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Abstract
Modelswith small numbers of agents have recently been simplified for direct empirical
estimation. Parameters are estimated at the macro level to get a best fit to the data.
However, little analysis is done at the micro level to examine the choices made by
agents for forecasting rules. This paper explores one of these recent models from the
standpoint of micro agent behavior. It is shown that at the fitted forecasting rules,
agents would prefer deviating to other nearby rules. The simple two type model is
then compared with several multi-type models allowing for agents to use a broader set
of rules. This can impact the dynamics of the generated time series, but it also may not
if one takes the parameter estimates of the original model as an exogenous restriction
on a reasonable support for the forecasting rules. This result emphasizes that these
models may be imposing some hidden micro assumptions about agent behavior.

Keywords Learning · Heterogeneous agent models · Asset pricing · Financial time
series · Adaptive behavior

1 Introduction

Modeling asset markets with heterogeneous agents and beliefs is still a field in relative
infancy with many approaches, and many results coming from researchers in a wide
variety of disciplines. While it is accepted that the world is populated with agents
possessing a variety of beliefs about the future, it is not clear what impact, if any,
this will have on asset pricing. Most heterogeneous agent modeling suggests that the
impact is large, and may be an important driver of what has appeared to be irrational
levels of market volatility and trading volume. However, heterogeneous agent models,
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by design, imply large numbers of parameters for which some are poorly identified.
This “too many degrees of freedom” problem has made it difficult to take the models
to the data directly. Recently, highly stylized models with small numbers of traders
have been built and directly estimated on economic time series. This paper looks at
one of the models in detail and compares it to techniques and features which are used
in more complex computational models.

Agent-based models in economics and finance focus on relatively simple adaptive
behavior where agents follow behavioral rules, but stand ready to adjust their rules in
the presence of empirical evidence suggesting that other strategiesmight be better. This
dynamic shifting may be the distinguishing feature of these models. The population
of agents is not predetermined to be heterogeneous as in some other heterogeneous
agent approaches. The constant shifting of agents makes these models richer, but also
more intractable. One style of modeling was to leave the strategies very “free form”
and let actual strategies in use emerge from a nonparametric soup of strategies.1

Models of this type can be appealing in that most anything that is possible in reality is
doable by agents in the model. Two crucial drawbacks for these models are that they
are relatively complex, involving many unknown parameters, and require relatively
complex computer code to operate. While fitting many features of financial data, they
are often viewed with skepticism.

A much simpler class of models also emerged at about the same time.2 They are
referred to as “few type” models. Their appeal is obvious. Working with stripped
down strategy spaces they employ as few as two forecasting rules to describe financial
markets. One can often implement these models with a small set of equations, and
get a handle on some of the analytics driving their dynamics. At first these models
offered only analytical tractability, and lighter demands for computer time. However,
in an important paper Boswijk et al. (2007) show that a simple two agent model could
yield an equivalent, and relatively tractable, time series model which could be directly
estimated from data. This changed the model building and testing space in a very big
way and has been followed by several other papers.3

These models appear to be providing a good fit to the data, and a kind of heteroge-
neous agent benchmark for financial markets. This paper looks at them a little more
deeply from a theoretical perspective. They are built from macro data estimation, but
are relatively quiet about some aspects of individual agent decisions and adaptation.
Also, theymake some big assumptions themselves to get their tractability. Specifically,
agents are assumed to follow the two forecasting rules prescribed by the model, and

1 In LeBaron (2006) these are refered to as “many type” strategies and many examples of this modeling
style are given.
2 For example, Brock and Hommes (1998), Kirman (1991), Lux (1997). Also, see surveys such as Chiarella
et al. (2009), Hommes (2006), Hommes and Wagener (2009), Lux (2009),and more recently Dieci and He
(2018), and Lux and Zwinkels (2018).
3 Several examples are (Alfarano et al. 2005), Chiarella et al. (2014), Frijns et al. (2013), Goldbaum and
Zwinkels (2014), Grazzini et al. (2017), Kouwenberg and Zwinkels (2014), Lof (2012), Lux (2009), and
ter Ellen and Zwinkels (2010), and Franke and Westerhoff (2012).
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estimated to best fit the data. This ignores the issue, fundamental to the “many type”
world, of letting the agents try to search around the forecasting space.4

This paper explores thesemodels from the perspective of understandingwhatwould
happen when agents are offered different strategies. Would they want to move? Also,
do the dynamics of the model change if the range of strategies available to the agents
is expanded? The answer to both these questions turns out to be yes.

Section 2 performs some initial simulation and testing for a candidate few type
model. Section 3 estimates local learning gradients, or objective utility functions, in
local regions around the fitted parameters. It also explores the impact of a multi-agent
model operating within the support of the estimated parameters. Section 4 explores
the dynamics of models where the two strategies are invaded by a third strategy which
is not necessarily local. It also performs some initial time series analysis to see which
time series features remain robust to these changes. Conclusions and perspectives are
presented in Sect. 5.

2 Model Testing and Stability

This paper follows Hommes and in ’t Veld (2017) (HV), and Boswijk et al. (2007)
in modeling the movements of asset prices and fundamentals as a two agent system
of beliefs. As previously mentioned, this simplification is powerful in that it allows
direct estimation of the agent-based parameters.

The price of the risky asset is given by Pt , and it also pays a risky dividend, Yt ,
each period. The excess payout of the risky asset is defined by,

Rt+1 = Pt+1 + Yt+1 − (1 + r)Pt (1)

where r is a risk free return. Demands for shares of the asset are determined through
standard mean variance preferences and are given by,

zh,t = Eh,t Rt+1

aσ 2 (2)

where a is the coefficient of absolute risk aversion, and σ 2 is the variance of the asset
which is assumed to be constant. Eh,t represents the expectations of each different
heterogeneous agent type, h. There are H total agent types in the population. They

4 This question is an old and deep one in agent-based models. The origin is probably Schelling (1978)
which stressed that micro and macro optimality may be far apart in many models. There are also some
models in the heterogeneous agent world of monetary policy which do stress a form of optimality at the
micro level. An example of this is Branch and Evans (2011) which has agents using under parameterized
forecasting models, but they are still required to estimate these in a statistically optimal manner.
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are formally described in Eqs. 15 and 16. The fraction of each type in the population
is given by nh,t . Assuming the asset is available in zero net supply and summing the
demands gives,

H∑

h=1

nh,t
Eh,t (Pt+1 + Yt+1) − (1 + r)Pt

aσ 2 = 0, (3)

and the corresponding pricing equation,

Pt = 1

1 + r

H∑

h=1

nh,t Eh,t (Pt+1 + Yt+1). (4)

The stochastic process for dividends is common knowledge and is given by a geometric
random walk,

log Yt+1 = μ + log Yt + νt+1 νt+1 ∼ N (0, σ 2
ν ) (5)

where

Yt+1

Yt
= eμ+νt+1 (6)

and

Yt+1

Yt
= (1 + g)εt+1, (1 + g) = eμ+(1/2)σ 2

ν , E(εt ) = 1, (7)

and given common knowledge, Eh,t Yt+1 = (1 + g)Yt for all agents h. g is the mul-
tiplicative growth rate for dividends, corresponding to the geometric rate given by μ,
and adjusted for the variance σ 2

v .
Themodel dynamics are greatly simplified by expressingmost pricing relationships

in terms of the price/dividend ratio, δt = Pt/Yt . The authors assume that the dividend
growth rate is conditionally independent of δt+1 which allows them to write,

Eh,t
Pt+1

Yt
= Eh,t {δt+1}Eh,t {Yt+1/Yt } = (1 + g)Eh,t {δt+1}. (8)

This now allows rewriting the pricing Eq. ( 4) as,

δt = 1

R∗

{
1 +

H∑

h=1

nh,t Eh,tδt+1

}
, R∗ = 1 + r

1 + g
. (9)
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Finally, pricing is expressed in differences from the price/dividend ratio determined
as present values from the Gordon growth model as in,

P∗
t = 1 + g

r − g
Yt (10)

δ∗ = P∗
t

Yt
= 1 + g

r − g
(11)

xt = δt − δ∗. (12)

In HV the static Gordon model is replaced with a conditional model allowing r and
g to change over time. This is passed through the data to develop a conditional value
of for δ∗ = δ∗

t . Since the purpose here is to simply regenerate basic data, and since
the Gordon model renormalization can be viewed as separate from the dynamics of
xt , there is no need to be concerned with the dynamics of δ∗

t . The model will generate
xt , and this can be adjusted to price/dividend ratios by adding back δ∗. Using this
adjustment converts Eq. 9 to,

xt = 1

R∗

{
H∑

h=1

nh,t Eh,t xt+1

}
. (13)

Now that the overall structure of the model is set, more details will be given.5 As
mentioned earlier, the model considers only two types. One will follow a stabilizing,
or mean reverting style of forecast, and the other is a form of destabilizing trend
following type of strategy. We will refer to these as type 1 (reverting), and type 2
(trending) strategies. The fraction of type 1 agents at time t is given by n1,t , and type
2 is given by n2,t = (1 − n1,t ).

Also, adding noise is necessary both for estimation and realistic simulation. This
now gives a final equation for the dynamics of xt ,

xt = 1

R∗ (n1,t E1,t xt+1 + (1 − n1,t )E2,t xt+1) + εt , (14)

where εt is normally distributed, N (0, σ 2
ε ), supply noise. Closing the model requires

only two additional components, the expectations of the two types, and the agent
adaptations which feed into n1,t . The expectations are written as functions of xt ,

E1,t xt+1 = φ1xt−1, (15)

E2,t xt+1 = φ2xt−1, (16)

giving a simple pricing relationship in Eq. 14 once n1,t is determined. Notice that the
timing in the model requires that expectations for time period t + 1 to be determined

5 Timing is critical in these models, so time subscripts are designed to help readers develop their own codes
to replicate. They may not exactly align with the original authors’ notation.
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at t − 1. This is common in many types of models, and helps to make price dynamics
more tractable.

The key feature underlying these models is the adaptive behavior of the agent types.
Agents in the population are assumed to endogenously chose between the two types
of strategies based on past performance. In HV they are assumed to use past realized
profits to determine their future rule choice. The profitability for each type at the start
of period t (before xt is determined) is given by,

πh,t−1 = Rt−1zh,t−2 = Rt−1
Eh,t−2Rt−1

aσ 2 . (17)

Boswijk et al. (2007) show that the single period realized profitability for a strategy
can be written as

πh,t−1 = (1 + g)2

aη2
(Eh,t−2xt−1 − R∗xt−2)(xt−1 − R∗xt−2) (18)

πh,t−1 = (1 + g)2

aη2
(φhxt−3 − R∗xt−2)(xt−1 − R∗xt−2) (19)

πh,t−1 = C(φhxt−3 − R∗xt−2)(xt−1 − R∗xt−2) (20)

with η2 = (1+ δ∗)2(1+ g)2σ 2
ε . The reason for writing the last equation is to empha-

size that eventually those parameters will be grouped into a single constant C , and
combined with the intensity of choice parameter, β. This greatly reduces the number
of parameters, but unfortunately none of these can be identified in the estimation. Sin-
gle period profits are converted into a smoothed longer term utility or fitness measure
using,

Uh,t−1 = (1 − ω)πh,t−1 + ωUh,t−2, (21)

which smoothes noise by generating an exponentially weighted moving average into
the past for each strategy h. This strategy fitness measure determines the fraction of
trader types using a multinomial logit as in Brock and Hommes (1997),

n1,t = eβU1,t−1

eβU1,t−1 + eβU2,t−1
. (22)

It should now be clear how C is not identified and is absorbed into the intensity
of choice parameter, β. The computer simulations in this paper will always use the
algebraically equivalent, but often numerically more stable,

n1,t = 1

1 + eβ(U2,t−1−U1,t−1)
.

123



Microconsistency in Simple Empirical Agent-Based… 89

Table 1 Stability

Model φ1 φ2 β ω σ 2
ε Fraction unstable

(A) 0.936 1.026 1.000 0.824 14.12 1.00

(B) 0.947 1.017 2.443 0.800 14.09 0.00

(C) 0.940 1.026 10.000 0.852 13.87 1.00

B+ 0.947 1.020 2.443 0.800 14.09 0.23

B++ 0.947 1.030 2.443 0.800 14.09 1.00

Model stability estimates. Fraction stable reports the fraction of explosive runs for the given sets of param-
eters

R∗ is calibrated to the quarterly data, and is set to 1.008.6 The remaining parameters,
(φ1, φ2, β, ω, σ 2

ε ) need to be estimated. The system of equations can be matched to
the data using nonlinear least squares. The authors do this and give several sets of
reasonable parameters. In their estimates φ1 is slightly less than 1 (stabilizing), and φ2
is slightly greater than 1 with explosive expectations. The model fit is not sensitive to
the value of β, and because of this, several of the estimated parameter vectors simply
fix β to a reasonable guess. The dynamics of the entire system are similar to a threshold
or exponential autoregressive model, but more complicated given the dynamics for
n1,t . This makes it impossible to derive analytics for model stationarity. This will be
done here through simulations.

To get a quick feel for how well the model works visually, the first two figures
compare actual price dividend ratios with one of the model simulations. Figure 1
uses a long time series built by merging the CRSP series (through 1926) with older
data from William Schwert back to the mid 1880’s. The raw series is the standard
annual price/dividend ratio. Recently, many stocks have been using share repurchases
as a second vehicle for getting cash back into the hands of shareholders. The second
(green) line displays a price/dividend ratio adjusted for share repurchases. Both display
the typical patterns of long erratic cycles, but the latter appears more stationary by
ameliorating the recent behavior in the series.7 Figure 2 plots a similar length time
series from the model. It is using parameter set (B) from Table 1. It is visually similar
to the actual data. These figures are simplymotivation, since it is not the purpose of this
paper to redo the estimation results performed in HV. They show that this model fits
a similar price/dividend series well, and perform many diagnostics on their estimated
models.

To decide on the appropriate model benchmark for the rest of the paper the three
sets of estimated parameters will be simulated for a very long time series of 10,000,000
time steps, corresponding to quarters of U.S. stock market data. The parameters are
again taken from Table 1 in HV, and displayed here in Table 1. Parameter sets (A), (B),
and (C) correspond to their parameter sets. The first columns display the parameters
for the various models, and the last column shows the fraction of 250 runs which

6 See Hommes and in ’t Veld (2017) for details. In their data they estimate annual g = 1.3, and annual
r = 4.69. This is then converted to quarterly values. The paper also contains full information on the data
used, and model estimation.
7 See LeBaron (2013) for details on these series.
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Fig. 1 U.S. price/dividend ratios. (Color figure online)
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Fig. 2 Simuated annualized price/dividend ratios

explode. Two of the 3 parameter sets, (A) and (C), are explosive, but (B) is stable, with
no explosive trajectories. Most of the experiments in the paper will use (B). A good
conjecture is that instability is tied to the magnitude of φ2. This is tested in the last
two rows of Table 1 where the parameters from (B) are used, but increasing φ2 first
to 1.02, and then to 1.03. For the first of these experiments 23% of the runs explode,
and for the larger value it is 100%. It would appear that the range of φ2 moving from
1.017 to 1.026 is where the model becomes explosive. This issue will be dealt with
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Table 2 Sample moment
accuracy

Moment E(xt ) σx ρx E(n1,t ) E(U1,t )

Mean − 0.005 18.39 0.978 0.677 0.218

Std. 0.046 0.035 0.001 0.001 0.004

Mean and standard deviations across 250 simulations of sample sizes
of 10,000,000

later in the paper. For the moment this justifies the use of parameter set (B) with very
long simulation runs.

The long runs are necessary to get very precise estimates of several moments in
the data.8 Table 2 shows the properties of several key estimated moments from the
simulation. They are listed across the columns, and the table reports the mean and
standard deviation of these estimated moments across 250 simulations with sample
sizes of 10,000,000 each. In all cases the standard deviations are very small relative
to the mean except for the case of E(xt ) where the mean is zero. The value ρx reports
the first order autocorrelation of xt . This shows that at these long sample sizes the
model is able to give estimates which are very close to the true values, so sampling
error can be ignored. It is also important to see that the table tests internal information
from the model such as E(n1,t ), and E(U1,t ) since these will be used extensively
in later sections for estimating the shape of the objective function at the fixed agent
parameters.

3 Fitness Gradients

The main objective of this paper is to explore the micro consistency of the agent-based
model which is represented by the estimated macro parameters. They are estimated to
be a best fit to the overall data, but they do not test whether they are consistent with
the underlying agent-based decision making that is part of all agent-based models.
Agents are forced to stay within the fixed forecasting rules because these parameters
best fit the data. The key question is “If agents were given the chance to change their
forecasts a little would they take this opportunity?”

To answer this question several measures will be estimated. First, the impact of
changing the strategy by a small amount on overall expected utility is estimated. This
is not a completely straightforward estimation, so several measures will be used. The
first estimate assumes that an individual agent is moving alone, and not taking into
account the fact that others might move as well. The strategy 2, which is given in
[φ1, φ2] will be modified slightly to φ′

2. Profits for the strategy in each period become

π ′
2,t = (φ′

2xt−2 − R∗xt−1)(xt − R∗xt−1) (23)

which will cause a corresponding change in U2,t to U ′
2,t through Eq. 21. To estimate

overall utility of this strategy the agent uses n2,t = (1−n1,t ) as a probability that they

8 For this it is obvious that ergodicity is being assumed for the models and parameters.
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are using strategy 2 in a given period. The utility for the original strategy at [φ1, φ2]
is given by,

Ū = 1

T

T∑

t=1

(n1,tU1,t + (1 − n1,t )U2,t ). (24)

The utility at the new values, [φ1, φ
′
2] would then be,

Ū ′ = 1

T

T∑

t=1

(n1,tU1,t + (1 − n1,t )U
′
2,t ). (25)

A slightly more rational agent could now assess the switching probabilities using the
new utility, U ′

2,t , and use this to estimate new fractions, n′
1,t , and then estimate,

Û ′ = 1

T

T∑

t=1

(n′
1,tU1,t + (1 − n′

1,t )U
′
2,t ). (26)

Finally, it is useful to estimate utilities based on the entire population changing. This
is not an individual agent experiment, but it is a useful calculation that explores the
entire social impact on the system of the strategy change. For this case the model is
completely rerun at the new value for φ2 = φ′

2 with all utilities, fractions (nt ) and
corresponding pricing (xt ) allowed to change.

All three of these utility changes are shown in Fig. 3. The lines labeled “n fixed”
and “n adjust” correspond to the first two experiments where agents only consider
changing their own strategies. Both schedules are similar and show that the gradient
is not zero at the estimated value of φ2. This is important since it means that the given
value of φ2 is not an individual maximum, and under local utility adaptation there
would be a desire to crawl uphill by moving the parameter φ2 out to larger values.
There is nothing inconsistent with this and the logit fractions, since we don’t know
that the logit really is an optimal forecast of the future gains from different strategies.
It is only a backward looking response to past data.

Moving to the case where all agents change their strategies, and price impact is
allowed, a completely different situation appears. The gradient is again not flat, but
this time it is downward sloping. Agents, as a whole, would be worse off if they
all simultaneously increase their forecast parameter φ2. It is probably the case that
increased trend following behavior in the population has endogenously reduced the
trendiness of the data, but some further tests on this are necessary. This divergence
between individual and group outcomes is a classic case in economics where a lack of
individual coordination can lead to reductions in utility for the population as a whole.9

Another interesting part of this result reflects on the stability properties of themodel.
The previous section showed that the probability ofmodel instability is increasing asφ2
increases. The gradients here are all pointing in the direction of instability. If individual

9 See Schelling (1978) for many classic examples of this.
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Fig. 3 Fitness changes from local forecast changes φ2

Fig. 4 Fitness changes from local forecast changes φ1

agents were increasing φ2 in response to positive gradients, then they would be taking
this model closer to an explosive situation.

In Fig. 4 the experiment is repeated for φ1. This situation is quite different. In this
case, all the objective functions are moving in the same direction. They all suggest
that agents would be interested in reducing φ1 individually. However, in this case, this
would also be a social improvement if everyone changed φ1 together.

These figures suggest a much richer dynamic than is given in the original two agent
model. To begin exploring this amodel covering a uniform set ofφ’s inside the original
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Fig. 5 Agent type distribution

model support, [φ1, φ2], is created and simulated. In this case the strategy space is
opened up to 15 values of φ distributed uniformly from 0.947 to 1.017. This involves
generalizing the pricing and adaptation equations as follows,

xt = 1

R∗

(
H∑

h=1

nh,t Eh,t xt+1

)
+ εt , (27)

nh,t = eβUh,t−1

∑H
h=1 e

βUh,t−1
. (28)

Figure 5 displays the time averages of nh,t for different forecast types indexed by h.
The value is far from uniform, and shows large amounts of forecasting mass on both
the lowest and highest levels of φ. This is consistent with the earlier gradient graphs. If
agents are indeed interested in shifting, then the levels of nh,t should reflect this. They
will not go completely to the extremes because the randomnature of the discrete choice
machinery imposes some noise on strategy choices. However, the relative values of n
should reflect the learning gradients. Also, the gradients were steeper for lower values
of φ (left side of the plot), and this appears as a stronger probability mass for n on that
side then for the larger φ on the right side. This plot also suggests that the agents are
constrained in what they do since the fractions are pushed against both end points for
φ.10

10 It should be noted that nh,t is not a static object. It moves through time in interesting ways with the data.
This unconditional mean snapshot of nh,t can only be taken as a crude summary of what the overall model
looks like.
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Fig. 6 Fitness for large forecast changes

4 Large Parameter Changes

In the previous section only local changes to the parameters were considered. Pointing
out local gradient slopes is useful for understanding the underlying internals of the
model, but may not have a big impact on the actual dynamics of the model observ-
able price/dividend ratios. This section explores bigger changes to the parameters.
Specifically, it will examine increases in the trend following parameter φ2 to much
larger values. This introduces the problem that was brought up in the earlier section.
Models with larger values of φ2 tend to be unstable. This problem has been addressed
in earlier two type models such as Gaunersdorfer and Hommes (2007) by adding a
stabilization equation that eventually adjusts the populations when the price becomes
too far from the fundamental. Trend followers lose faith in their models and push
toward mean reversion. This is accomplished here by adjusting the fraction of trend
followers using,

ñ2,t = n2,t e
− x2t−1

α , (29)

where n2,t corresponds to the original logit fraction of trend followers. The parameter
α is set to an arbitrarily large value of 10,000 which doesn’t impact the dynamics of
the model while xt remains relatively small, but still shuts down explosive trajectories.

Figure 6 repeats the utility comparisons of the last section, but now allows for a
larger range of increases in φ2 which are enabled by the model stabilizer. It is clear
that the utility gains from increasing φ2 are not local, but continue out for a large range
of φ2. There is essentially no change from the earlier estimates. It is also intereresting
that now the magnitude of the increases are getting larger with an increase in nearly
10% for φ2 = 1.05.
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Fig. 7 Type fractions

This figure again suggests that the presence of a larger φ2 rule may be chosen, and
could possibly impact the market dynamics. To test this a 3 agent model is considered,
using the original parameters, but adding a third forecasting rule with φ3 outside the
range of the original two strategies (0.947, 1.017). The idea is to see if some subset
of agents would now chose this new strategy if it were offered. The gradients on the
utility surfaces in Figs. 3 and 4 suggest that locally there would be interest in choosing
strategies outside the range.11

Figure 7 displays the time average of nh,t both from the original two type case, and
allowing for an additional strategy with φ3 = 1.05. The figure shows that in terms of
populations, the additional strategy matters. Strategies with the largest value of φ3 are
able to attract nearly 30% of the agent populations. Figure 8 repeats the experiment
with an extra strategy with φ3 = 0.80 that is well into the stable forecasting region.
In this case a little over 70% of the population is drawn to the additional forecasting
strategy outside of the original range.

These new strategies survive in the model, but do they actually impact the market
dynamics? This is tested by looking at the time series for xt , and some of its key
moments to get an initial picture for how the pricing dynamics is impacted. Figure 9
displays a 100year snapshot (400 quarters) for xt for the three type models with
φ3 = 0.80, and φ3 = 1.15 respectively. Decreasing the parameter leads to a very
stable P/D time series, but increasing it yields a very unstable time series with extreme
large swings in the P/D time series.

Table 3 describes some basic moments for the data across different parameter sets
and models for a 10,000,000 quarter run. The four models are labeled (B) correspond-
ing to the benchmark parameter set (B) from Table 1. The next row, labeled, H = 15,

11 In these runs the model stabilization in Eq. 29 is done only for n3,t , not for the other forecasts. This is
sufficient to keep the trajectories stable.
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Fig. 8 Type fractions

Fig. 9 Comparison time series: Upper panel, φ3 = 0.8, lower panel, φ3 = 1.05

corresponds to the model with 15 different types, but still in the support of parameter
set (B). The final three rows report the three type models from Figs. 7 and 8 with an
additional type, φ3, set to [0.80, 1.05, 1.15] respectively. Moments are reported for the
simulated values of xt which correspond to price/dividend ratios. Also, given the near
random walk behavior of xt , it is useful to examine some moments generated from
the first difference zt = xt − xt−1. The table reports the first order autocorrelation for
zt and z2t . The final column is a measure of mean reversion which is closely related to
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Table 3 Feature comparisons

Model σx ρx Kurtosis(x) ρz ρz2t
corr(xt , zt+1)

Parameter set (B) 16.3759 0.9730 3.6586 0.0205 0.0020 −0.1163

H = 15 16.6222 0.9740 3.6379 0.0129 0.0012 −0.1140

φ3 = 0.80 8.7959 0.9019 4.3403 − 0.0246 0.0083 −0.2222

φ3 = 1.05 23.8550 0.9869 3.8264 0.0778 0.0055 −0.0811

φ3 = 1.15 54.4639 0.9963 2.5516 0.3442 0.0774 −0.0428

US adjusted 6.6689 0.9495 2.9218 0.0309 0.2157 −0.1580

US actual 14.1804 0.9778 6.1768 − 0.0306 0.2725 −0.0889

Moments estimated over single 10,000,000 period run. xt is the price/dividend ratio, and zt = xt − xt−1.
ρ is the first order autocorrelation

Dickey/Fuller tests. It correlates the level of the system, xt with the next period change
zt+1. In a true random walk process, this value would be zero. In a stationary process
it will be negative.

The first two rows of the table demonstrate that adding the additional agents in
between the original [φ1, φ2] values has little or no impact on the dynamic properties
of the system. This is an interesting defense of the two type model framework. It
supports the power of the simplification in that it gives analytic tractability without
giving up much in terms of the dynamic process. This result changes as the values of
φ3 are added outside of model (B)’s parameter range. The last two rows of the table
show that this changes the time series in several important ways. First, it increases
the volatility as shown by the increase in standard deviation. It also moves it closer
to appearing random walk like. The first order autocorrelation moves toward one, and
the mean reverting measure (last column) moves toward zero. This would appear to
be driven by the strong trending behavior of the φ3 traders causing more instability
in the market price dynamics. However, they have one unusual change which is not
consistent with increasing instability. The table reports the autocorrelations of the first
difference in ρz . For the first twomodels it is near zero as it would be for a true random
walk. However, in the last two cases this value becomes positive. For φ3 = 1.15 it is
over 0.3. These results are both different from the underlying model (B), and from a
true random walk, and they may indicate that nonlinear time series features may be
getting stronger as the trend parameter increases. This is consistent with the qualitative
features in the previous figure.

The last two rows present the corresponding moments from the U.S. data presented
in Fig. 1. These are both the raw price/dividend ratio, and the ratio adjusted for share
repurchases. Formostmoments the actual data shows a good alignmentwith parameter
set (B), which is consistent with the fact that this model was estimated on related data.
The adjusted data are a little different with lower volatility, lower autocorrelation, and
lower kurtosis. All of these are probably related to how it attenuates the run up in
prices during the dot com bubble. One curious feature in the data is that there is strong
evidence for persistence in volatility of the first differences. This feature is not shared
by any of the models. Finally, the adjusted data shows a much stronger case for mean
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reversion which is probably also caused by the adjustment of the data around the turn
of the century. Except for the persistence of volatility the unadjusted data shows good
agreement with model (B), but increasing φ3 moves the model away from the data.

5 Conclusions

Estimable few type models present a new and interesting direction for agent-based
models and their empirical validation. This paper demonstrates several different fea-
tures of one of these models that has been empirically estimated with U.S. equity
market data. In examining the details of the model several new and interesting fea-
tures are uncovered. Some of these are supportive of this framework, while others can
be viewed as critical, or at least cautious.

First, the two type model appears robust to the addition of additional forecasting
rules that are of the same form, and exist inside the support of the original two type
model. In other words, in a model successfully fit with forecast parameters in the
range of [a, b], adding more agents inside this range does not impact the results. This
may be partly a general feature related to the “large type limit” of Brock et al. (2005),
and it also may be related to the result that agent mass appears to concentrate at the
extremes, yielding a nearly two type model. This should all be viewed as good news
for the empirical framework.

The second result is less supportive. This paper’s key experiment was to examine
themicro consistency of the forecast rules in the two typemodel. It was found that they
are not consistent with local optimization, or simple adaptive behavior, as long as this
behavior was allowed to make small changes to the forecasting parameters. Agents
operating individually would seek to move up their objective gradients by changing
the key forecast parameters from the estimated values. This is important since the
macro coordination imposed by the model and its estimation is not consistent with
the underlying agent-based model and local behavior that it implies. Also, the model
gives a very clear picture of a case where micro and macro objectives give opposing
recommendations for behavior at the individual level.

Finally, this local adaptation, and in particular the desire to increase the trending
forecast parameter to larger values may be a problem for underlying model dynamics.
First, it looks likely that it wouldmove themodel out of the stable region to a parameter
set that is unstable. Furthermore, once model stabilizing components are added, the
addition of a third stronger trending trader has a major impact on the underlying time
series of the model.

These problems may not be insurmountable for these models. They might be
assumed away by imposing bounds on the forecasting behavior ex-ante. For example,
simply saying that agents would keep their trend following forecast parameters below
some plausible upper bound would be enough to save the original model. However,
it is important to remember that parameter estimation involves a joint hypothesis of
agents using the estimated forecasting models, along with imposing restrictive bounds
on individual agent learning dynamics.
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