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Abstract
In this paper, we describe the new OPTCON3 algorithm, which serves to determine
approximately optimal policies for stochastic control problemswith a quadratic objec-
tive function and nonlinear dynamic models. It includes active learning and the dual
effect of optimizing policies, whereby optimal policies are used to learn about the
stochastics of the dynamic system in addition to their immediate effect on the perfor-
mance of the system. The OPTCON3 algorithm approximates the nonlinear model
with a time-varying linear model and applies a procedure similar to that of Kendrick
to the series of linearized models to calculate approximately optimal policies. The
results for two simple economic models serve to test the OPTCON3 algorithm and
compare it to previous solutions of the stochastic control problem. Initial evaluations
show that the OPTCON3 approach may be promising to enhance our understanding
of the adaptive economic policy problem under uncertainty.

Keywords Stochastic optimal control · Active learning · Dual control · Algorithms

1 Introduction

When determining economic policies over some planning horizon, governments and
other policy makers are confronted with the problem of uncertainty, both of the effects
of their measures on the politically relevant variables and of the trade-offs between
different objective variables. Hence such plans should take into account the stochastic
nature of the planner’s decision problem, in particular the uncertainty surrounding the
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relations between different variableswhich are reflected in the probability distributions
of the parameters of the econometric (or calibrated) model of the economy. Stochastic
optimal control theory is therefore an appropriate framework to deal with such policy
problems when the policy maker’s aim is to obtain the best policy according to his/her
preferences.

Unfortunately, stochastic optimal control theory has not succeeded in deriving pre-
cise solutions for even very simple analytical problems and even less so for the complex
problems involving large models which are characterized by nonlinearities and vari-
ous sources of uncertainty. One of the reasons for this is the so-called dual effect of
controls in a stochastic dynamic system: controls do not only serve to optimize the
instantaneous objective in each period butmay also be used to learn about the reactions
of the economy to policy measures, which in turn can contribute to improved policies
in later periods. This interdependence between considerations of direct optimization
and experimentation to learn about policy effects makes the stochastic optimal control
problem intractable, as has been recognized by several authors in the past (Fel’dbaum
1965; Aoki 1989). One is therefore restricted to numerical investigations determining
approximations to the unobtainable truly optimal policies.

So far, the most ambitious work on optimal stochastic control for economic pol-
icy problems has been done by Kendrick (1981), who developed several algorithms,
including one for active learning, based on Bar-Shalom and Tse (1976), in which
the dual effect of controls is explicitly taken into account. Further work with these
algorithms revealed interesting problems, such as the occurrence of nonconvexities
in linear–quadratic stochastic control problems under active learning (Mizrach 1991;
Amman and Kendrick 1995; Tucci 1998; Amman et al. 2018). So far, these algorithms
have been confined to linear dynamic models, which is a severe restriction as even the
simplest econometric models contain some nonlinearities. In this paper, we extend the
Kendrick algorithm with active learning to a class of nonlinear models which can be
approximated by time-varying linear models. We first review previous research with
the OPTCON algorithms (versions OPTCON1 and OPTCON2) and then present the
new OPTCON3 algorithm which includes active learning. Initial evaluations show
that this approach may be promising to enhance our understanding of the adaptive
economic policy problem under uncertainty.

2 The Problem

The OPTCON algorithms are designed to achieve approximate solutions to optimal
control problems with a quadratic objective function (a loss function to be minimized)
and a nonlinear multivariate discrete-time dynamic system under additive and param-
eter uncertainties. The intertemporal objective function is formulated in quadratic
tracking form, which is quite often used in applications of optimal control theory to
econometric models.

Thus, it is required to find values for the control variables (ut ) and the corresponding
state variables (xt ) which minimize the function
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J = E

[
T∑
t=1

Lt (xt , ut )

]
, (1)

with

Lt (xt , ut ) = 1

2

(
xt − x̃t
ut − ũt

)′
Wt

(
xt − x̃t
ut − ũt

)
(2)

and satisfy conditions in the form of a dynamic system of nonlinear difference equa-
tions:

xt = f (xt−1, xt , ut , θ, zt ) + εt , t = 1, . . . , T . (3)

xt is an n-dimensional vector of state variables that describes the state of the eco-
nomic system at any point in time t . ut is anm-dimensional vector of control variables,
x̃t ∈ Rn and ũt ∈ Rm are given ‘ideal’ (desired, target) levels of the state and control
variables respectively. T denotes the terminal time period of the finite planning hori-
zon. Wt is an ((n +m) × (n +m)) matrix, specifying the relative weights of the state
and control variables in the objective function. Quite often, Wt is a matrix including
a discount factor α with Wt = αt−1W . Wt (or W ) is symmetric.

Moreover, θ is a p-dimensional vector of parameters whose values are assumed to
be constant but unknown to the decisionmaker (parameter uncertainty), zt denotes an l-
dimensional vector of non-controlled exogenous variables, and εt is an n-dimensional
vector of additive disturbances (system error). θ and εt are assumed to be independent
random vectors with expectations θ̂ and On respectively and covariance matricesΣθθ

and Σεε respectively. f is a vector-valued function and f i (. . .) is the i-th component
of f (. . .), i = 1, . . . , n.

3 Versions 1 and 2 of the OPTCON Algorithm

This section gives a brief description of the two previous versions of the OPTCON
algorithm, with the open-loop and thenwith the passive learning strategy. The first ver-
sion of OPTCON, OPTCON1, delivers an open-loop (OL) solution and is described in
detail in Matulka and Neck (1992). The open-loop strategy either ignores the stochas-
tics of the system altogether or assumes the stochastics (expectation and covariance
matrices of additive and multiplicative disturbances) to be given for all time periods
at the beginning of the planning horizon. The problem with the nonlinear system is
tackled iteratively, starting with a tentative path of the control and state variables. The
tentative path of the control variables is given for the first iteration. In order to find
the corresponding tentative path for the state variables, the nonlinear system is solved
numerically using the Levenberg-Marquardt method or trust region methods.1

Then, the iterative approximation of the optimal solution starts. The solution is
iterated from one time path to the next until the algorithm converges or the maximum

1 Alternatively, the Newton-Raphson or the Gauss–Seidel method can be applied.
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Fig. 1 Flow chart of OPTCON1

number of iterations is reached. During the optimization process the system is lin-
earized around the previous iteration’s result as a tentative path and the problem is
solved for the resulting time-varying linearized system.2 The optimal solution of the
problem for the linearized system is found under the above-mentioned simplifying
assumptions about the information pattern; this solution is then used as the tentative
path for the next iteration, starting off the procedure all over again. In every iteration,
i.e. for every solution of the problem for the linearized system, the objective function
is minimized using Bellman’s principle of optimality to obtain the parameters of the
feedback control rule. Finally, the value of the objective function is calculated for the
obtained solution. Figure 1 summarizes the OPTCON1 algorithm.

The second version of the algorithm, calledOPTCON2 and described in Blueschke-
Nikolaeva et al. (2012), includes the passive learning strategy (also named open-loop
feedback (OLF)), which uses the idea of re-estimation of the model at the end of each
time period. For this re-estimation the model builder (and hence the control agent)
observes what has happened and uses the current values of the state variables, that is,
the new information, to improve his/her knowledge of the system.

The stochastics in the problem is again represented by two kinds of errors, namely
additive (randomsystemerrors) andmultiplicative (‘structural’ errors in parameters). It
is assumed that ‘true’ parameters θ̂ generate themodel.However, the policymaker does
not know these true parameters θ̂ and works with the ‘wrong’ parameters θm resulting
from the estimates using the realization of the random variable μm : θm = θ̂ + μm .

The passive learning strategy has the following structure: a forward loop is started
from time 1 to T . In each time period S an (approximately) optimal open-loop solution
for the subproblem is determined, i.e the problem for the timeperiods from S to T . Then
the predicted x∗

S andu
∗
S arefixed for the timeperiod S.At the endof each timeperiod the

policymaker observes the realizedvalues of the state variables xa∗
S ,which are, however,

disturbed by the additive errors. The difference between x∗
S = f (xa∗

S−1, x
∗
S, u

∗
S, θ

m, zS)

and xa∗
S = f (xa∗

S−1, x
a∗
S , u∗

S, θ̂ , zS) + εmS comes from the realization of the random

2 The criterion for convergence demands that the difference between the values of current and previous
iterations be smaller than a pre-specified number.
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numbers εmS and μm . Next, the new information is used by the policy maker to update
and adjust the parameter estimate θm . After that, the same procedure is applied to
the remaining subproblem from S + 1 to T , and so on. The update of the parameter
estimates is conducted via the Kalman Filter.

The same update procedure is used in the next version of the OPTCON algorithm
(which is called OPTCON3) as well.

4 The OPTCON3 Algorithm

4.1 Description

The new version of the OPTCON algorithm includes an active learning strategy (also
called closed-loop, adaptive dual or dual control) and is named OPTCON3. The active
learning strategy lets the policy maker face the dual problem of choosing the best
strategy and reducing the uncertainty about the system. It is expected that such a
strategy can help improve the performance of the control process and givemore reliable
policy recommendations. The active learning method differs from the passive learning
method in the OPTCON2 algorithm in the following way. When using the passive
learning method, new observations are obtained each period and are used to update
the parameter estimates; however, no effort is made to choose control variables with
the aim of improving the learning process about the dynamic system to be controlled.
In contrast, in the active learning methods, control variables are chosen with the dual
purpose of moving the system in the desired direction and perturbing the system
to improve the parameter estimates. Thus, the active learning strategy delivers an
optimal solution where the control is chosen with a view to reaching the desired
states in the present and reducing uncertainty through learning, permitting an easier
attainment of desired states in the future. This lets the policy maker cope with the
dual problem of choosing the best strategy and reducing the uncertainty about the
system simultaneously. The key idea is to make some use of information about future
measurements as well.

The procedure of finding the closed-loop solution in this paper corresponds to
Kendrick (1981). The approximate cost-to-go is broken down into three terms:
Jd = JD + JC + JP , where Jd is the total cost-to-go with T periods remaining;
the deterministic component JD includes only non-stochastic terms; the cautionary
component JC includes the stochastic component of the system known in the current
period; and the probing term JP contains the effect of dual learning on the future time
periods. Each of these components faces special difficulties in computing due to the
nonlinearity of the system. Especially the probing term includes the motivation to per-
turb the controls in the present time period in order to reduce future uncertainty about
the parameter values and can therefore be considered the most challenging task. Thus,
the terms JC and JP constitute a separate optimization problem with a quadratic cri-
terion which is maximized subject to the nonlinear system. The system equations are
derived from the expansion of the original system and can be calculated by rewriting
the Taylor expansion of the nonlinear system in the perturbation form δxt . Instead of
the system (3) the objective function in perturbation formhas to be solved:minδut ΔJ ∗

t .
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Fig. 2 Flow chart of OPTCON3

After some calculations the solution ΔJ ∗
t is presented in quadratic form as a function

of δxt−1. The original J ∗
t can be derived from ΔJ ∗

t and can be decomposed in three
terms. Moreover, all the terms and formulas need to be adjusted to the augmented

system

⎡
⎣ xt

. . . . . .

θ

⎤
⎦.3

Next, a schematic structure of the OPTCON3 algorithm is presented. This goes in
line with the simplified flow chart presented in Fig. 2 and is used as a basic structure
for the implementation.

3 In this case, θ is constant over time.

123



OPTCON3: An Active Learning Control Algorithm… 151

The optimization is carried out in a forward loop from 1 to T . In each time period
S (S = 1, . . . , T ) the following search procedure is conducted. The subproblem from
S to T is solved via the open-loop (OL) strategy (see Fig. 1 in Sect. 3). The OL
solution of (x∗

S, u
∗
S) for the time period S is fixed. After that the core part of the dual

control starts. The idea is to actively search for some solution paths which best deal
with the dual problem of minimizing the current objective function and the future
uncertainty in the model. In this paper a grid search method is used.4 For this purpose
we create a grid of possible solutions around the existing path (x∗

S, u
∗
S). We denote the

grid search procedure as “π -loop”. In each iteration (π = 1, . . . , Π ) the approximate
objective function is evaluated which corresponds to the search value of the control.
The evaluation is repeated until the approximately optimal control is found. Inside the
search loop (for each π ) the following steps are to be performed.

An (approximately) optimal open-loop solution for the subproblem (i.e. the problem
for the time periods from S+1 to T ) is determined. Then the OL solution (x∗π

S+1, u
∗π
S+1)

for the time period S+1 is fixed. Next, after some auxiliary calculations (Riccati matri-
ces) the deterministic, cautionary and probing terms of the cost-to-go are determined.
In the process, a new loop is introduced, where the terms JD , JC and JP for the time
periods j = S + 1, . . . , T are calculated step by step from time period S + 1 to T
using the updated covariances. Once the π -loop has been completed, the total approx-
imate objective function Jd = JD + JC + JP can be obtained. The evaluation of the
function is done at each iteration in the π -loop. When the search is completed, i.e. the
approximately optimal path with minJd is found, the new information is used by the
policy maker to update and to adjust the parameter estimate θm , whereby the Kalman
filter is used. After that, the same procedure is applied for the remaining subproblems
from S + 2 to T , and so on.5

The OPTCON3 algorithm essentially uses the approach introduced by Bar-Shalom
and Tse (1976) and Kendrick (1981) but augments it by approximating, in each step,
the nonlinear system by a series of linear systems (replacing the nonlinear autonomous
system by a linear time-varying one).

The OPTCON3 algorithm (Steps I - IV in the appendix) describes the steps how
to obtain an approximately optimal dual control solution of a stochastic problem. In
the optimization process one has to observe the current state of the system, which is
crucial for the learning procedure. Because it is not possible to observe current and
true values for a performance test, one has to resort toMonte-Carlo simulations. In this
way, some “quasi-real” values can be created and used to compare the performance
of an optimization without learning (both open-loop (OL) and certainty equivalence
(CE) alternatives), passive learning (OLF) and active learning (AL).

Thus, a large number M (a number, usually between 100 and 1000) of realizations
of random noises (εmt )Tt=1 and μm , m = 1, . . . , M , are generated. It is assumed that
there is an unknown ‘real’ model with the ‘true’ constant parameter vector θ̂ . But the
policy maker does not know these ‘true’ parameters θ̂ and works with the ‘wrong’

4 The searchmethodmay also be some other procedure, such as gradient optimization or one of the heuristic
approaches.
5 The detailed description of the steps in the OPTCON3 algorithm is presented in the appendix.
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parameters θm resulting from the estimates using the realization of the randomvariable
μm : θm = θ̂+μm . For better understanding, a brief scheme is sketched inAlgorithm 1.

Algorithm 1 Pseudocode of the overall experiment

1: Generate M sets of (εmt )Tt=1 and μm (i.e. M sets of θm = θ̂ + μm )
2: for m = 1 : M do
3: calculate stochastic CE,OL,OLF andAL solutions using theOPTCON3 algorithm (and the generated

values εmt and θm )
4: end for
5: compare CE, OL, OLF, AL

Algorithm 1 is used in the next section to test the performance of the new algorithm.

5 Applications

We apply Algorithm 1 to two different models and test the performance of active
learning in terms of the objective function value and influence on the control variable.
In a simple linear model, the MacRae model, we observe a relatively small effect of
active learning. In contrast, in a more sophisticated model ATOPT, using the active
learning strategy leads to a more active use of the control variable.

The MacRae model
TheMacRaemodel, as used byMacRae (1972) andKendrick (1981), is a theoretical

model for two periods only. The MacRae model includes one control variable and one
state variable and consists of one equation only:

xt = 3.5 + 0.7 xt−1 − 0.5 ut + εt , x0 = 0
(0.5)

(4)

The model does not have exogenous (non-controlled) variables. One of the param-
eters is treated as unknown.6 The objective function penalizes deviations of objective
variables from their target values. The target values of the state and control variables
(x̃t and ũt respectively) are assumed to be zero. The weight matrix W is assumed
to be constant over time (no discounting). The weights for the state and the control
variables (the values inW ) are chosen to be 1, which reflects the same importance for
all variables. The optimization horizon consists of 2 periods.

The aim of the application is to determine approximately optimal policies under the
assumed objective function and the dynamic system given here by Eq. (4) using the
three versions of theOPTCONalgorithm, i.e. the three strategies: certainty equivalence
(CE), open-loop feedback (OLF) and active learning (AL). Figure 3 summarizes, in
the form of a boxplot, the optimization results, i.e. the optimal values of the control
variable in different Monte Carlo runs for all three strategies.

In the boxplot in Fig. 3, 50% of all scores are placed in the boxes and the median
is shown by the line that divides the box into two parts. It shows that the results of the

6 The standard deviation of the uncertain parameter is given in brackets below the coefficient.
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Fig. 3 Boxplot for the control variable in t = 1 based on a Monte Carlo experiment with 1000 draws,
MacRae model

OLF strategy are more concentrated (the OLF box is smaller) than those of CE. The
results of the AL strategy are even more concentrated than those of CE and OLF. This
is to some extent due to the simplicity of the model and the fact that there is just one
optimization period for active learning.

We can also observe the following: CE has the minimum cost in approximately
66% of the cases, AL in 22% and OLF in remaining cases. This may be compared to
the results in Kendrick’s DUAL code, which are 60%, 25%, and 15%, respectively.

The mean and the standard deviation of the optimal values of the objective function
are given by mean(J OLF ) = 20.11, mean(J AL) = 20.18, mean(JCE ) = 22.18,
and std(J OLF ) = 6.35, std(J AL) = 5.93, std(JCE ) = 11.36, respectively. As with
Kendrick’s DUAL software, the difference in the average cost of the three procedures
is rather small and the AL algorithm gives the minimum standard deviation, whereas
the avg. cost of CE has the highest standard deviation, with larger differences than for
the mean. In particular, Fig. 3 suggests that the control associated with AL for t = 1 is
less active than the others, almost half so of the CE control, and its standard deviation
is also much lower than all the others. From Fig. 4, we see that the differences in the
controls and standard deviations are less pronounced for the final period. Especially
the results for OLF and AL are very similar.

As far as the state is concerned (Figs. 5 and 6), all three procedures show similar
results at the end of the time horizon. AL performs slightly better than the others at
t = 1. Again, standard deviations are lower when using AL. However, the differences
are much smaller as compared to the control variable. Summarizing, by and large we
can confirm the results from Kendrick’s DUAL code.

Figure 7 shows the values of the three components of the objective function, deter-
ministic (JD), cautionary (JC ) and probing terms (JP ), and the total objective function
(Jd ) [see Eqs. (13), (14), (17)].
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Fig. 4 Boxplot for the control variable in t = 2 based on a Monte Carlo experiment with 1000 draws,
MacRae model
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Fig. 5 Boxplot for the state variable in t = 1 based on aMonte Carlo experiment with 1000 draws, MacRae
model

Thedeterministic component contributesmost to the values of the objective function
Jd . The values of the cautionary and probing terms aremuch smaller. The deterministic
cost component falls with increases in the control values and the other two components
rise.Moreover, the probing component delivers the smallest part of the total cost. These
results are due to the simplicity of themodel, in particular its linearity. They are similar
to those obtained by Kendrick (1981) and Kendrick (1982). Thus, an application to a
more sophisticated, nonlinear model will be carried out in the next step.
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Fig. 6 Boxplot for the state variable in t = 2 based on aMonte Carlo experiment with 1000 draws, MacRae
model
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Fig. 7 Components of the objective function based on a Monte Carlo experiment with 100 draws, MacRae
model

The ATOPT model
Next,we apply the algorithm to a nonlinear dynamicmodel of theAustrian economy

(ATOPTmodel) created by Blueschke et al. (2018), which analyzes the output – public
debt trade-off. The model consists of three equations, i.e. three endogenous variables:
output growth (yt ), public debt (dt ), and the interest rate (rt ), which are:
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Fig. 8 Boxplot for the control variable in t = 1 based on aMonte Carlo experiment with 100 draws, ATOPT
model

yt = a1 · yworld
t − θ1 · gt + ε1,t (5)

dt = (1 + rt ) · dt−1 − gt + ε2,t (6)

rt = rt−1 + θ2 · (yt − ȳt ) + a2 · (dt − d̄t )
3 + ε3,t (7)

Austria is a small open economy; thus its economic performance depends to a
large extent on the economic situation in the world. The correlation coefficient (a1)
between Austria’s and the world’s GDP growth (between 1996 and 2017) is 0.7266.
The fiscal policy instrument (gt ) is the primary fiscal surplus (or deficit if negative).
For the Austrian economy, an acceptable debt level is assumed to be given by the
Maastricht criterion of 60% of GDP. As a threshold for normal output growth, a value
slightly above the historical average (1996–2017) of 1.84 is assumed here, namely
2 percent annual growth (ȳ = 0.02). The fiscal multiplier parameter (θ1) is one of
the two stochastic parameters in the model and is assumed to be 1.2 with variance
Σθ1 = 0.5. The second stochastic parameter (θ2) is the link between output growth
and the interest rate and is equal to 0.1 with variance Σθ2= 0.1.

Equations (5)–(7) give a very simplified description of the Austrian economy with
an output growth—public debt trade-off. Using its instrument, namely fiscal policy
g, the government aims at maintaining a high GDP growth of 3% (ỹ = 0.03) and a
steady decrease in public debt from 78.4% of GDP in 2017 to 60% of GDP at the end
of the planing horizon, namely in 2022 (T = 5). At the same time, the government
prefers to have a balanced budget (g̃ = 0). The former two targets are represented by
state variables in the ATOPT model, while the latter objective variable is the control
variable.

Thus, the task is to find an optimal path for the control variable, in order tominimize
the sum of the squared differences between the outcome of the system and the given
targets. The optimal control problem is solved again using CE, OLF and AL strategies
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Fig. 9 Boxplot for the control variable in t = 5 based on aMonte Carlo experiment with 100 draws, ATOPT
model

over the time horizon 2018–2022. The results are shown in Figs. 8, 9 and 10. The box
plot in Fig. 8 illustrates the values of the first control variable in the first time period
and the box plot in Fig. 9 shows the same control variable in period 5.

We see that in period 1 the AL strategy allows for a lot of variation or probing.
This is in line with the idea of active learning. As a result of this probing the AL
strategy delivers much better results in time period 5 than the other two strategies. The
AL results of different MC runs are not spread out as much as CE and OLF in the
last period. This qualitative behaviour of the active-learning control (relatively strong
variations at the beginning to elicit reactions from the system from which to learn and
to get closer to the “true” system parameters at the end) has also been observed by
Kendrick (1982) in a linear model.

In Fig. 10 we can see that in contrast to theMacRae problem (Fig. 7), the cautionary
component is much bigger and the deterministic term is smaller. Thus the largest part
of the total objective function is due to the cautionary term. The explanation is that here
we have a more complex optimization problem (compared to the MacRae problem)
and, in particular, optimization over a longer planning horizon. These insights are in
line with the results in Kendrick (1981).

6 Conclusion

In this paper, we reviewed the algorithmsOPTCON1 for open-loop andOPTCON2 for
open-loop feedback (passive learning) control for stochastic economic policy models
and describe in detail the new OPTCON3 algorithm, which includes active learning
and the dual effect of optimizing policies. The OPTCON algorithms are applicable
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Fig. 10 Objective function values based on a Monte Carlo experiment with 100 draws, ATOPT model

to nonlinear models which can be approximated by time-varying linear models. A
computer programwas created to implement approximately optimal policies according
to the OPTCON3 algorithm. The results from calculating these policies for two simple
economicmodels served to test theOPTCON3algorithmandcompare it to the previous
solutions of the stochastic control problem. Initial evaluations show that theOPTCON3
approach may be promising to enhance our understanding of the adaptive economic
policy problem under uncertainty.
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Appendix

The detailed description of the steps of the OPTCON3 algorithm.
The following values are given as input:

f (. . .) system function

x0 = ◦
x0 initial values of state variables

(
◦
ut )Tt=1 tentative path of control variables

θ̂0 = θ̂ expected values of system parameters
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Σθθ
0 = Σθθ covariance matrix of system parameters

Σεε covariance matrix of system noise
θm (random) parameter noises
(εmt )Tt=1 (random) system noises
(zt )Tt=1 path of exogenous variables
(ũt )Tt=1 target path for control variables
(x̃t )Tt=1 target path for state variables
Wxx , Wux , Wuu weighting matrices of objective function
α discount rate of objective function

At the end of the algorithm the following optimal values have to be obtained:
(xa∗

t )Tt=1, (u
∗
t )

T
t=1 and J ∗.

Step I: For each S from 1 to T do the following search steps [1]-[3]:
Step I-1: Find an open-loop solution for the subproblem (S, . . . , T ): apply the

procedure already implemented in OPTCON1; cf. Sect. 3 above. Fix (x∗
S, u

∗
S).

Step I-2: Run a grid search of size Π around (x∗
S, u

∗
S), i.e., for each π = 1, . . . ,Π

perform the steps (A) - (G):
Step I-2A: Find the open-loop solution (x∗

t , u
∗
t )

T
S+1 for the subproblem (S + 1, …,

T ).
• The nonlinearity loop is run until the stop criterion is fulfilled, i.e. until the

difference between the values of the current and the previous iteration is smaller
than a pre-specified number or the maximum number of iterations is achieved. The
approximately optimal solution (x∗

t , u
∗
t )

T
S+1 has been found when the stop criterion

has been achieved. Then go to the next step I-2B. It should be noted that after several
runs of the nonlinearity loop only the solution (x∗

S+1, u
∗
S+1) for the time period S + 1

will be taken as the optimal (nominal) solution. The calculations of the pairs (x∗
t ′ , u

∗
t ′)

for other periods (t ′ > S+1) have to be done again, taking into account the re-estimated
parameters for all periods.

Notice the parameter matrices for the linearized system of equations: A = (I −
Fx
xt )

−1Fx
xt−1

and B = (I − Fx
xt )

−1Fx
ut . F

x
xt , F

x
xt−1

and Fx
ut are the derivatives of the

system function f (. . .) with respect to xt , xt−1 and ut respectively.7

Step I-2B: Calculate the Riccati matrices K xx , K xθ and K θθ and the auxiliary
matrices Λxx , Λxu , Λuu , λx and λut for time periods t = S + 1, . . . , T .8

7 For detailed definition see Matulka and Neck (1992), Eq. (16) - (18).
8 The termswu

t andwx
t are defined as follows. In order to simplify notation and computation the following

general quadratic form will be used:

Lt (xt , ut ) = 1

2

(
xt
ut

)′
Wt

(
xt
ut

)
+

(
xt
ut

)′ (
wx
t

wu
t

)
+ wc

t (8)

where

(
wx
t

wu
t

)
= −Wt

(
x̃t
ũt

)
and wc

t = 1

2

(
x̃t
ũt

)′
Wt

(
x̃t
ũt

)

The equivalence between the quadratic tracking form and the general quadratic form is shown, for instance,
in (Blueschke-Nikolaeva 2013).
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The initialization for backward recursion has to be done:

Hxx
T+1 = On×n, h

x
T+1 = On,

Hxθ
T+1 = On×l , H

θθ
T+1 = Ol×l .

K xx
t = Wxx

t + Hxx
t+1, K

θx
t = H θx

t+1, K
θθ
t = H θθ

t+1,

kxt = ht+1 + x ′Wxx
t + Wxu

t u + wx
t (9)

Λxx
t = (At )

′K xx
t At

Λux
t = (Bt )

′K xx
t At + Wux

t At

Λxu
t = (Λux

t )′

Λuu
t = (Bt )

′K xx
t Bt + 2(Bt )

′Wxu
t + Wuu

t (10)

λx
t = (At )

′kxt
λut = (Bt )

′kxt + x ′Wxu
t + Wuu

t u + wu
t (11)

Step I-2C: Compute the parameters: Hxx , Hxθ , H θθ and hx for t = S+1, . . . , T :

Hxx
t = Λxx

t − Λxu
t (Λuu

t )−1Λux
t ,

H θx
t = [D′K xx

t + K θx
t ]At − [[D′K xx

t + K θx
t ]Bt + DWxu](Λuu

t )−1Λux
t

H θθ
t = D′(K xx

t D + K xθ
t ) + K θx

t D + K θθ
t − [[D′K xx

t + K θx
t ]Bt + DWxu]

×(Λuu
t )−1[Bt [K xx

t D + K xθ
t ] + Wux D],

hxt = λx
t − Λxu

t (Λuu
t )−1λut , (12)

where D = (I − Fx
xt )

−1Fx
θ .

Fx
θ is the derivative of the system function with respect to θ .

Step I-2D: Calculate the deterministic component of the approximate objective
function JD,S and the cautionary component JC,S .

JD,S = 1

2
[x∗

S − x̃S]′Wxx [x∗
S − x̃S] + [x∗

S − x̃S]′Wxu[u∗
S − ũS]

+1

2
[u∗

S − ũS]′Wuu[u∗
S − ũS] and

JC,S = 1

2
tr(Hxx

S+1Σ
xx
S+1/S) + tr(H θx

S+1Σ
xθ
S+1/S) + 1

2
tr(H θθ

S+1Σ
θθ
S+1/S) (13)

Step I-2E: Repeat for each j ( j = S + 1, . . . , T ) the steps [a]-[c]:
[a]: Calculate the deterministic component JD, j and the cautionary component

JC, j .

JD, j = 1

2
[x∗

j − x̃ j ]′Wxx [x∗
j − x̃ j ]′ + [x∗

j − x̃ j ]′Wxu[u∗
j − ũ j ]

+1

2
[u∗

j − ũ j ]′Wuu[u∗
j − ũ j ])

JC, j = 1

2
tr(K xx

j Σξξ ) (14)
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[b]: Calculate the matrix Σθθ
j/ j .

Σθθ
j/ j = Σθθ

j/ j−1 − Σθx
j/ j−1(Σ

xx
j/ j−1)

−1Σ xθ
j/ j−1 (15)

with

Σ xx
j/ j−1 = Fx

θ Σθθ
j−1/ j−1(F

x
θ )′ + Σεε

j and

Σ xθ
j/ j−1 = (Σθx

j/ j−1)
′ = Fx

θ Σθθ
j−1/ j−1,

Σθθ
j/ j−1 = Σθθ

j−1/ j−1. (16)

[c]: Calculate the probing component JPj .

JPj = 1

2
tr [Λxu(Λuu)−1ΛuxΣ xx

j/ j ]
+tr [Λxu(Λuu)−1(B ′(K xx D + K xθ ) + Wux D)Σθx

j/ j ]
+1

2
tr [((K θx + D′K xx )B + D′Wxu)(Λuu)−1

×(B ′(K xx D + K xθ ) + Wux D)Σθθ
j/ j ] (17)

Step I-2F: Calculate the sum of the deterministic, cautionary and probing terms
over the periods S, . . . , T :

Jd = (JD,S +
T∑

j=S+1

JD, j ) + (JC,S +
T∑

j=S+1

JC, j ) +
T∑

j=S+1

JPj .

Step I-2G: Take a new control
◦
uS = ◦

u
π+1

S (new point of the grid search) and go to
step I-2A.

Step I-3: Choose an optimal u∗
S with minJ = J ∗

d (u∗
S). End of grid search.

Step II: Calculate the following a) and b) for only one time period S:
a)

Σ xx
S/S−1 = Fx

θ Σθθ
S−1/S−1(F

x
θ )′ + Σεε

S and

Σ xθ
S/S−1 = (Σθx

S/S−1)
′ = Fx

θ Σθθ
S−1/S−1,

Σθθ
S/S−1 = Σθθ

S−S/S−1. (18)

b)

xa∗
S = f (xa∗

S−1, x
a∗
S , u∗

S, θ̂ ) + εmS .
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Step III: Update the parameter estimates θm and Σθθ
S/S :

θmS/S = θmS/S−1 + Σθx
S/S−1(Σ

xx
S/S−1)

−1[xa∗
S − x∗

S] and x̂S/S = xa∗
S . (19)

Σθθ
S/S = Σθθ

S/S−1 − Σθx
S/S−1(Σ

xx
S/S−1)

−1Σ xθ
S/S−1 (20)

Step IV: Set θm = θmS/S andΣθθ = Σθθ
S/S , go to Step I and run the procedure for the

time period S + 1. The loop of Step I and the OPTCON3 algorithm is finished when
S = T and the approximately optimal dual control and state variables for all periods
have been found.
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