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Abstract
One of the hot topics is how to achieve more accurate results of economic and 
environmental efficiency evaluation in China. Previous data envelopment analysis 
(DEA) literature on environmental performance measurement often follow the con-
cept of non-radial efficiency measure for calculating the performance on resources 
and economic-environmental factors respectively. This paper proposes a non-radial 
and multi-objective generalized DEA model for economic-environmental efficiency 
evaluation. The results illustrate that this model can not only analyze the relationship 
between DEA efficiency and Pareto optimality of the multi-objective programming 
problem defined on the production possibility set, but also obtain the performance 
improvement direction by using the projection of decision making units. Finally, a 
case on measuring the economic-environmental performance of Chinese provincial 
regions is employed to indicate that the proposed model can be helpful to promote 
the accuracy of economic-environmental efficiency evaluation.

Keywords Data envelopment analysis (DEA) · Undesirable outputs · Non-radial · 
Multi-objective

1 Introduction

Over the past decades, China’s economy has experienced rapid growth through the 
reform and opening-up policy (Ding and Li 2014). According to the China National 
Bureau of Statistics, the gross domestic product (GDP) reached exceed 80 trillion 
Yuan, and contributes more than 30% of global economic growth in 2017. In addi-
tion, Chinese GDP has exceeded the USA in the light of purchase power parity, and 
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will surpass the scale of the United States in the light of market rates of exchange by 
2030. However, the rapid economic development has brought challenges of imbal-
ance and insufficiency development problems, such as regional disparities, resource 
shortage, and environmental pollution (Zhang et  al. 2016; Yang et  al. 2017). To 
address these issues, economic environmental performance analysis has been widely 
studied by governments and academics.

Data envelopment analysis (DEA) has been widely applied for evaluating eco-
nomic environmental efficiency since it was firstly proposed by Charnes et  al. 
(1978). It is a well-known non-parametric method to evaluate the performance of a 
set of decision making units with multiple inputs and multiple outputs. Based on dif-
ferent empirical axioms and corresponding to different characteristics of the produc-
tion possibility set and production frontiers, many DEA models, such as CCR model 
(Charnes et al. 1978), namely the BCC model (Banker et al. 1984), the FG model 
(Färe and Grosskopf 1985) and the ST model (Seiford and Thrall 1990), are devel-
oped and applied in various areas, such as educational institutions (Sagarra et  al. 
2014; Thanassoulis et al. 2017), hospitals (Chowdhury and Zelenyuk 2016; Toloo 
and Jalili 2016), financial industries (Aggelopoulos and Georgopoulos 2017; Zhou 
et  al. 2018). Considering the multiple inputs and outputs of economic regions in 
China, the DEA approach is selected as our tool for performance evaluation in this 
paper.

In literature, DEA models have been widely applied to economic environmental 
performance evaluation problems. A direct approach for measuring environmental 
performance originates from the idea of incorporating undesirable outputs with pro-
ductive efficiency measurement pioneered by Färe et al. (1989). Zhou et al. (2008) 
apply a DEA method to analyze the Chinese industrial eco-efficiency under the 
assumption of variant returns to scale (VRS). Chu et al. (2016) focuse on the eco-
efficiency analysis of Chinese provincial-level regions, regarding each region as a 
two-stage network structure. Fei et al. (2016) integrate the goal of maximizing the 
desirable outputs and that of disposing the undesirable outputs to evaluate the per-
formance of industrial systems for Chinese administrative regions. Masuda (2016) 
measures the eco-efficiency of wheat production in Japan at a regional level by using 
a combined methodology of DEA and life cycle assessment. Zhu et al. (2016) pro-
pose a SBM–DEA model based on natural resource input orientation to evaluate 
the efficiency of natural resource utilization for 26 provincial regions in mainland 
China from 2005 to 2012. Sueyoshi et al. (2017) define social sustainability as the 
simultaneous achievement of economic prosperity and environmental protection, 
and evaluate the degree of social sustainability across provinces in China. Beltrán-
Esteve and Picazo-Tadeo (2017) assess environmental performance in the European 
Union (EU) using Luenberger productivity indicators, directional distance functions 
and Data Envelopment Analysis techniques. Song et  al. (2017) evaluate China’s 
provincial environmental efficiency by using Ray slack-based model. Other relative 
researches on DEA based economic environmental performance evaluation can be 
seen in Mardani et al. (2016) which provide a quite comprehensive literature review.

The above economic environmental analysis approaches mainly develop radial 
measures to deal with performance evaluation problems. However, there are some 
shortages in using radial efficiency measures. For example, it often leads to the case 
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where a lot of DMUs have the same efficiency score of 1 and hence difficulty in 
ranking the environmental performance of these DMUs only based on their effi-
ciency scores. Non-radial DEA models seem to be more efficient in measuring envi-
ronmental performance, as they have a higher discriminating power in evaluating 
the efficiencies of DMUs. In addition, if more information, for example, the prefer-
ence of decision makers, is available, radial DEA models are not easy to incorporate 
the information by assigning different weights to different undesirable outputs.

There are also some non-radial DEA models measuring economic efficiency have 
been developed in environmental performance measurement, for example, Meng 
et  al. (2013), Sueyoshi and Wang (2014), Huang et  al. (2014) and Krivonozhko 
et al. (2014). However, rarely study considers their applicability in comprehensively 
considering environmental and economic performance measurement. It is therefore 
worthwhile to extend the traditional DEA models into the case comprehensively 
considering inputs, desirable outputs and undesirable outputs. Due to the increas-
ing depletion of non-renewable resources, the resources needed by social economic 
development are more and more difficult to obtain. While protecting the environ-
ment, we also pay more attention to the resources invested and try to maintain eco-
nomic growth. Hence, this paper aims to introduce a non-radial and multi-objective 
generalized DEA model measuring pure environmental performance and productive 
efficiency.

In this paper, we develop a non-radial and multi-objective generalized DEA 
model to evaluate the economic environmental performance of 30 Chinese provin-
cial regions in 2016. The contribution of this paper is in four aspects. First, the pro-
posed DEA model outlines some particular DEA models including (CCR) multi-
objective DEA model, (BCC) multi-objective DEA model, (FG) multi-objective 
DEA model, and (ST) multi-objective DEA model. Second, we analyze the relation-
ship between DEA efficiency and Pareto Optimality. Third, we define the definition 
on the projection of DMUs, and obtain adjustable volumes of inputs and outputs by 
using the projection of DMUs. Finally, a empirical study of measuring economic-
environmental performance of Chinese provincial regions, which indicates that 
this new model promotes the accuracy of economic and environmental efficiency 
evaluation.

The rest of the paper is organized as follows. The methodology is presented in 
Sect.  2. Section 3 analyzes the empirical study and discusses the results. Conclu-
sions and suggestions for future research are given in Sect. 4.

2  Non‑radial and Multi‑objective Generalized DEA Model

2.1  Production Technology

When desirable outputs and undesirable outputs are jointly produced, we first 
study the concept of production technology. Assume that x = (x1, x2,… , xm) , 
y = (y1, y2,… , ys) and z = (z1, z2,… , zk) denote the vectors of inputs, desirable 
outputs and undesirable outputs respectively. namely Production possibility set is 
defined as T = {(x, y, z): x can produce (y, z)}
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The production technology T has been well-defined conceptually, but it cannot be 
directly used to the environmental DEA technology. When undesirable outputs are 
considered, Färe et  al. (2004) introduced the production possibility set exhibiting 
constant returns to scale by the piecewise linear combination of the observed data. 
Now suppose undesirable outputs can be also changed the same as input and desir-
able output and we extend the production possibility set. There are n DMUs and for 
DMUj(j = 1,2,…,n) the observed input, desirable output and undesirable output vec-
tors are respectively  xi = (x1j,  x2j, …,xmj),  yr = (y1j,y2j, …,ysj) and  zt = (z1j,z2j, …,zkj), 
T can be concretely formulated as follows:

where �j are intensity variables. Multi-objective programming is composed of T:

where F(X, Y , Z) = (X,−Y , Z)T.

2.2  Multi‑objective Performance Measure

There are many radial DEA-based models for measuring environmental perfor-
mance in the process of measuring environmental efficiency. However, these mod-
els have some limitations. One of limitations is that they adjust all inputs, desir-
able outputs or undesirable outputs by the same proportion to the efficient targets. In 
addition, their discriminating power is so weak that many DMUs cannot be directly 
compared and ranked. Out of realistic or economic considerations, however, deci-
sion makers or government officials may prefer different efficient targets. Therefore, 
it is meaningful and practical to extend radial DEA model to non-radial one measur-
ing environmental performance.

In the framework of DEA environmental performance evaluation, non-radial 
DEA models have been well developed in the past. Despite the abundance of non-
radial DEA models, rarely of them comprehensively consider inputs, desirable out-
puts and undesirable outputs simultaneously. In the real production process, people 
always expect to put in the less and get more desirable outputs and fewer undesirable 
outputs. The analytic structure of environmental efficiency evaluation considering 
undesirable outputs model is described in Fig. 1. In this figure We can see desirable 
and undesirable outputs will increase with the increase of inputs during production. 
If we blindly focus on economic growth, then this will bring increasing pollution 
that can be hard for us to take. Moreover, raw materials are limited and then the 

(1)

T =

�

(x, y, z) ∶
n∑

j=1

�jxij ≤ xi, i = 1,…m;

n∑

j=1

�jyrj ≥ yr, r = 1,… s;

n∑

j=1

�jztj ≤ zt, t = 1,… k; �j ≥ 0, j = 1,… n

�

(2)min F(X,Y,Z) s.t. (X,Y,Z) ∈ T
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increase in inputs is limited. If we are obsessed with controlling pollution by reduc-
ing undesirable outputs, then it would reduce the desirable outputs and hold back 
economic development. So we must seek a balance point between them to seek the 
efficiency optimization.

For a given DMUj0
 under evaluation (0 ≤ j0 ≤ n) , then based on the idea, we 

introduce a new non-radial and multi-objective DEA model for measuring environ-
mental performance as follows:

where ai (i = 1, 2,…,m) indicates the efficiency value of ith input; br(r = 1, 2,…,s) 
indicates the efficiency value of rth desirable output; ct(t = 1, 2,…,k) indicates the 
efficiency value of tth undesirable output.

There is very obvious economic significance of model (3). If the optimum value 
a∗
i
< 1 , b∗

r
> 1 and c∗

t
< 1 , there exists a decision making unit by which we can get 

more desirable outputs and fewer undesirable outputs, but its inputs are not greater 
than decision making unit evaluated. Thus the decision making units DMUj0

 evalu-
ated is not DEA efficient. Therefore, only if ai = 1 (i = 1, 2,…,m), br = 1 (r = 1, 2,…,s) 
and ct = 1 (t = 1, 2,…,k), DMUj0

 is DEA efficient.

(3)

min a = (a1, a2,… am); maxb = (b1, b2,… , bs); min c = (c1, c2,… , ck)

s.t.
n∑

j=1

�jxij ≤ aixij0 , i = 1, 2,… ,m

n∑

j=1

�jyrj ≥ bryrj0 , r = 1, 2,… , s

n∑

j=1

�jztj ≤ ctztj0 , t = 1, 2,… , k

ai ≤ 1, br ≥ 1, ct ≤ 1,∀i, r, t

�j ≥ 0, j = 1, 2,… n

Fig. 1  The structural relationship of inputs, desirable outputs and undesirable outputs
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However, the multi-objective programming (3) is not solved, and its DEA effi-
ciency is difficult for us to discuss. In addition, the duality of model (3) is hard to 
study. To this end, we extend the generalized DEA (GDEA) model given in Zhu 
(2014) into a Non-radial generalized tri-DEA model measuring economic-environ-
mental performance.

Let w1
i
(i = 1, 2,… , m) indicates the degree of ith production input and 

w2
r
(r = 1, 2,… , s) indicates the importance of rth desirable output; w3

t
(t = 1, 2,… , k) 

is normalized user-specified weights for adjusting the tth pollutant which reflects the 
desirability degree of decision makers in adjusting the current level of this pollutant. 
The model is proposed as follows.

where h0 indicates efficiency value of DMUj0
 comprehensively considering inputs, 

desirable outputs and undesirable outputs.
In addition, 

∑m

i=1
w1
i
+
∑s

r=1
w2
r
+
∑k

t=1
w3
t
= 1 , 0 ≤ w1

i
≤ 1 , 0 ≤ w2

r
≤ 1 and 

0 ≤ w3
t
≤ 1 . The greater w1

i
(i = 1, 2,… , m) , the more decision makers’ input; The 

greater w2
r
(r = 1, 2,… , s) is, the more the desirable output decision makers want to 

get; The greater w3
t
(t = 1, 2,… , k) is, the more to priority reduce the emissions of 

pollutants decision makers take. Moreover, not all the variables in real-life word are 
discretionary (or controllable), while the discretion of variables should be controlled 
by set the value of weights (Tsai et al. 2011). For example, we can set w1

1
=0 if the 

first input variables is non-discretionary (or uncontrollable). The decision makers 
try various devices to reduce the inputs and undesirable outputs and to increase 
desirable outputs as much as possible. If the optimum value a∗

i
= 1 (i = 1, 2,… , m) , 

b∗
r
= 1 (r = 1, 2,… , s) and c∗

t
= 1 (t = 1, 2,… , k) , DMUj0

 is DEA efficient. Other-
wise, DMUj0

 is not DEA efficient.
For convenience of study DEA efficiency, Pareto efficient solution and the projec-

tion of decision making units, slack variables S−
i
(i = 1, 2,… ,m) , S+

r
(r = 1, 2,… , s) 

and S−
t
(t = 1, 2,… , k) are introduced into model (4), The model (5) is formulated as 

follows:

(4)

min h0 =
m∑

i=1

w1
i
ai −

s∑

r=1

w2
r
br +

k∑

t=1

w3
t
ct

s.t.
n∑

j=1

�jxij ≤ aixij0 , i = 1, 2,… ,m

n∑

j=1

�jyrj ≥ bryrj0 , r = 1, 2,… , s

n∑

j=1

�jztj ≤ ctztj0 , t = 1, 2,… , k

�1

�
n∑

j=1

�j + �2(−1)
�3�n+1

�

= �1

ai ≤ 1, br ≥ 1, ct ≤ 1,∀i, r, t

�j ≥ 0, j = 1, 2,… n, �n+1 ≥ 0
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The duality of model (5):

where  Xj = (x1j,  x2j, …,  xmj)T is the input vector for DMUj, j = 1, …, n,  Yj = (y1j, 
 y2j, …,  ysj)T is the desirable output vector for DMUj, j = 1, …, n,  Zj = (z1j,  z2j, …, 
 zkj)T is the undesirable output vector for DMUj, j = 1, …, n; K1 = (w1

1
,w1

2
,… ,w1

m
) , 

K2 = (w2
1
,w2

2
,… ,w2

s
) , K3 = (w3

1
,w3

2
,… ,w3

k
) ; e = (1, 1, …, 1)T ∈ En; β1, β2 and β3 are 

slack variables. �1 , �2 and �3 are 0–1 binary parameters. Using Wei et al. (2008) tech-
nique, different values of parameters �1 , �2 and �3 lead to the different generalized tri-
DEA models measuring economic-environmental performance (where‘*’indicates 
either 0 or 1):

Case 1 When (�1, �2, �3) = (0, ∗, ∗) , the generalized tri-DEA model is reduced to 
the (CCR) generalized tri-DEA model:

(5)

min h0 =
m∑

i=1

w1
i
ai −

s∑

r=1

w2
r
br +

k∑

t=1

w3
t
ct

s.t.
n∑

j=1

�jxij + S−
i
= aixij0 , i = 1, 2,… ,m

n∑

j=1

�jyrj − S+
r
= bryrj0 , r = 1, 2,… , s

n∑

j=1

�jztj + S−
t
= ctztj0 , t = 1, 2,… , k

�1

�
n∑

j=1

�j + �2(−1)
�3�n+1

�

= �1

ai ≤ 1, br ≥ 1, ct ≤ 1,∀i, r, t

�j ≥ 0, j = 1, 2,… n, �n+1 ≥ 0.

(6)

max −�1�0 − �1 + �2 − �3
s.t. �TXj − �TYj + �TZj + �1�0e

T ≥ 0, j = 1, 2,… n

�TX0 + �1 = eT
m
K1

�TY0 − �2 = eT
s
K2

�TZ0 + �3 = eT
k
K3

�1�2(−1)
�3�0 ≥ 0

�1 ≥ 0, �2 ≥ 0, �3 ≥ 0

�T ≥ 0,�T ≥ 0, �T ≥ 0
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Case 2 When (�1, �2, �3) = (1, 0, ∗) , the generalized tri-DEA model is reduced to 
the (BCC) generalized tri-DEA model:

Case 3 When (�1, �2, �3) = (1, 1, 0) , the generalized tri-DEA model is reduced to 
the (FG) generalized tri-DEA model:

Case 4 When (�1, �2, �3) = (1, 1, 1) , the generalized tri-DEA model is reduced to 
the (ST) generalized tri-DEA model:

(7)

min h0 =
m∑

i=1

w1
i
ai −

s∑

r=1

w2
r
br +

k∑

t=1

w3
t
ct

s.t.
n∑

j=1

�jxij ≤ aixij0 , i = 1, 2,… ,m

n∑

j=1

�jyrj ≥ bryrj0 , r = 1, 2,… , s

n∑

j=1

�jztj ≤ ctztj0 , t = 1, 2,… , k

ai ≤ 1, br ≥ 1, ct ≤ 1, ∀i, r, t

�j ≥ 0, j = 1, 2,… n,

(8)

min h0 =
m∑

i=1

w1
i
ai −

s∑

r=1

w2
r
br +

k∑

t=1

w3
t
ct

s.t.
n∑

j=1

�jxij ≤ aixij0 , i = 1, 2,… ,m

n∑

j=1

�jyrj ≥ bryrj0 , r = 1, 2,… , s

n∑

j=1

�jztj ≤ ctztj0 , t = 1, 2,… , k

ai ≤ 1, br ≥ 1, ct ≤ 1, ∀i, r, t
n∑

j=1

�j = 1, �j ≥ 0, j = 1, 2,… n,

(9)

min h0 =
m∑

i=1

w1
i
ai −

s∑

r=1

w2
r
br +

k∑

t=1

w3
t
ct

s.t.
n∑

j=1

�jxij ≤ aixij0 , i = 1, 2,… ,m

n∑

j=1

�jyrj ≥ bryrj0 , r = 1, 2,… , s

n∑

j=1

�jztj ≤ ctztj0 , t = 1, 2,… , k

ai ≤ 1, br ≥ 1, ct ≤ 1, ∀i, r, t
n∑

j=1

�j ≤ 1, �j ≥ 0, j = 1, 2,… n,
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According to decision maker’s preferences, they may choose the relative 
importance of different input, desirable output and undesirable output categories 
and different DMUs (see Chen 2003).

Definition 1 Let �0,�0, �0,�0
0
, �0

1
, �0

2
, �0

3
 be the optimal solution of 

model (6). If 𝜔0 > 0,𝜇0 > 0, 𝛾0 > 0 , �1 = �2 = �3 = 0 and the optimum 
−�1�

0
0
= eT

m
K1 − eT

s
K2 + eT

k
K3 , then DMUj0

 is called DEA efficiency.

Definition 2 Let (X̃, Ỹ , Z̃) ∈ T  . If there no existence of (X, Y , Z) , satisfying 
F(X, Y , Z) < F(X̃, Ỹ , Z̃) , (X, Y , Z) ∈ T  , then (X̃, Ỹ , Z̃) is called weak Pareto solution 
of multi-objective programming.

Definition 3 Let (X̃, Ỹ , Z̃) ∈ T  . If there no existence of (X, Y , Z) , satisfying 
F(X, Y , Z) ≤ F(X̃, Ỹ , Z̃) , (X, Y , Z) ∈ T  , then (X̃, Ỹ , Z̃) is called Pareto solution of 
multi-objective programming.

Lemma 1 (weak dual theorem) Let (�j, �n+1, ai, br, ct) be a feasible solution of 
model (4), (�,�, � ,�0, �1, �2, �3) be a feasible solution of model (6), then

Proof Let (�j, �n+1, ai, br, ct) and (�,�, � ,�0, �1, �2, �3) be feasible solutions of 
model (4) and (6), respectively.Since

and

(10)

min h0 =
m∑

i=1

w1
i
ai −

s∑

r=1

w2
r
br +

k∑

t=1

w3
t
ct

s.t.
n∑

j=1

�jxij ≤ aixij0 , i = 1, 2,… ,m

n∑

j=1

�jyrj ≥ bryrj0 , r = 1, 2,… , s

n∑

j=1

�jztj ≤ ctztj0 , t = 1, 2,… , k

ai ≤ 1, br ≥ 1, ct ≤ 1, ∀i, r, t
n∑

j=1

�j ≥ 1, �j ≥ 0, j = 1, 2,… n.

m∑

i=1

w1
i
ai −

s∑

r=1

w2
r
br +

k∑

t=1

w3
t
ct ≥ −�1�0 − �1 + �2 − �3

n∑

j−1

�jxij − aixij0 ≤ 0, i = 1, 2,… ,m,−

n∑

j=1

�jyrj+bryrj0 ≤ 0, r = 1, 2,… , s,

n∑

j=1

�jztj − ctztj0 ≤ 0, t = 1, 2,… , k,
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then

that is

Note that

we have

Since �n+1 ≥ 0 and �1�2(−1)�3�0 ≥ 0 , then �n+1�1�2(−1)�3�0 ≥ 0.From the above 
analysis, we have

�T ≥ 0,�T ≥ 0, �T ≥ 0,

�T

m∑

i=1

(
n∑

j=1

�jxij − aixij0

)

+ �T

s∑

r=1

(

−

n∑

j=1

�jyrj+bryrj0

)

+ �T
k∑

t=1

(
n∑

j=1

�jztj − ctztj0

)

≤ 0,

�T

m∑

i=1

n∑

j=1

�jxij − �T

s∑

r=1

n∑

j=1

�jyrj+�
T

k∑

t=1

n∑

j=1

�jztj ≤ �T

m∑

i=1

aixij0 − �T

s∑

r=1

bryrj0 + �T
k∑

t=1

ctztj0 .

�TXj − �TYj + �TZj + �1�0e
T ≥ 0,

�T

n∑

j−1

�jXj − �T

n∑

j=1

�jYj+�
T

n∑

j=1

�jZj ≥ −�1�0e
T

n∑

j=1

�j.

m∑

i=1

w1

i
ai −

s∑

r=1

w2

r
br +

k∑

t=1

w3

t
ct

=

(
m∑

i=1

ai�
TX

0
−

s∑

r=1

br�
TY

0
+

k∑

t=1

ct�
TZ

0

)

−

(

�
1

m∑

i=1

ai − �
2

s∑

r=1

br + �
3

k∑

t=1

ct

)

≥ �T

m∑

i=1

n∑

j=1

�jxij − �T

s∑

r=1

n∑

j=1

�jyrj+�
T

k∑

t=1

n∑

j=1

�jztj − �
1
+ �

2
− �

3

≥ �T

n∑

j−1

�jXj − �T

n∑

j=1

�jYj+�
T

n∑

j=1

�jZj − �
1
+ �

2
− �

3

≥ −�
1
�
0
eT

n∑

j=1

�j − �
1
+ �

2
− �

3

= − �
1
�
0
(1 − �

2
(−1)�3�n+1) − �

1
+ �
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− �
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= − �
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�
0
− �

1
+ �
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− �

3
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From Lemma 1, it is not hard to have the following corollary. □

Corollary 1 If �0,�0, �0,�0
0
, �0

1
, �0

2
, �0

3
 is a feasible solution of model (6) such that

then �0,�0, �0,�0
0
, �0

1
, �0

2
, �0

3
 is an optimal solution of model (6).

Theorem 1 If (X0, Y0, Z0) is Pareto solution of multi-objective programming, then 
the corresponding DMUj0

 is DEA efficient.

Proof (Proof by contradiction) Assume DMUj0
 is not DEA efficient, by 

Lemma 1 and Corollary 1, then the optimum −𝛿1𝜇0
0
< eT

m
K1 − eT

s
K2 + eT

k
K3 , 

h0 > eT
m
K1 − eT

s
K2 + eT

k
K3 . It suggests that decision makers can make further efforts 

to reduce inputs or undesirable outputs and increase desirable outputs such that the 
optimum declines to eT

m
K1 − eT

s
K2 + eT

k
K3.That is, the DMUj0

 relatively efficient.
Assume (X∗, Y∗, Z∗) are input–output volumes adjusted, X∗ < X0, Y∗ > Y0, Z∗ < Z0 

and (X∗, Y∗, Z∗) are input–output volumes of DMUj0
 . Based on the above analysis, 

DMUj∗
 known is DEA efficient and  ai = 1 (i = 1, 2,…, m),  br = 1 (r = 1, 2,…, s) and 

ct = 1 (t = 1, 2,…, k). Therefore, a conclusion can be drawn: (X∗, Y∗, Z∗) meets the 
following conditions:

Then (X∗, Y∗, Z∗) ∈ T  . That is, there exists (X∗, Y∗, Z∗) satisfying 
F(X∗, Y∗, Z∗) < F(X0, Y0, Z0) , (X∗, Y∗, Z∗) ∈ T .By Definition 2, (X0, Y0, Z0) is not 
weak Pareto solution of multi-objective programming, nor is it Pareto solution. 
Obviously, it contradicts with the known condition of (X0, Y0, Z0) being Pareto solu-
tion of multi-objective programming. Therefore, DMUj0

 is DEA efficient. □

Theorem 2 If DMUj0
 is DEA efficient, then the corresponding (X0, Y0, Z0) is Pareto 

solution of multi-objective programming.

Proof (Reduction to absurdity) Assume (X0, Y0, Z0) is not Pareto solu-
tion of multi-objective programming, then there exists (X, Y , Z) satisfy-
ing F(X, Y , Z) ≤ F(X0, Y0, Z0) , (X, Y , Z) ∈ G . By (X, Y , Z) ∈ T  and model 
(4), then �j ≥ 0(j = 1, 2,… , n) , such that 

∑n

j−1
�jxij ≤ aixij0 , i = 1, 2,… ,m , ∑n

j=1
�jyrj ≥ bryrj0 , r = 1, 2,… , s,

∑n

j=1
�jztj ≤ ctztj0 , t = 1, 2,… , k. By model (5), we 

have S−
i
= aixij0 −

∑n

j=1
�jxij , S+r = −bryrj0 −

∑n

j=1
�jyij , S−t = ctztj0 −

∑n

j=1
�jztj , Then 

�j ≥ 0(j = 1, 2,… , n) , S−
i
(i = 1, 2,… ,m) , S+

r
(r = 1, 2,… , s) and S−

t
(t = 1, 2,… , k) 

is a feasible solution of model (5) and (S−0
i
, S+0

r
, S−0

t
) ≥ 0 . Therefore, DMUj0

 is DEA 
efficient. This contradicts with the known conditions. The assumption does not hold.
 □

−�1�
0
0
− �0

1
+ �0

2
− �0

3
=eT

m
K1 − eT

s
K2 + eT

k
K3,

n∑

j=1

�jXj ≤ X∗,

n∑

j=1

�jYj ≥ Y∗,

n∑

j=1

�jZj ≤ Z∗, �j ≥ 0, j = 1, 2,… , n,
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2.3  Frontier Projection

In this section, we will focus on the projection of decision making units. If DMUj0
 is 

not efficient, DMUj0
 may be efficient through adjusting the inputs and outputs. The 

adjustable inputs and outputs are called the projections of the efficient production 
frontier. From the perspective of multi-objective programming, efficient production 
frontier is surface composed of Pareto solutions. DEA efficient production frontier is 
defined as follows:

Definition 4 If ⌢

𝜔 > 0,
⌢

𝜇 > 0,
⌢

𝛾 > 0 and hyperplane L = {(X, Y , Z)
||||

⌢

𝜔
T

X −
⌢

𝜇
T

Y+

⌢

𝛾
T

Z = 0} satisfies T ⊂ {(X, Y , Z)
||||

⌢

𝜔
T

X −
⌢

𝜇
T

Y +
⌢

𝛾
T

Z ≥ 0} and L ∩ T ≠ � , then L is 

called the efficient surface of production possibility set T and L ∩ T  is called the pro-
duction frontier of production possibility set T.

Definition 5 Let �0
j
, �0

n+1
, a0

i
, b0

r
, c0

t
, S−0

i
, S+0

r
, S−0

t
 be an optimal solution of model 

(5) and x̂ij0 = a0
i
xij0 − S−0

i
, ŷrj0 = b0

r
yrj0 + S+0

r
, ẑtj0 = c0

t
ztj0 − S−0

t
 , (X̂0, Ŷ0, Ẑ0) is called 

projection on the production frontier of production possibility set T.

Obviously, x̂ij
0
= a0

i
xij

0
− S−0

i
=

n∑

j=1

𝜆0
j
xij, ŷrj

0
= b0

r
yrj

0
+ S+0

r
=

n∑

j=1

𝜆0
j
yrj, ẑtj

0
= c0

t
ztj

0

−S−0
t

=
n∑

j=1

�0
j
ztj.

If DMUj0
 is weak DEA efficient, then x̂ij0 = xij0 − S−0

i
 , ŷrj0 = yrj0 + S+0

r
 and 

ẑtj0 = ztj0 − S−0
t

 ; If DMUj0
 is DEA efficient, then x̂ij0 = xij0 , ŷrj0 = yrj0 and ẑtj0 = ztj0 . 

Further, we can draw the conclusion that the corresponding projection (X̂0, Ŷ0, Ẑ0) 
of DMUj0

 constitutes a new decision making unit which is DEA efficient. That is, 
the new decision making unit (X̂0, Ŷ0, Ẑ0) locates in the production frontier of con-
vex polyhedral cone C(T̂) , where, T̂ = {(X1, Y1, Z1), (X2, Y2, Z2),… , (Xn, Yn, Zn)} is 
the corresponding reference set of input and output data. Convex cone 

C(T̂) =

�
n∑

i=1

𝜆j(Xj, Yj, Zj)
�
��
𝜆j ≥ 0, j = 1, 2,… , n

�

 generated by set T̂  is data envel-

opment of n points in reference set (Yu et al. 1996). Therefore, DEA is helpful to 
estimate the unknown economic production function. If DMUj0

 is not DEA effi-
cient, then a0

i
, b0

r
, c0

t
 are not all 1 and S−0

i
, S+0

r
, S−0

t
 are not all 0.

According to the complementary slackness theorem of linear programming, 
the optimal solution vector of model (5) is greater than 0, 𝜔0 > 0,𝜇0 > 0, 𝛾0 > 0.

Theorem 3 Let (X̂0, Ŷ0, Ẑ0) be projection on the production frontier of DMUj0
, then 

(X̂0, Ŷ0, Ẑ0) is DEA efficient.

Proof By Definition 5, x̂ij0 = a0
i
xij0 − S−0

i
, ŷrj0 = b0

r
yrj0 + S+0

r
, ẑtj0 = c0

t
ztj0 − S−0

t
 . 

For the first condition of model (6), applying complementary slackness condition of 
Karush–Kuhn–Tucker theorem in mathematical programming, we have



1221

1 3

Analysis of China’s Regional Economic Environmental…

then

For ∀(X, Y , Z) ∈ G , we have

Note that �0TXj − �0TYj + �0TZj ≥ 0 , then

Therefore, (X̂0, Ŷ0, Ẑ0) is a Pareto solution of multi-objective programming.
Assume (X̂0, Ŷ0, Ẑ0) is not a Pareto solution. By Definition  3, there exists 
(X�, Y �, Z�) ∈ G and X′ ≤ X̂0, Y

′ ≥ Ŷ0, Z
′ ≤ Ẑ0 . Since 𝜔0 > 0,𝜇0 > 0, 𝛾0 > 0 , then 

𝜔0TX� − 𝜇0TY � + 𝛾0TZ� < 𝜔0TX̂0 − 𝜇0T Ŷ0 + 𝛾0T Ẑ0 . It contradicts with the above 
results. Therefore, (X̂0, Ŷ0, Ẑ0) is a Pareto solution of multi-objective programming. 
From Theorem 1, (X̂0, Ŷ0, Ẑ0) is DEA efficient. □

From Theorem  3, DMUj0
 is not DEA efficient, but its projection may be DEA 

efficient. The projection on relatively DEA efficient surface of DMUj0
 , in fact, points 

out the non-efficient reasons and provides a feasible scheme to improve the effi-
ciency of DMUj0

 simultaneously. In the actual production process, therefore, people 
can take advantage of the projection to achieve the relative DEA efficiency. Expres-
sions of projection can be rewritten as follows:

�0
j

(
�0TXj − �0TYj + �0TZj

)
= 0, j = 1, 2,… , n,

𝜔0TX̂0 − 𝜇0T Ŷ0 + 𝛾0T Ẑ0 = 0.

n∑

j=1

Xj�j ≤ X,

n∑

j=1

Yj�j ≥ Y ,

n∑

j=1

Zj�j ≤ Z, �j ≥ 0, j = 1, 2,… , n.

𝜔0TX − 𝜇0TY + 𝛾0TZ ≥ 𝜔0T

(
n∑

j=1

Xj𝜆j

)

− 𝜇0T

(
n∑

j=1

Yj𝜆j

)

+ 𝛾0T

(
n∑

j=1

Zj𝜆j

)

=

n∑

j=1

(
𝜔0TXj − 𝜇0TYj + 𝛾0TZj

)
𝜆j

= 𝜔0TX̂0 − 𝜇0T Ŷ0 + 𝛾0T Ẑ0 = 0.

x̂ij
0
− xij

0
= −((1 − a0

i
)xij + S−0

i
), ŷrj

0
− yrj

0
= (b0

r
− 1)yrj

0
+ S+0

r
,

ẑtj
0
− ztj

0
= −((1 − c0

t
)ztj + S−0

t
),
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then we can get the adjustable volume of input, desirable output and undesirable 
output. For ith input, the amount reduced is ((1 − a0

i
)xij + S−0

i
), i = 1, 2,… ,m ; for 

rth desirable output, the amount increased is (�0
r
− 1)yrj0 + S+0

r
, r = 1, 2,… , s ; for 

tth undesirable output, the amount reduced is ((1 − c0
t
)ztj + S−0

t
), t = 1, 2,… , k.

3  Application

3.1  Variables and Data

In this section we conduct the application of economic-environmental performance 
of thirty Chinese provinces in 2016 to evaluate the non-radial and multi-objective 
generalized DEA approaches in assessing the impact of contextual variables on 
inputs, desirable outputs and undesirable outputs. A lot of researches have been 
done to measure economic-environmental efficiency of Chinese regions, such as 
Zhang and Chen (2017) and Song et al. (2018). Following their researches, popula-
tion, capital stock and power consumption are viewed as three inputs to produce one 
desirable output gross domestic production (GDP). As byproducts, the two undesir-
able outputs are wastewater emissions and  SO2 emissions, respectively. The corre-
sponding input–output measures are listed in the following Table 1.

The data on these variables were collected from the 2017 China Statistics Year-
book, the 2017 China Energy Database, and the 2017 China Environment Database. 
Due to data unavailability, we exclude the Taiwan, Hong Kong, Macao and Tibet 
provinces from the economic-environment performance analysis. The raw data is 
shown in Table 2.

3.2  Performance Evaluation

The non-radial and multi-objective generalized DEA model (7) (based on CRS 
assumption) is applied to calculate the economic-environmental efficiency score of 
thirty Chinese provinces in 2016. According to the model (7), the weight w1

i
 , w2

r
 

and w3
t
 affect only the value of the objective function, having no influence on the 

constraint conditions. Following the research of Zhang and Choi (2013), we set 
the weight of input, desirable output and undesirable output as (1/3, 1/3, 1/3). Fur-
ther, we set the weight of all the variable population  (X1), capital stock  (X2), power 

Table 1  Variables of inputs and 
outputs

Type Variable Units

Inputs Population Millions persons
Capital stock Billions Yuan
Power consumption Billions KWH

Desirable output GDP Billions Yuan
Undesirable outputs Wastewater emissions Millions tons

SO2 emissions Thousands tons
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consumption  (X3), GDP (Y), wastewater emissions (Yb
1
) and  SO2 emission (Yb

2
) as 

(1/9, 1/9, 1/9, 1/3, 1/6, 1/6). Then, our DEA approach should be similar with the 
non-radial DDF proposed in Zhang and Choi (2013). Table 3 shows the obtained 
efficiency scores of the thirty provinces in 2016.

It can be seen from Table 3 that the non-radial and multi-objective generalized 
DEA model has a higher discriminating power. There are significant difference 
between the efficiency scores for different kind of variables, in which the efficiency 

Table 2  Raw data of inputs and outputs

Regions Population 
 (X1)

Total capi-
tal stock 
 (X2)

Power con-
sumption 
 (X3)

GDP  (Y1) Wastewater 
emissions 
 (Z1)

SO2 emissions 
 (Z2)

Beijing 21.73 794.39 102.03 2566.91 1664.19 33.2
Tianjin 15.62 1277.94 80.79 1788.54 915.34 70.6
Hebei 74.70 3175.0 326.45 3207.05 2887.95 789.4
Shanxi 36.82 1419.8 179.72 1305.04 1392.91 686.4
Inner Mon-

golia
25.20 1508 260.50 1812.81 1046.96 625.7

Liaoning 43.78 669.22 203.74 2224.69 2282.02 507.7
Jilin 27.33 1392.32 66.76 1477.68 970.73 188.1
Heilongjiang 37.99 1064.83 89.66 1538.61 1383.35 338.2
Shanghai 24.20 675.59 148.60 2817.87 2207.59 74.2
Jiangsu 79.99 4966.32 545.90 7738.83 6166.24 570.1
Zhejiang 55.90 3027.61 387.32 4725.14 4308.57 268.4
Anhui 61.96 2703.34 179.50 2440.76 2406.66 281.6
Fujian 38.74 2323.74 196.86 2881.06 2370.16 189.3
Jiangxi 45.92 1969.42 118.25 1849.9 2210.92 276.9
Shandong 99.47 5332.29 539.08 6802.45 5075.91 1134.5
Henan 95.32 4041.51 298.92 4047.18 4020.55 413.6
Hubei 58.85 3001.17 176.31 3266.54 2747.87 285.6
Hunan 68.22 2835.33 149.57 3155.14 2987.57 346.8
Guangdong 109.99 3330.36 561.01 8085.49 9382.61 353.7
Guangxi 48.38 1823.68 135.97 1831.76 1931.86 201.1
Hainan 9.17 389.04 28.73 405.32 440.97 17
Chongqing 30.48 1604.81 92.49 1774.06 2020.61 288.3
Sichuan 82.62 2881.2 210.10 3293.45 3528.26 488.3
Guizhou 35.55 1320.4 124.18 1177.67 1007.20 647.1
Yunnan 47.71 1611.94 141.05 1478.84 1810.89 526.2
Shaanxi 38.13 2082.53 135.71 1939.96 1665.65 318
Gansu 26.10 966.4 106.52 720.04 663.25 272
Qinghai 5.93 352.81 63.75 257.25 272.75 113.7
Ningxia 6.75 379.42 88.69 316.86 339.49 236.9
Xinjiang 23.98 1028.75 231.65 964.97 939.07 480.7
Total 1376.53 59,949.16 59,69.81 77,891.87 71,048.10 11,023.3
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scores of desirable outputs should be no smaller than 1 while that of inputs and 
undesirable outputs should be no larger than 1. In 30 regions, only Beijing, Tian-
jin and Shanghai are DEA efficient and the rest are not DEA efficient. In 2016, 24 
regions have the same GDP performance index of ‘‘1’’, and only Shanxi, Yunnan, 
Gansu, Qinghai, Ningxia and Xinjiang need to further improve GDP. For the input 
performance indexes, however, only 3 regions (Beijing, Tianjin and Shanghai) have 
always been equal to “1”, and the rest of the regions need to pay attention to the 
distribution of inputs, especially, the conservation of power consumption. From 
Table 3 we can also find that the majority of regions have smaller environmental 

Table 3  Efficiency scores of 30 Chinese provinces in 2016 based on all variables

Regions Inputs Desirable output Undesirable 
outputs

a1 a2 a3 b1 c1 c2

Beijing 1 1 1 1 1 1
Tianjin 1 1 1 1 1 1
Hebei 0.505 0.434 0.542 1.389 1 0.073
Shanxi 0.494 0.468 0.475 1.646 1 0.040
Inner Mongolia 0.619 0.624 0.296 1 1 0.077
Liaoning 0.431 1 0.452 1 0.648 0.064
Jilin 0.458 0.328 0.880 1 0.987 0.102
Heilongjiang 0.475 0.620 0.946 1.387 1.000 0.082
Shanghai 1 1 1 1 1 1
Jiangsu 0.819 0.482 0.563 1 0.814 0.176
Zhejiang 0.716 0.483 0.485 1 0.711 0.228
Anhui 0.507 0.425 0.822 1.521 1 0.170
Fujian 0.630 0.384 0.582 1 0.788 0.197
Jiangxi 0.548 0.467 1 1.608 0.872 0.139
Shandong 0.666 0.454 0.577 1.151 1 0.089
Henan 0.551 0.475 0.825 1.532 1 0.194
Hubei 0.610 0.437 0.956 1.298 1 0.192
Hunan 0.467 0.411 1 1.193 0.817 0.140
Guangdong 0.622 0.751 0.573 1.000 0.559 0.296
Guangxi 0.521 0.506 0.871 1.627 1 0.192
Hainan 0.628 0.541 0.941 1.678 1 0.517
Chongqing 0.646 0.449 1 1.312 0.747 0.104
Sichuan 0.542 0.568 1 1.605 0.971 0.140
Guizhou 0.370 0.364 0.497 1.319 1 0.031
Yunnan 0.496 0.536 0.787 1.889 1 0.069
Shaanxi 0.570 0.382 0.752 1.324 1 0.104
Gansu 0.434 0.958 0.550 1.800 1 0.188
Qinghai 0.764 1 0.365 2.023 1 0.170
Ningxia 0.797 1 0.307 1.960 1 0.086
Xinjiang 0.511 0.436 0.249 1.501 1 0.039
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performance indexes, only 10 regions (Beijing, Tianjin, Shanxi, Inner Mongolia, 
Shanghai, Yunnan, Gansu, Qinghai, Ningxia and Xinjiang) have wastewater emis-
sions performance indexes of ‘‘1’’ and 3 regions (Beijing, Tianjin and Shanghai) 
have  So2 emissions performance indexes of ‘‘1’’.

However, the inputs in regional economic activities are different from that of 
microeconomic production, in which the inputs are not discretionary or need not 
to decrease. In this application, some of the input variables (population and capi-
tal stock) are not discretionary. It is unreasonable to reduce these inputs for attain-
ing higher environmental efficiency. Then, we can set weight of all the variable 

Table 4  Efficiency scores of 30 
Chinese provinces in 2016 based 
on discretionary variables

Regions Inputs Desirable output Undesirable 
outputs

a3 b1 c1 c2

Beijing 1 1 1 1
Tianjin 1 1 1 1
Hebei 0.704 1.640 1 0.215
Shanxi 0.598 1.905 1 0.109
Inner Mongolia 0.355 1.128 1 0.129
Liaoning 0.452 1 0.648 0.064
Jilin 0.880 1 0.987 0.102
Heilongjiang 0.682 1 0.721 0.059
Shanghai 1 1 1 1
Jiangsu 0.563 1 0.814 0.176
Zhejiang 0.678 1.397 0.994 0.318
Anhui 0.822 1.521 1 0.170
Fujian 0.582 1 0.788 0.197
Jiangxi 1 1.608 0.872 0.139
Shandong 0.577 1.151 1 0.089
Henan 0.825 1.532 1 0.194
Hubei 0.736 1 0.771 0.148
Hunan 0.838 1 0.685 0.118
Guangdong 0.573 1 0.559 0.296
Guangxi 0.871 1.627 1 0.192
Hainan 0.561 1 0.596 0.308
Chongqing 0.762 1 0.569 0.080
Sichuan 1 1.605 0.971 0.140
Guizhou 0.696 1.638 1 0.112
Yunnan 0.943 2.115 1 0.157
Shaanxi 0.752 1.324 1 0.104
Gansu 0.550 1.800 1 0.188
Qinghai 0.365 2.023 1 0.170
Ningxia 0.307 1.960 1 0.086
Xinjiang 0.322 1.770 1 0.114
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population  (X1), capital stock  (X2), power consumption  (X3), GDP (Y), wastewater 
emissions (Yb

1
) and  SO2 emission (Yb

2
) as (0, 0, 1/3, 1/3, 1/6, 1/6) for showing the 

different discretionary on variables. Then, we can calculate the efficiency score as 
shown in Table 4.

Table  4 shows the efficiency result with considering variables’ discretion-
ary in which power consumption  (X3) is the only disposable input. Then, we 
can obtain more reasonable results from Table  4. By comparison, we can find 
that the efficiency scores of inputs and outputs are different from that shown in 
Table 3 for some DMUs. Some of the DMUs need to decrease the power con-
sumption and pollution emission while keep the present level of GDP, such as 

Table 5  Adjustable volumes of discretionary inputs and outputs

Regions Power consumption GDP Waste water 
emissions

SO2 emissions

Beijing 0.00 0.00 0.00 0.00
Tianjin 0.00 0.00 0.00 0.00
Hebei 96.69 2052.06 0.00 619.99
Shanxi 72.18 1181.56 0.00 611.63
Inner Mongolia 168.09 232.91 0.00 544.95
Liaoning 111.72 0.00 802.37 475.22
Jilin 8.02 0.00 12.71 168.99
Heilongjiang 28.50 0.00 385.83 318.30
Shanghai 0.00 0.00 0.00 0.00
Jiangsu 238.30 0.00 1148.97 470.01
Zhejiang 124.85 1878.19 27.47 182.99
Anhui 31.95 1271.37 0.00 233.59
Fujian 82.34 0.00 502.30 152.04
Jiangxi 0.00 1125.08 282.17 238.42
Shandong 227.88 1026.83 0.00 1033.24
Henan 52.42 2154.27 0.00 333.39
Hubei 46.47 0.00 630.09 243.35
Hunan 24.16 0.00 942.02 305.99
Guangdong 239.63 0.00 4140.59 249.12
Guangxi 17.53 1148.02 0.00 162.56
Hainan 12.62 0.00 178.19 11.76
Chongqing 21.97 0.00 870.44 265.35
Sichuan 0.00 1992.33 101.36 419.93
Guizhou 37.80 751.94 0.00 574.75
Yunnan 8.10 1649.16 0.00 443.55
Shaanxi 33.59 629.20 0.00 284.77
Gansu 47.98 575.93 0.00 220.84
Qinghai 40.50 263.16 0.00 94.40
Ningxia 61.50 304.14 0.00 216.60
Xinjiang 157.05 743.49 0.00 425.84
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Jiangsu, Fujian and Chongqing. Some DMUs such as Sichuan and Jiangxi need 
to use the given level of input to produce more desirable outputs and emit less 
pollution. While the other DMUs need to do some improvements from all the 
sides of input, desirable output and undesirable output.

3.3  Frontier Projection

On the basis of the expressions: x̂ij
0
− xij

0
= −((1 − a0

i
)xij + S−0

i
), ŷrj

0
− yrj

0
=

(b0
r
− 1)yrj

0
+ S+0

r
, ẑtj

0
− ztj

0
= −((1 − c0

t
)ztj + S−0

t
) , we calculate the adjustable 

volumes of inputs and outputs. We should point out that the adjustable volumes 
of the input population and total capital are not listed in our calculation because 
they can not be adjusted through a short term of operation. The results are shown 
in Table 5.

From Table 5, we can find that only three regions, namely Beijing, Tianjin and 
Shanghai, should keep the present level of production while all the poor performance 
DMUs should find out the adjustable volumes for power consumption, GDP, waste 
water and  SO2 emission to become efficient. We can see that the GDP of Shanxi, 
Yunnan Gansu Qinghai Ningxia and Xinjiang should be increased. Adjustable vol-
umes of inputs are relatively large and the deductible volumes of power consumption 
are more noteworthy. The projection is consistent with the corresponding results in 
Table 3. For the environmental performance indexes, most countries need to reduce 
the corresponding volumes of waste water emissions and  SO2 emissions exclusive of 
Beijing, Tianjin and Shanghai. Through the adjustments, we can improve the level 
of economic-environmental efficiency and achieve DEA efficiency.

Based on the efficiency results, we analysis the type of return to scale for all the 
DMUs and the benchmarks for all the inefficient DMUs. The results of return to scale 
measured by using the new proposed models are listed in Table 6. Only three efficient 
DMUs, namely Beijing, Tianjin and Shanghai are Constant Return to Scale (CRS). 
Nine provinces are Decrease Return to Scale (DRS), most of which locate at the west 
area of China such as Gansu, Qinghai, Ningxia and Xingjiang or at the northeast of 
China such as Heilongjiang, Jining and Liaoning. While all the rest inefficient DMUs 
are Increase Return to Scale (IRS). Moreover, we can find that the inefficient DMUs 
select different efficient DMUs as benchmark. Most of them set Beijing (17 DMUs) 
or Beijing and Tianjin (7 DMUs) as benchmarks, they need to study their mode on 
economic development. While only one DMU (Liaoning) use Shanghai as benchmark, 
which means that Shanghai’s mode might not be suitable for most of the regions.

4  Conclusions

During the past three decades, China’s economy has achieved significant develop-
ment. However, the rapid economic growth is causing China to pay heavily due 
to the increasing environmental pollution. Therefore, it is worth to achieve more 
accurate results of economic environmental efficiency evaluation to provide some 
policy suggestions. During the past years, non-radial DEA models integrating with 
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undesirable outputs were frequently used in environmental performance measure-
ments because they have a higher discriminating power in environmental perfor-
mance comparisons. In this paper, we extend previous studies and present a non-
radial and multi-objective generalized DEA approach to measuring environmental 
performance, which synthetically takes account of decreasing inputs, increasing 
desirable outputs and decreasing undesirable outputs simultaneously in DEA models 
and consists of a non-radial DEA-based models for multilateral environmental per-
formance comparisons. It thus allows the decision maker to have the kinds of pref-
erable projections and allows that the projection would not be in Pareto-inefficient 
portions of the production frontier which may occur in the radial projection.

Table 6  Return to scale and 
benchmarks

Regions Return to Scale Beijing Tianjin Shanghai

Beijing CRS √
Tianjin CRS √
Hebei IRS √ √
Shanxi IRS √ √
Inner Mongolia IRS √
Liaoning DRS √ √
Jilin DRS √
Heilongjiang DRS √
Shanghai CRS √
Jiangsu IRS √
Zhejiang IRS √
Anhui IRS √
Fujian IRS √
Jiangxi IRS √
Shandong IRS √
Henan IRS √
Hubei IRS √
Hunan IRS √
Guangdong IRS √
Guangxi IRS √
Hainan DRS √
Chongqing DRS √
Sichuan IRS √
Guizhou IRS √ √
Yunnan IRS √ √
Shaanxi IRS √
Gansu DRS √
Qinghai DRS √ √
Ningxia DRS √ √
Xinjiang DRS √ √
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The proposed non-radial and multi-objective generalized DEA approach has 
been applied to for modeling economic-environmental performance of 30 Chinese 
regions in 2016. It is found that multi-objective generalized DEA model has a higher 
discriminating power. Only 3 regions are DEA efficient while the rest are not DEA 
efficient in which some of them are Decrease Return to Scale. This suggests that we 
need to pay more attention on the allocation and rational use of resources together 
with the control of environment pollution, and it’s more important to increase the 
quality of economic development but not the scale. Moreover, most of the inefficient 
DMUs select Beijing and Tianjin as benchmarks to improve their performance that 
means it’s more valuable and feasible to extend “Beijing mode” and “Tianjin mode” 
to poor performance regions in China rather than “Shanghai mode”.

It should be point out that there exists some shortages of the multiple-objective 
although it is a feasible approach to calculate the environmental efficiency. One 
shortage is that the DMs are not able to assign any objective weights sometimes 
due to the limited knowledge and perception capability of human beings. Another 
shortage is that it may lead to nonlinear problem in multiple-objective program-
ming which is not easy to obtain the global optimal solution. Therefore, we will 
aim to develop our approach with uncertain objective weights and study the solv-
ing algorithms for nonlinear programs in the next step.

Future study should also be considered in the following two ways. Firstly, gen-
eralize the non-radial and multi-objective DEA model for calculating the effi-
ciency on resource allocation and pollution production Simultaneously, in which 
we should confront that how to allocate production resources and how to handle 
the loss caused by undesirable outputs. Besides, the approach proposed in this 
paper should also be extended into Malmquist index for calculating dynamic effi-
ciency scores among difference years.
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