes the conditional covariance into two dynamic components, a conditional 
standard deviation matrix, and a standard deviation, as shown below:

Rt accounts for time-varying conditional correlation of standardized innovations 
(
�t
)

.

For the DCC-GARCH model, Ht should be a positive definite matrix. As Dt fol-
lows the structure of a positive definite matrix in its positive diagonal entries, Rt 
must adhere to the typical properties of a positive definite matrix having elements 
less than or equal to one. Rt can be decomposed as follows:

V∗
t
 is a diagonal matrix given by

V∗
t
 transforms the elements of Vt so that the following equation holds:

(18)Dt =

⎡
⎢⎢⎣

√
h1t ⋯ 0

⋮ ⋱ ⋮

0 ⋯
√
hnt

⎤
⎥⎥⎦

(19)Rt =

⎡⎢⎢⎢⎣

1 �12,t �1n,t
�12,t
⋮

1

⋮
⋮

�1n,t ⋯ 1

⎤⎥⎥⎥⎦

(20)Rt = V∗−1
t

VtV
∗−1
t

(21)Vt = (1 − 𝛼 − 𝛽)V̄ + 𝛼𝜀t−1𝜀
T
t−1

+ 𝛽Vt−1

(22)V∗
t
=

⎡⎢⎢⎣

√
q11,t ⋯ 0

⋮ ⋱ ⋮

0 ⋯
√
qnn,t

⎤⎥⎥⎦
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Lastly, V̄ = Cov
[
𝜀t𝜀

T
t

]
= E

[
𝜀t𝜀

T
t

]
 and is estimated as

The parameters ( � , � ) are nonnegative and estimated to represent the DCC. The 
model exhibits mean-reverting behavior if 𝛼 + 𝛽 < 1 , where � and � represent short-
run and long-run persistence, respectively.

Hedge Ratio Proposed by Kroner and Sultan (1993), literature reports the suc-
cessful usage of conditional volatility in the construction of a hedge ratio. An asset 
() on a long position can hedge with an asset () considering a short position, as 
shown below:

where hxy,t and hyy,t represent the conditional covariance between asset and, and the 
conditional variance of asset.

Wavelet coherence analysis-based CWT delves into the interrelationship meas-
ured in terms of the degree of association in time-varying frequency scales. Findings 
of the coherency analysis can effectively evaluate the magnitude of prevailing asso-
ciation and dependence in short, medium, and long-run scales. DCC-GARCH exam-
ines the DCC by critically evaluating historical correlation and conditional volatility. 
Unlike the wavelet coherence approach, it cannot extract the time-varying scale-wise 
nature of dynamic correlation. Thus, the present study conjugates DCC-GARCH 
with the MODWT framework for accomplishing the task. Both frameworks can deal 
with time series exhibiting non-parametric and non-stationary behavior.

5  Results and Discussions

The findings of the respective research models have been outlined here with ade-
quate discussions.

5.1  Findings of Fractal Inspection

Table 3 shows the findings of the fractal analysis of the considered five-time series.
From Table  3, we see that all the five-time series exhibit fractional Brownian 

motion, which rejects the efficient market hypothesis. The H and D values justify the 
attempt to forecast future values. The value of H closer to 1 reflects the supremacy 
of the trend component that may not necessarily be linear. High figures of CN imply 
dependence of the present state on the historical information. Hence, the existence 

(23)
����ij

��� =
������

qij,t√
qii,tqjj,t

������
≤ 1

(24)V̄ =
1

T

T∑
t=1

𝜀t𝜀
T
t
.

(25)�xy,t =
hxy,t

hyy,t
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of long memory dependence entrenched in temporal dynamics of the global financial 
and energy market is apparent as manifested through fractional Brownian motion.

The presence of a strong persistence pattern entrenched in the evolutionary 
dynamics of daily closing prices of the time series can be ascertained based on the 
findings of the empirical assessment through fractal modeling. The findings instigate 
to delve into the dynamics of time-varying components through wavelet analysis. 
The inefficiency of the markets justifies the uncovering of causal inter-relationship 
for portfolio diversification.

5.2  Evidence from CWT Based Analysis

Figure 2 represents the cross-wavelet transformation between two time series in a 
pairwise manner. The covariance for all such pairs has increased with scale. The 
vertical axis shows the dynamic relationship between the two time series that are 
affected by medium to long-duration changes than short term shocks. Information 
related to phase infers that the interplay has not been homogeneous across the scales 
as they point out to all directions.

Figure  3 depicts the phase difference and wavelet coherence among the series 
under consideration. The plot displays evidence of varying dependence across time 
and frequency (period) scales among the financial markets. A solid-curved line 
marked a significant local correlation in the time–frequency domain. The wavelet 
coherence analysis identifies the portions and plots them with warmer colors. In this 
process, fewer dependence zones get cooler colors. The findings are extremely help-
ful in building and realignment of portfolios as coherence analysis can provide the 
exact time duration of high association phases.

From the two sets of plots accounting for dynamic co-movement, we see that 
the propensity of high association predominantly emerges in low frequency. Short 
interrelationships between the selected time series are not as intense as of medium 
and long-run dynamics. Cross wavelet transformation plots indicate that the BSE 
Energy index having the strongest co-movement with Crude Oil than others. Crude 
Oil exhibits stronger interaction with natural gas than DJIA and NIFTY. DJIA and 
NIFTY have been found to display a stronger bond between them than with energy 
markets. This implies that the units of energy markets are strongly associated among 
themselves, while financial markets follow the same traits. Directions of arrows 
have not been uniform across the plots for respective time series pairs. Hence, the 

Table 3  Results of fractal inspection

RWH random walk hypothesis, NoP nature of pattern

Series H D CN NoP Effect RWH

BSE Energy 0.8839997 1.116 0.703 Persistent ‘JOSEPH’S Effect’ Rejected
Crude Oil 0.8885156 1.111 0.714 Persistent ‘JOSEPH’S Effect’ Rejected
DJIA 0.8796276 1.120 0.693 Persistent ‘JOSEPH’S Effect’ Rejected
Natural Gas 0.8826256 1.117 0.700 Persistent ‘JOSEPH’S Effect’ Rejected
NIFTY 0.8956782 1.104 0.731 Persistent ‘JOSEPH’S Effect’ Rejected
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Fig. 2  Cross wavelet transforms plots of a BSE Energy and Crude Oil, b BSE Energy and DJIA, c BSE 
Energy and NIFTY, d BSE Energy and Natural Gas, e Crude Oil and DJIA, f Crude Oil and Natural Gas, 
g Crude Oil and NIFTY, h DJIA and NIFTY, i DJIA and Natural Gas and j NIFTY and Natural Gas
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presence of in-phase and anti-phase associations representing positive and negative 
correlation is apparent. Such behaviors suggest the scope for portfolio diversifica-
tion and hedging appropriately.

Applications of wavelet coherence to evaluate nexus among heterogeneous finan-
cial assets on absolute prices are reported in the literature (Khalfaoui et  al. 2015; 
Karatas et  al. 2017; Phillips and Gorse 2018). The findings are used for various 
practical implications, including delving interaction, measuring spillovers, forecast-
ing, etc. The proposed approach suggests the presence of significant association in 
price series. So, it becomes imperative to test the dynamic association among the 
selected market proxies in their return dynamics. The presence of conditional cor-
relation in return series can help for effective hedging. Hence, the overall insights 
gained through wavelet coherence analysis prompt to apply of the wavelet-based 
DCC-GARCH model for discovering dynamic association.

5.3  Findings of Granular DCC‑GARCH Model

The model inspects the dynamic correlation on decomposed components of time 
series. Unlike other approaches, the time-varying DCC-GARCH has been applied 
to return series of selected assets. We report the outcome and elucidate the implica-
tions on d1, d3, and d6 scales. The following tables furnish the magnitudes of key 
parameters (Tables 4, 5, 6).

Scale wise estimated parameters are found to be significant in all the cases. 
Scales, d1 and d3 act as proxies for the short run, while d6 acts as the proxy for the 
long run. In short-run dynamics, values of beta are greater than alpha. Hence, a clear 
dominance of long-run persistence over the short run persistence is evident in the 
said time. The significance of DCC parameters specifies the existence of volatility 
clustering. The sum of alpha and beta less than one infers the evidence of the mean-
reverting process. In the long run, both the parameters are statistically significant. 
However, in the case of Natural Gas and NIFTY, the alpha value is greater than 
the beta value. It indicates the dominance of short-run persistence over long-run 
persistence.

Fig. 2  (continued)
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Fig. 3  Wavelet coherence plots of a BSE Energy and Crude Oil, b BSE Energy and DJIA, c BSE Energy 
and NIFTY, d BSE Energy and Natural Gas, e Crude Oil and DJIA, f Crude Oil and Natural Gas, g 
Crude Oil and NIFTY, h DJIA and NIFTY, i DJIA and Natural Gas and j NIFTY and Natural Gas
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The following figures present the graphical illustration of DCC among BSE 
Energy, Crude Oil, DJIA, Natural Gas, and NIFTY in a pairwise manner at the d1 
scale.

Graphical representations of DCC display that pairwise correlation between two 
return series fluctuates between negative and positive values. They move in cluster 
structures that hint at opportunities for portfolio diversification. It becomes a bit dif-
ficult to estimate the maximum and minimum values of DCC from mere visualiza-
tion as heavy fluctuations are entrenched. To identify the range and to gain deeper 
insights, the maximum and minimum values of the DCC for the respective pairs 
for all three scales d1, d3, and d6 have been estimated and summarized in Table 7. 
The DCC value between BSE Energy and Crude Oil is maximum, and between 
BSE Energy and DJIA is minimum at the d1 scale. Overall, the DCC values range 
from (−) 0.75 to 0.75 at the d1 scale, which implies that in the short duration, the 
DCC displays high volatile characteristics. It happens in high return and high-
risk situations. The d3 scale shows almost a similar behavioral pattern. In the d6 
scale, the magnitude of dynamic correlation increases significantly from (− 0.91) to 
1.00 almost. The degree of volatility in this scale increases. As observed earlier in 
Table 6, in the long duration, dominance in short-run persistence is apparent. There-
fore, there exists ample opportunity for effective hedging on this scale too.

The range of the DCC suggests the existence of ample scopes for portfolio forma-
tion at different time horizons. Figures 4, 5, 6 and 7 and Table 7 indicate that the 

Table 4  DCC parameters estimates at d1 level

Parameters BSE Energy Crude Oil DJIA Natural Gas NIFTY

� 0.281621*** 0.200855** 0.454575*** 0.291162*** 0.215307***
� 0.610057*** 0.795464*** 0.542925** 0.585820*** 0.698925***
� + � 0.891678 0.996319 0.997500 0.876982 0.914232

Table 5  DCC parameters estimates at d3 level

Parameters BSE Energy Crude Oil DJIA Natural Gas NIFTY

� 0.281838*** 0.200721** 0.382721*** 0.291164*** 0.215308***
� 0.610008*** 0.795676*** 0.547825*** 0.585820*** 0.698924***
� + � 0.891846 0.996397 0.930546 0.876984 0.914232

Table 6  DCC parameters estimates at d6 level

Parameters BSE Energy Crude Oil DJIA Natural Gas NIFTY

� 0.180795** 0.210754** 0.105486*** 0.423595*** 0.275267***
� 0.816605*** 0.555468** 0.242250** 0.306088*** 0.194004***
� + � 0.997400 0.766222 0.347736 0.729683 0.469271
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probability of higher returns is substantially higher in long-run periods. On the other 
hand, a comparatively higher possibility of more risk cannot be ruled out in the long 
run as well. As mentioned in Table, d6 scale, a proxy for the long run corresponds to 
64–128 weeks while d1 and d3 scales, representing the short-run, correspond to 2–4 
and 8–16 weeks. Therefore, risk-averse players may get benefit from diversification 
of assets for up to 16 weeks. The players willing to take a risk for achieving excess 
profit may target diversification in the long run-up to 64–128 weeks. The horizontal 
axes of the figures show the time.

However, the choice of constituents in the portfolio plays a critical role in the 
overall risk mitigation. Table 8 shows the mean and median values of the DCC at 
different time horizons.

The dynamic association between any two assets can be observed to exhibit 
significant fluctuations between the negative and positive values as apparent from 
Figs. 4, 5, 6 and 7 and the range statistics summarized in Table 7. The negative and 
negligible correlations imply an ideal opportunity for portfolio diversifications. For 
example, the negative interplay between Crude Oil and NIFTY at a specific time 
scale signifies that the Crude Oil price tends to fall when the equity market resides 
in the bullish state. Such insights can effectively be utilized for risk mitigation as 
it prevails clear diversification opportunities. The findings of time-varying DCC-
GARCH, in conjunction with MODWT may assist the market players at various lev-
els. At d1 level, the visual insights from Figs. 4, 5, 6 and 7 and the range estimates 
indicate that the DCC can display homogenous overlap to positive and negative val-
ues. The value ranges between (− 0.75) and 0.75. Hence, this time scale accounts for 
the high risk and high return scenario.

A deeper inspection of the DCC figures in terms of mean and median measures 
implies that DJIA/Natural Gas, Natural Gas/NIFTY, etc. are the perfect combination 
for diversification. A similar phenomenon prevails at the d3 scale as well. Both the 
mean and median of the DCC between Crude Oil/DJIA, Crude Oil/Natural Gas, and 

Table 7  Range of DCC

Pair Scale

d1 d3 d6

Min Max Min Max Min max

BSE Energy with Crude Oil − 0.6899 0.7513 − 0.6902 0.7516 − 0.8837 0.9958
BSE Energy with DJIA − 0.7590 0.6365 − 0.7592 0.6368 − 0.8821 0.9949
BSE Energy with Natural Gas − 0.6500 0.7464 − 0.6502 0.7466 − 0.9094 0.9649
BSE Energy with NIFTY − 0.6821 0.6879 − 0.6820 0.6881 − 0.8529 0.9969
Crude Oil with DJIA − 0.6923 0.6843 − 0.6925 0.6843 − 0.8850 0.9940
Crude Oil with Natural Gas − 0.5858 0.6883 − 0.5860 0.6887 − 0.8597 0.9680
Crude Oil with NIFTY − 0.6480 0.7094 − 0.6480 0.7097 − 0.8985 0.9937
DJIA with Natural Gas − 0.6188 0.7379 − 0.6191 0.7381 − 0.8980 0.9608
DJIA with NIFTY − 0.7138 0.6623 − 0.7139 0.6627 − 0.8411 0.9950
Natural Gas with NIFTY − 0.6884 0.5828 − 0.6887 0.5829 − 0.8854 0.9630
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Crude Oil/NIFTY are low but positive in both d1 and d3 scales. Hence, associating 
Crude Oil with any of these assets may marginally increase the risk in the short run. 
In the long run, the DCC between BSE Energy/NIFTY, Crude Oil/Natural Gas, and 
DJIA/NIFTY are on a substantially higher side as manifested by the positive mean 
and median values. Hence, in the long run, the said combinations may be avoided 
for the diversification process. Comparatively, BSE Energy/Crude Oil, Crude Oil/
NIFTY, etc. are better options for diversification. The significant increase (− 0.91) to 
1.00 approximately in the range of magnitude of the DCC in the long run eventually 
augments the risk. This implies that the long-run diversification is comparatively 
more ideal for investors with high-risk appetite than the short-run counterparts. 
Therefore, in the short-run, diversification is comparatively less susceptible to the 
risk than the long run counterparts, while the probability of getting a better return 
is more in the long run. The granular DCC-GARCH framework assists in choosing 
assets for the portfolio accordingly.

We estimate the hedge ratio for each scale. Table  9 presents the summary sta-
tistics of pairwise estimated hedge ratios at respective scales. Here, some selected 
pairs share negative average hedge ratios for all three scales. It happens due to the 
presence of a significant negative correlation between the pairs. The hedge can be 
performed by either being short or long on both assets. The positive hedge ratios 
suggest the opposite scenario. The average hedge ratio between NIFTY and BSE 
Energy is 0.27 at scale d1. It signifies that a 100 unit long position in NIFTY can 

Fig. 4  DCC between BSE Energy and other series at d1
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Fig. 5  DCC between Crude Oil and other series at d1

Fig. 6  DCC between DJIA and other series at d1
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hedge with 27 units in a short position in BSE Energy. Therefore, the hedge ratios 
can assist investors in seeking higher yield by hedging the risk through portfolio 
realignment.

6  Conclusions

This paper presents a framework to examine the behavioral pattern, interplay, and 
estimating hedge ratios of global energy and equity markets. For this purpose, 
we assess the temporal pattern using fractal modeling and recurrence analysis. 

Fig. 7  DCC between Natural Gas and NIFTY at d1

Table 8  Average measures of DCC

Pair Scale

d1 d3 d6

Mean Median Mean Median Mean Median

BSE Energy with Crude Oil 0.00129 − 0.00051 0.00129 − 0.00062 − 0.05182 − 0.14167
BSE Energy with DJIA 0.00079 0.00723 0.00080 0.00732 0.02106 0.09397
BSE Energy with Natural Gas − 0.00296 0.00119 − 0.00295 0.00118 − 0.02120 − 0.02785
BSE Energy with NIFTY 0.0336 0.04451 0.03367 0.04455 0.4610 0.7363
Crude Oil with DJIA 0.04857 0.04652 0.04854 0.04633 − 0.0276 − 0.1401
Crude Oil with Natural Gas 0.04187 0.04154 0.04181 0.04155 0.1852 0.4354
Crude Oil with NIFTY 0.01244 0.01473 0.01465 0.01231 − 0.04427 − 0.09382
DJIA with Natural Gas − 0.0160 − 0.0161 − 0.01602 − 0.01610 − 0.1227 − 0.3231
DJIA with NIFTY 0.01654 − 0.02101 0.01659 − 0.02107 0.5475 0.2918
Natural Gas with NIFTY − 0.03690 − 0.03672 − 0.03690 − 0.03689 − 0.02986 − 0.05160
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The CWT delves the interaction among the markets, and MODWT based DCC-
GARCH approach estimates dynamic correlations. Initial findings through fractal 
modeling reject the random walk hypothesis of five indices (energy and financial) 
for the period over January 2012 to March 2017. The strong presence of persistent 
trends identified through recurrence analysis eventually hints at the same behavioral 
pattern in future periods. Accordingly, market players at various levels can effec-
tively manage resources. The wavelet coherence analysis uncovers the time-varying 
dynamic interactions among the markets at different scales. We detect significant 
long-duration associations among the assets. The study majorly focuses on study-
ing the dynamic association. The findings of association analysis help us to con-
struct and realign short term and long-term low-risk portfolio. The findings on the 
return series of selected financial time series through DCC-GARC can benefit trad-
ers in risk management and portfolio diversification. In the future, we may analyze 
the causality in terms of direction and magnitude of causal influence through the 
utilization of conventional Granger causality or unconventional nonlinear causality 
models. The proposed approach is also applicable to other markets and assets for 
empirical inspection, portfolio diversification and projecting future directions.
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