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Abstract
The mathematical modeling in trade and finance issues is the key purpose in the
computation of the value and considering option during preferences in contract. This
paper investigates the pricing of double barrier options when the price change of the
underlying is considered as a fractal transmission system. Due to the outstanding
memory effect present in the fractional derivatives, approximating financial options
with regards to their hereditary characteristics can be well interpreted and stated.
Motivated by the reason mentioned, relatively reliable and also efficient numerical
approaches have to be found while facing with fractional differential equations. The
main objective of the current paper is to obtain the approximation solution of the time
fractional Black–Scholes model of order 0 < α ≤ 1 governing European options
based on the moving least-squares (MLS) method. In proposed method, firstly, the
mentioned equation is discretized in the time sense based on finite difference scheme of
orderO(δt2−α) and then approximated by using MLS approach in the space variable.
Furthermore, the stability and convergence of the proposed method are discussed in
detail throughout the paper. Numerical evidences and comparisons demonstrate that
the proposed method is very accurate and efficient.
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1 Introduction

In theory and practice of financial markets, option selection and utilization is one of
the most widely used derivative financial instrument, thus it is quite imperative to
deeply understand the methods in which one ought to take the task of price options.
When pricing option happens, a model for describing the approximate behaviour of
the underlying asset was introduced in 1973 by Black and Scholes (1973) and Merton
(1973) called as theBlack–Scholes (B–S)model. Thismodel has been extensively used
by options traders and consequently, leads to a considerable growth in options trading
due tomodel accuracy and effectiveness in predicting prices of options. In recent times,
several methods have been suggested to solve the Black–Scholes model numerically
such as Farnoosh et al. (2015, 2016, 2017), Golbabai et al. (2012, 2014), Golbabai
and Mohebianfar (2017a, b), Rashidinia and Jamalzadeh (2017a, b) and Sobhani and
Milev (2018).With the discovery of the fractal assembly for the stochastic process and
financial field, fractional calculus and fractional partial differential equations have been
familiarized into financial theory by replacing the standard Brownian motion involved
in the classical model with fractional Brownian motion. Since fractional Brownian
motion is not a semi-martingale, the Itô theory of stochastic integrals cannot be directly
applied to it. One can try to replace the Itô integral by a version of the pathwise
Riemann–Stieltjes integral, but then, as has been shown in Rogers (1997), the resulting
model of option values admits arbitrage. So, the arbitrage opportunities exist in the
fractional Black–Scholes model under a complete and frictionless setting. Lately,
based on the fact that fractional-order derivatives and integrals provide a powerful
tool for the description of memory and hereditary properties of different substances, a
growing number of researchers have generalized the B–S equation to a fractional order
(Björk and Hult 2005; Meerschaert and Sikorskii 2012). Consequently, one manner
to take account of large volatility in stock exchange market is to use a modeling by
processes of fractional order. For instance, asmentioned inWyss (2017), European call
option by a time fractional B–Smodel was priced. The time-fractional B–S equation is
a special case of the bi-fractional B–S equation lately introduced byLiang et al. (2010).
Results obtained by researchers of Cartea (2013) indicate that, the value of European
style derivatives can be assumed to be a sufficient partial-integro-differential equation
with a non-local operator in time-to-maturity. In addition, the authors ofLeonenko et al.
(2013) well-thought-out the elucidations for fractional Pearson diffusions governed
by a time-fractional diffusion equation which had been successfully implemented to
develop the Black–Scholes formalism.

With fractional order models, being extensively utilized in the financial field, a
lot of researchers have been recently attracted to the field of solving them. Due to
the memory property of fractional derivatives, to determine an exact solution of this
problems is extremely difficult thus many researchers are attempting procedures to
approxmate these problems. The methods that was used to consider the analytical
solution of the fractional B–S models are usually takes the advantage of integral trans-
form approaches (Chen et al. 2014, 2015a; Jumarie 2010; Kumar et al. 2012), such
as homotopy perturbation methods and homotopy analysis methods (Elbeleze et al.
2013;Kumar et al. 2016), Fourier–Laplace transform (Duan et al. 2018), wavelet based
hybrid methods (Hariharan et al. 2013), or via the method of separation of variables
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(Chen 2014). Consequently, studying the numerical approximate definition of such
models seems to be a very effective and significant research goal. Now, we review
some of them. Authors of Cartea and del Castillo-Negrete (2007), solved the finite
moment log stable model numerically and applied the projected numerical procedures
to price exotic options, in particular barrier options by using the shifted Grünwald–
Letnik methodology and backward difference method. Numerical investigations and
comparisons referred in Marom and Momoniat (2009) have been discussed for three
space fractional B–S models and well-analyzed the related involved circumstances
of the convergence for each of these models. The authors of Song and Wang (2013);
Zhang et al. (2014) solved the option pricing under a time fractional B–S model by
using an implicit finite difference scheme with first order accurate and a θ finite differ-
ence arrangement second order accurate, respectively. In Koleva and Vulkov (2017),
the time-fractional B–S equation was derived by using a weighted finite difference
scheme. In Bhowmik (2014), the partial integro-differential equation that leads to
option pricing hypothesis was approximated by a finite difference technique which
is an explicit–implicit numerical scheme with a low order of convergence. Also, it
has been demonstrated that mentioned method is conditionally stable. In Chen et al.
(2015b), American options pricing under the finite moment log-stable model approach
was considered by using a predictor–corrector. The authors of Zhang et al. (2016) gave
a discrete implicit numerical approach for this option with a temporally 2 − α order
accuracy and a spatially second-order accuracy. Authors of De Staelen and Hendy
(2017) improved the potential and capability of suggested scheme of fourth-order in
space while preserving 2− α in time. The authors of Golbabai et al. (2019) presented
the RBFmeshless methods to determine the numerical solution of time fractional B–S
equation. Let V (S, t) be the time-t price of a European double barrier option with
underlying S. More specific we consider with the following boundary (barrier) and
final conditions for 0 < α ≤ 1

⎧
⎪⎨

⎪⎩

∂αV (S,t)
∂tα + 1

2σ 2S2 ∂2V (S,t)
∂S2

+ (r − D)S ∂V (S,t)
∂S − rV (s, t) = 0, (s, t) ∈ (Bd , Bu) × (0, T ),

V (Bd , t) = p(t), V (Bu, t) = q(t),

V (S, T ) = v(S),

(1)

where 0 < α ≤ 1, T is the expiry time, r is the risk-free rate, D the dividend rate
and σ(≥ 0) is the volatility of the returns from the holding stock price S. Here, we
assume that the underlying still follows the geometric Brownian motion as in the B–S
model, but consider the change in the option price as a fractal transmission system.
For instance, a European double barrier knock-out call option has p = q = 0 and
v(S) = (S−K )+ where K is the strike and (.)+ = max{., 0}. The fractional derivative
operator in Eq. (1) is a modified right Riemann–Liouville derivative (Podlubny 1999)
called as follows:

∂αV (S, t)

∂tα
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Γ (1−α)

d
dt

t∫

0

V (S, η) − V (S, T )

(η − t)α
dη, 0 < α < 1,

∂V (S,t)
∂t , α = 1.

(2)
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One could clearly observe that when α = 1, the model (1) corresponds to the classical
B–S model. Suppose t = T − τ, for 0 < α < 1 one gets

∂αV (S, t)

∂tα
= 1

Γ (1 − α)

−d

dτ

T∫

t

V (S, η) − V (S, T )

(η − (T − τ))α
dη

= 1

Γ (1 − α)

−d

dτ

T∫

T−τ

V (S, η) − V (S, T )

(η − (T − τ))α
dη

= −1

Γ (1 − α)

d

dτ

τ∫

0

V (S, T − ξ) − V (S, T )

(η − ξ)α
dξ.

In addition, assuming x = ln S and definingU (x, τ) = V (ex , T − τ), then model (1)
can be restated according to below expression:

⎧
⎪⎨

⎪⎩

∂αU (x,τ)
∂τα = 1

2σ
2 ∂2U (x,τ)

∂x2
+ (r − 1

2σ
2 − D)

∂U (x,τ)
∂x − rU (x, τ),

U (Bd , τ) = p(τ),U (Bu, τ) = q(τ),

U (x, 0) = u(x),

(3)

where the fractional derivative is

0D
α
τU (x, τ) = 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, η) −U (x, 0)

(τ − η)α
dη, (0 < α < 1). (4)

In order to well estimate the approximation solution of the aforesaid model, it is
necessary to work in a bounded domain. Accordingly, we truncate the domain of
variable x in Eq. (1) to a finite interval (Bd , Bu). Thus, we will extend a numerical
approach for the more general problem

⎧
⎪⎨

⎪⎩

0Dα
τU (x, τ) = a ∂2U (x,τ)

∂x2
+ b ∂U (x,τ)

∂x − cU (x, τ) + f (x, τ),

U (Bd , τ) = p(τ),U (Bu, τ) = q(τ),

U (x, 0) = u(x),

(5)

where a = 1
2σ

2 > 0, b = r − D − a, c = r > 0. Here a source term f (x, τ) is
selected for the aims of validation in Sect. 5.

1.1 Paper Outline

The main motivation of the current research is to constitute a numerical approach
based on MLS method to determine appropriate semi-discrete solutions of the time
fractional B–S model (TFBSM). Since the newly developed method is a meshless
scheme, it does not require any background mesh structure to achieve semi-discrete
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solutions of the problem under consideration, and the approximation solutions are
constructed entirely based on a set of scattered nodes. The remainder of this paper
is organized in the following manner: Sect. 2 has an overview of some necessary
definitions and properties of the MLS approximation scheme. In Sect. 3, firstly, we
discretize the time fractional derivative of the aforementioned equation by a scheme
of order 2 − α and afterward we will use the MLS scheme to approximate the spatial
derivatives. In Sect. 4, stability and convergence of the proposed approximate approach
are proven. We report the numerical experiments of solving the mentioned equation in
Sect. 5. Section 6 is drawn to a concise conclusion. Finally some references are given
at the end.

2 Approximation Based onMLSMethod

2.1 MLSMethodology

Over the last decade, several meshless methods have been introduced for approximat-
ing different kinds of ordinary and partial differential equations. These methods have
been proposed as alternative numerical approaches to tackle difficulty and weaknesses
of traditional finite element methods, such as element free Galerkin method, repro-
ducing kernel particle method, local Petrov–Galerkin method, etc. For more details
see Liu and Gu (2004) and references therein. The MLS method which was first intro-
duced by Shepard (1968) and then developed by some researchers, has been used for
construction surface and interpolation of scattered data (Franke and Nielson 1980;
Lancaster and Salkauskas 1981; McLain 1976) and also widely used in the approx-
imation theory. In Zhuang et al. (2011), an implicit meshless approach is described
which is based on theMLS approximation using splineweight functions for the numer-
ical simulation of fractional advection–diffusion equation. Tayebi et al. (2017) solved
two-dimensional variable-order time fractional advection–diffusion equation by using
a meshless method based on the MLS approximation. Also, Mardani et al. (2017) pro-
posed the MLS approximation in combination with the finite difference method for
solving the time fractional advection–diffusion equation with variable coefficients.

2.2 TheMoving Least Squares (MLS) Approximation

The MLS approximation is one of the widely utilized meshless methods due to its
attractive properties of accuracy, robustness, and higher order of continuity. Assume
that the nodes (xi , ui ), i = 1, . . . , N in the domain Ω are defined. The MLS approx-
imation for u(x) can be expressed at x by:

uh(x) =
m∑

i=1

pi (x)ai (x) = pT (x)a(x), (6)

where pT (x) = [p1(x), . . . , pm(x)] is a complete monomials basis of order m and
a(x) is a column vector comprising coefficients ai (x), i = 1, 2, . . . ,m, which are
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functions of x and need to be achieved. For instance, the linear basis is pT (x) = [1 x]
and the quadratic basis is pT (x) = [1 x x2]. The unknown coefficients ai (x) are
obtained by minimizing the following weighted discrete L2 norm as:

J =
N∑

i=1

wi (x))(u
h(xi , x) − ui )

2 =
N∑

i=1

wi (x))(pT (x)a(x) − ui )
2, (7)

where wi (x) is the weight function associated with the node i and N represents the
number of nodes in the neighborhood of x , where the weight function wi (x) > 0.

The stationarity of J in Eq. (7) with respect to a(x), i.e. ∂J
∂a = 0 results in the

following equations:

N∑

i=1

wi (x)2p1(xi )(pT (xi )a(x) − ui ) = 0,

N∑

i=1

wi (x)2p2(xi )(pT (xi )a(x) − ui ) = 0,

...

N∑

i=1

wi (x)2pm(xi )(pT (xi )a(x) − ui ) = 0.

After simplification, we canwrite the aforementioned equations in the following form:

N∑

i=1

wi (x)p(xi )pT (xi )a(x) =
N∑

i=1

wi (x)p(xi )ui . (8)

Denote the matrices A(x), B(x) and column vector u as follows:

A(x) =
N∑

i=1

wi (x)p(xi )pT (xi ),

B(x) = [w1p(x1) w2p(x2) . . . wNp(xN )],
u = [u1 u2 . . . uN ],

Then, we can rewrite Eq. (8) in the following compact form:

A(x)a(x) = B(x)u. (9)

After calculating a(x) from Eq. (9) and substituting into Eq. (7), the MLS approxi-
mation can be expressed as follows:
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uh(x) = ΦT (x) · u =
N∑

j=1

φ j (x)u j , (10)

where

ΦT (x) = [φ1(x) . . . φn(x)] = pT (x)A−1(x)B(x), (11)

or
φ j (x) = pT (x)[A(x)]−1w jp(x j ).

In the MLS approximation, the function φ j (x) is usually said the shape function
relating to the nodal x j . The first derivative of ΦT (x) with respect to x is achieved in
Belytschko et al. (1994) as:

ΦT
x (x) = pTx (x)A−1

x (x)B(x) + pTx (x)A−1
x (x)B(x) + pT (x)A−1(x)Bx (x), (12)

where A−1
x (x) = (A−1(x))x represents the first derivative of A−1(x) with respect to

x which is defined by:

A−1
x (x) = −(A−1(x))Ax (x)(A−1(x)), (13)

where ()x represents d()/dx .
Also, the second derivative of ΦT (x) with respect to x is achieved in Fries and

Matthies (2004) as:

ΦT
xx (x) = pTxx (x)A

−1(x)B(x) + pTx (x)A−1
xx (x)B(x) + pT (x)A−1(x)Bxx (x)

+ 2pTx (x)A−1
x (x)B(x) + 2pTx (x)A−1(x)Bx (x) + 2pT (x)A−1

x (x)Bx (x),
(14)

whereA−1
xx (x) = (A−1(x))xx represents the second derivative of Eq. (13) with respect

to x which is appointed by:

A−1
xx (x) = −(Ax (x)Ax (x)A−1(x)+A−1(x)Axx (x)A−1(x)+A−1(x)Ax (x)A−1

x (x)),

where ()xx represents d2()/dx2.
It is worthy of mention that different weight functions can be utilized to construct

shape functions. In this research,we employ theGaussianweight functions to construct
shape functions. The Gaussian weight function relating to the node i is usually given
by:

wi (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp

[

−
(
di
μ

)2
]

− exp

[

−
(
hi
μ

)2
]

1 − exp

[

−
(
hi
μ

)2
] , 0 ≤ di < h,

0, di ≥ hi ,

(15)
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where di = |x − xi |, μ is a constant controlling the shape of the weight function and
hi is the radius of influence domain or radius of the support domain of the node xi .
The value ofμ is usually selected experimentally but the typical value ofμ is between
hi
2 and hi

3 (Li et al. 2005).
In order to simplify the computations, we utilize the following equivalent form of

the Gaussian weight functions:

wi (x) =
⎧
⎨

⎩

exp(−s2r2) − exp(−s2)

1 − exp(−s2)
, 0 ≤ r < 1,

0, r ≥ 0,
(16)

where r = |x−xi |
hi

and s = hi
μ
.

3 ImplementationMethod: Semidiscretization in Time and Scheme
Construction in Space

In this section, we explain the approximation method for the solution of Eq. (1). The
domain interval [a, b] has been partitioned into N elements by having uniform step
size h with knots xi , i = 0, 1, 2, . . . , N ; such that Bd = x0 < x1 < x2 < · · · <

xN = Bu, h = xi − xi−1 = (Bu − Bd)/N , i = 1, 2, . . . , N where x1, xN are the
boundary points, and the other are inner points. Let τn = nδt, n = 0, 1, 2, 3, . . . , M ,
where δt = T /M is the temporal step size and T is the final time. Suppose that
U (x, τ) ∈ C (1) be in the time sense τ, for 0 ≤ α < 1, the modified Riemann–
Liouville derivative

0D
α
τU (x, τ) = 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, η) −U (x, 0)

(τ − η)α
dη

= 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, η)

(τ − η)α
dη − 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, 0)

(τ − η)α
dη

= 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, η)

(τ − η)α
dη −U (x, 0)

τ−α

Γ (1 − α)

= 1

Γ (1 − α)

τ∫

0

∂U (x, η)

∂η
(τ − η)−αdη = C

0 D
α
τU (x, τ).

Here the operator C
0 D

α
τU (x, τ) is the Caputo derivative (Podlubny 1999). Now, we

use the finite difference scheme to analogize the time fractional derivative term
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∂αU (x, τn+1)

∂tα
= 1

Γ (1 − α)

∫ τn+1

0

∂u(x, ξ)

∂ξ

1

(τn+1 − ξ)α
dξ

= 1

Γ (1 − α)

n∑

k=0

∫ (k+1)δt

kδt

∂u(x, ξ)

∂ξ

1

(τn+1 − ξ)α
dξ

≈ 1

Γ (1 − α)

n∑

k=0

∫ (k+1)δt

kδt

∂U (x, ξk)

∂ξ

1

(τn+1 − ξ)α
dξ. (17)

Now, the first order time derivative taking into account the forward difference
formula can be approximated:

∂U (x, ξk)

∂ξ
= U (x, τk+1) −U (x, τk)

δt
+ Rk+1

1 (x),

where ξk ∈ [τk, τk+1]. In view of Taylor’s Theorem, the truncation error can be
calculated as:

|Rk+1
1 (x)| ≤ C1δt, or Rk+1

1 = O(δt).

Now, we obtain the following implicit discrete scheme for Eq. (17)

∂αU (x, τn+1)

∂tα

= 1

Γ (1 − α)

n∑

k=0

(
U (x, τk+1) −U (x, τk)

δt
+ O(δt)

) ∫ (k+1)δt

kδt

1

(τn+1 − ξ)α
dξ

= 1

Γ (1 − α)

n∑

k=0

(
U (x, τk+1) −U (x, τk)

δt
+ O(δt)

) ∫ (k+1)δt

kδt

dr

rα

=

⎧
⎪⎨

⎪⎩

δt−α

Γ (2−α)
(Un+1 −Un) + δt−α

Γ (2−α)

n∑

k=1

[

(k + 1)1−α − k1−α

]

(Un+1−k −Un−k) n ≥ 1

δt−α

Γ (2−α)
(U1 −U0) n = 0

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0

[

(Un+1 −Un) +
n∑

k=1
bk(Un+1−k −Un−k)

]

, n ≥ 1,

a0(U1 −U0), n = 0,

+ O(δt2−α), (18)

where a0 = δt−α

Γ (2−α)
, bk = (k + 1)1−α − k1−α, (k = 0, 1, . . . , n), U 0 = u(x, τ =

0) = u(x).
By replacing Eq. (18) into Eq. (1), we discretize time derivative of time fractional

B–S equation using a classic finite difference formula and space derivatives between
successive two time levels n and n + 1 as below:
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aαU
n+1 − a∇2Un+1 − b∇Un+1 + cUn+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aα

[

Un −
n∑

k=1
bk(Un+1−k −Un−k)

]

+ f n+1, n ≥ 1,

aαU 0 + f 1, n = 0,

+ Rk+1,

where ∇ is the gradient differential operator and f n+1 = f (x, τn+1); n =
0, 1, . . . , M . Also, there exists a constant C̃ such that

Rk+1(x) ≤ C̃δt2−α.

Now, defining uk as the approximation of Uk and eliminating error the small term
Rk+1, then a semi-discrete scheme is obtained as follows:

aαu
n+1 − a∇2un+1 − b∇un+1 + cun+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aα

[

un −
n∑

k=1
bk(un+1−k − un−k)

]

+ f n+1, n ≥ 1,

aαu0 + f 1, n = 0.

(19)

In order to useMLSapproximation scheme,we collocate N different points {x j | j =
1, . . . , N }where x1 and xN are boundary points and the other (N −2) points are inner
points {x j | j = 2, . . . , N − 1}. The numerical solution of u(xi , τn+1) at a point of
interest xi is expanded as follows:

un+1
i = u(xi , τn+1) =

N∑

j=1

λn+1
j φ j (xi ), (20)

where φ j , j = 1, 2, . . . , N are the shape functions of the MLS approximation and
λn1, λ

n
2, . . . , λ

N
2 are unknown coefficients which require to be obtained. After that, Eq.

(20) can be rewritten according to below matrix format:

[u] = M[λ]n, (21)

where [u]n = [un1, un2, . . . , unN ]T , [λ]n = [λn1, λn2, . . . , λnN ]T , and A is an N × N
matrix as below:

M =
⎡

⎢
⎣

φ11 · · · φN1
...

. . .
...

φ1N · · · φNN

⎤

⎥
⎦ , (22)

where φ j i = φ j (xi ). Assume that there are N − 2 internal nodes and 2 boundary
nodes. Then, the matrixM can be split intoM = Mb +Md where the elements ofMd

(matrix-associated internal) and Mb (matrix-associated boundary) are as follows:
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Md = [φi j : 2 ≤ i ≤ N − 1, 1 ≤ j ≤ N and 0 elsewhere],
Mb = [φi j : i = 1, N , 1 ≤ j ≤ N and 0 elsewhere] (23)

Also, we discrete ux and uxx as follows:

unx (xi ) =
N∑

j=1

λnj
dφ j (x)

dx
=

N∑

j=1

λnjφ
′
j (xi ), (24)

unxx (xi ) =
N∑

j=1

λnj
d2φ j (x)

dx2
=

N∑

j=1

λnjφ
′′
j (xi ), (25)

where φ
′
j (x) and φ

′′
j (x), for j = 1, 2, . . . , N are determined from Eqs. (12) and (14),

respectively. By substituting the collocation nodes into Eqs. (24) and (25), it concludes
that:

unx (xi ) =
N∑

j=1

λnjφ
′
j (xi ), i = 2, . . . , N − 1, (26)

unxx (xi ) =
N∑

j=1

λnjφ
′′
j (xi ), i = 2, . . . , N − 1, (27)

Rewriting of above equations in the matrix form can be illustrated as follows:

[ux ]n = C[λ]n, [uxx ]n = D[λ]n, (28)

in which

C = [φ ′
i j : 2 ≤ i ≤ N − 1, 1 ≤ j ≤ N and 0 elsewhere],

D = [φ ′′
i j : 2 ≤ i ≤ N − 1, 1 ≤ j ≤ N and 0 elsewhere]. (29)

It should be noted that the derivative operator is only utilized for internal nodes.
Now, by replacing Eqs. (21) and (28) into Eq. (19) and substituting the collocation
nodes, one gets the following recurrence relation:

[(aα + c)Md + Mb − aD − bC]λn+1 = [aαMd ]λn + Gn+1,

Gn+1 = Gn+1
1 + Gn+1

2 + Fn+1, (30)

where

Gn+1
1 = [g1(tn+1), 0, . . . , 0, g2(t

n+1)]T , Gn+1
2 =

{

−aα

n∑

k=1

bk(un+1−k − un−k)

}T

,

Fn+1 = [0, f n+1
2 , . . . , f n+1

N−1, 0].
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Therefore, we can obtain

λn+1 = K−1Lλn + K−1Gn+1, (31)

in which

K = (aα + c)Md + Mb − aD − bC,

L = aαMd .

In view of Eqs. (21) and (31), we can write

Un+1 = MK−1LM−1Un + MK−1Gn+1. (32)

The numerical solution can be obtained from this scheme at any time level n. The
initial value U0 is fulfilled by help of the the initial condition u(x, 0) = u0(x). It
should be noted that the matrix H = MK−1LM−1 is not normal, however very close
to normal. In the next section, we will establish the stability and convergence of the
scheme (9). The results of this section can be extracted in the following algorithm.

Algorithm

Step 1: Generate N interpolation nodes on the bounded interval Ω .
Step 2: Calculate the vector of MLS shape functions corresponding to N nodal

points xi , i.e. φ(x) by using Eq. (11)
Step 3: Compute the derivative vectorsφxx (x) andφxx (x) using Eqs. (12) and (14).
Step 4: Find the matrices M, Md and Mb by Eqs. (22) and (23).
Step 5: Calculate the matrices C and D by Eq. (29).
Step 6: Compute the approximate solution un+1 at the successive time steps by

making use of Step 4 and Eq. (21)

4 Stability and Convergence of the Numerical Scheme

In order to evaluate the discretization error, we review the formula explained in Eq.
(17). First of all, based the finite difference approach, the time fractional derivative in
Eq. (17) is approximated as follows:

∂u(x, t)

∂t
= u(x, t + δt) − u(x, t)

δt
+ O(δt),

which leads to an error of orderO(δt2−α). In the second step, un(x) is approximated by
the MLS method. The error analysis of the MLS approximation has been established
by some published papers e.g. Armentano (2001), Armentano and Durán (2001) and
Zuppa (2003a, b).
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In this paper, we utilize the results obtained in Armentano and Durán (2001); Uddin
andHaq (2011) for error estimation, stability and convergence of theMLSmethod. Let
R > 0 be given and w ≥ 0 be a function such that supp w ⊂ BR(0) = {z| |z| ≤ R}
and XR = {x1, . . . , xn} be a set of points in Ω ⊂ R and u j = u(x j ), 1 ≤ j ≤
n. Let p1, . . . , pm be a set of basis polynomials in the polynomial space Pm with
m << n, it means that n is very larger than m. In order to have the well defined MLS
approximation, we require to guarantee that the minimization problem has a unique
solution, which is equipollent to the non-singularity of matrix A(x) defined in Eq.
(12). Accordingly, we put

〈 f , g〉x =
n∑

i=1

w(x − xi ) f (xi )g(xi ),

then ‖ f ‖x = (〈 f , g〉x ) 1
2 is a discrete norm on the polynomial space Pm . The error

estimations are estimated on the system of nodes and the weight functions by using
the following assumption.

Property Rp (Zuppa 2003a). For any x ∈ Ω , the matrix A(x) defined in Eq. (9) is
non-singular.

Definition 1 Let x ∈ Ω . The star of x , st(x) is defined as st(x) = {i |w(x − xi ) �= 0}.
Theorem 1 (Zuppa 2003a)Anecessary condition for property Rp is that for any x ∈ Ω

n = card(st(x)) ≥ card(Pm) = m + 1.

Theorem 2 (Armentano and Durán 2001) Assume that A(x) satisfies property Rp,
then for any x ∈ Ω there exists û(x) ∈ Pm which satisfies,

||u − û(x)||x ≤ ||u − p||x , ∀p ∈ Pm . (33)

The objective is to evaluate error estimation in terms of the parameter R, which plays
the role of the support size of the weight function. For the error analysis, the following
properties of the weight function and distribution of points are required, as introduced
in Armentano and Durán (2001):

1. Given x ∈ Ω there exist at least m + 1 points x j ∈ XR ∩ B R
2
(x).

2. ∃ c0 > 0 such that w(z) ≥ c0, ∀z ∈ B R
2
(0).

3. w ∈ C1(BR(0)) ∩ W 1,∞(R) and ∃ c1 such that ||w′ ||L∞(R) ≤ c1
R .

4. ∃ cp such that R
σ

≤ cp where σ = min |xi − xk | is the minimum over the m + 1
points in condition 1.

5. ∃ ck such that for all x ∈ Ω , card{XR ∩ B2R(0)} < ck .
6. w ∈ C2(BR(0)) ∩ W 2,∞(R) and ∃ c2 such that ||w′′ ||L∞(R) ≤ c2

R .

Theorem 3 (Armentano and Durán 2001) If u ∈ Cm+1(Ω) and properties 1–5 hold
then, there exists C = C(c0, c1, cp, ck,m) such that

‖u ′ − û
′ ‖ ≤ C ||um+1||L∞(Ω)R

m .
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Theorem 4 (Armentano and Durán 2001) Let m ≥ 1, if u ∈ Cm+1(Ω) and properties
1–6 hold then, there exists C = C(c0, c1, c2, cp, ck,m) such that

‖u ′′ − û
′′ ‖ ≤ C ||um+1||L∞(Ω)R

m−1.

Clearly, the error of the presented method will be affected by δt and the error of the
first and second derivatives in Theorems 3 and 4. We assume that the scheme (32) is
pth order accurate in space then we have

un = MK−1LM−1un + MK−1Gn+1 + O((δt)2−α + h p), δt → 0, h → 0,

(34)

for all n. Let us define ζ n = un −Un , by subtracting Eq. (32) from Eq. (34) one gets

ζ n+1 = Hζ n + O((δt)2−α + h p), δt → 0, h → 0, (35)

where the matrix H = MK−1LM−1 is called the amplification matrix. By Lax–
Richtmyer definition of stability the scheme in Eq. (35) is called to be stable if

||H|| ≤ 1, (36)

when the matrix H is normal then ||H|| = ρ(H) however the inequality ||H|| ≤
ρ(H) always hold. It is assume that the initial condition and the solution of the given
differential equation must be sufficiently smooth and h to be enough small. In order
to keep η = δt/hr is constant we must have h → 0. So there exist a constant C̃ such
that

||ζ ||n+1 ≤ ||H||||ζ ||C̃((δt)2−α + h p), δt → 0, h → 0, (37)

Since the residual ζ n obey zero initial conditions as well as zero boundary conditions,
so ζ 0 = 0. Hence, taking into account principle of mathematical induction one gets

||ζ ||n+1 ≤ (1 + ||H||2 + · · · + ||H||n−1)C̃((δt)2−α + h p), δt → 0, h → 0,

(38)

by making use of the stability condition ||H|| ≤ 1 defined in Eq. (36) one can obtain

||ζ ||n+1 ≤ nC̃((δt)2−α + h p), δt → 0, h → 0 n = 0, 1, . . . , M . (39)

From what has been discussed above, convergence of the scheme is proved. In the
next section, we will evaluate the convergence order in the temporal approximation
by some numerical experiments.
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5 Numerical Examples and Application

In this section, two examples illustrating an exact solution are presented to show the
accuracy of the solution and the order of convergence of our proposed numerical
scheme in given Sect. 3. Also, the present method for pricing barrier option governed
by a time fractional B–S model was exploited which is one of the most interesting
models in the financial market. The accuracy and efficiency of the method are verified
in terms of the following error norms:

L∞ = max
1≤i≤N−1

|U (xi , T ) − u(xi , T )|,

RMS =
√
√
√
√ 1

N

( N∑

i=1

|U (xi , T ) − u(xi , T )|2
)

.

For all cases, we employed the quadratic basis and Gaussian weight functions accord-
ing to Eq. (16). In addition, for all test problems, we set the same influence domain
as hi = 0.2, for i = 1, 2, . . . , N ; which is the radius of influence domain circle. In
the area of the circle, all the assumed nodes are influencing the approximation and
μ = 0.1. Note that these values are selected as the best attempt of the performed
numerical experiments. The computational order and convergence rate (error rate) in
time variable respectively can be computed as follows:

C-order =
log

(
Ei

Ei+1

)

log
(

δti
δti+1

) ,

Error rate =
(

δti
δti+1

)C−order

,

where Ei is the error value that corresponds to grid with mesh size δti . Note that the
numerical computations have been carried out by usingMatlab 7 software on aPentium
IV, 2800 MHz CPU machine with 4 Gbyte of memory. Finally, the computer time
required to obtain the option price using the proposed scheme described in previous
sections is denoted by CPU Time.

Example 1 Let us consider the time fractional B–S equation

⎧
⎪⎨

⎪⎩

0Dα
τU (x, τ) = a ∂2U (x,τ)

∂x2
+ b ∂U (x,τ)

∂x − cU (x, τ) + f (x, τ),

U (0, τ) = 0,U (1, τ) = 0,

U (x, 0) = x2(1 − x),

(40)

where the source term f = ( 2τ2−α

Γ (3−α)
+ 2τ1−α

Γ (2−α)
)x2(1 − x) − (τ + 1)2[a(2 − 6x) +

b(2x − 3x2) − cx2(1 − x)] is selected so that the exact solution of (40) is U =
(τ+1)2x2(1−x) (DeStaelen andHendy 2017; Zhang et al. 2016). The aforementioned

123



134 A. Golbabai, O. Nikan

related parameters can be assigned with values as r = 0.05, D = 0, σ = 0.25,
a = 1

2σ
2, b = r − a − D, c = r and T = 1. The results are reported in Tables 1

and 2.

Example 2 As the second example, we consider the following time fractional model
with homogeneous boundary conditions

⎧
⎪⎨

⎪⎩

0Dα
τU (x, τ) = a ∂2U (x,τ)

∂x2
+ b ∂U (x,τ)

∂x − cU (x, τ) + f (x, τ),

U (0, τ) = (τ + 1)2,U (1, τ) = 3(τ + 1)2,

U (x, 0) = x3 + x2 + 1,

(41)

such that the source term f = ( 2τ2−α

Γ (3−α)
+ 2τ1−α

Γ (2−α)
)(x3 + x2 + 1) − (τ + 1)2[a(6x +

2) + b(3x2 + 2x) − c(x3 + x2 + 1)] is selected so that the exact solution of (41) is
U = (τ + 1)2(x3 + x2 + 1) (De Staelen and Hendy 2017; Zhang et al. 2016). The
aforesaid related parameters can be chosen with values as r = 0.5, D = 0, a = 1,
b = r − a − D, c = r and T = 1. The results are reported in Tables 3 and 4.

Tables 1, 2, 3 and 4 list the numerical results and comparisons and its corresponding
error rate, which verify the effectiveness and high accuracy of this method. From these
tables, it can be seen that the numerical solutions obtained the presented method are in
excellent agreement with the exact solutions. Also, the consumed CPU time of scheme
for various time discretization steps were reported. It produces high accurate results
with very low CPU time. Based on detailed comparisons in Tables 1 and 3, the present
method gives better results than the implicit finite deferencemethod (Zhang et al. 2016)
and compact finite deference method (De Staelen and Hendy 2017) for discrete barrier
option pricing. Furthermore,we conclude that the convergence rate isO(δt2−α) in both
examples and provides with what has been discussed in Sect. 4. It is worth mentioning
that the convergence rate in time is approximately (

δti
δti+1

)2−0.7 = 21.3 = 2.4623. Also,

the results of the convergence rate of this study are inline with the other two methods
(De Staelen and Hendy 2017; Zhang et al. 2016), which can be a justifying factor to
present our method. The L∞ and RMS of errors when t = 0.2, 0.4, 0.6, 0.8, 1 and
N = 50 for two different values of α are presented in Tables 2 and 4, which shows
that the results of RMS-error are comparatively better than the L∞-error norm.

Example 3 Consider the following time fractional B–S model (TFBSM) governing
European options

∂αV (S, t)

∂tα
+ 1

2
σ 2S2

∂2V (S, t)

∂S2
+ (r − D)S

∂V (S, t)

∂S
− rV (s, t) = 0, (s, t) ∈ R

+ × (0, T ),

with final condition v(S) = max{S − K , 0}.
This model with the method exhibited in this paper is solved. The double barrier

option price curves at different values of the order α and t are illustrated in Fig. 1.
Here the parameters σ = 0.2, r = 0.05, T = 2(year), Bu = 83, K = 10 and the
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Table 2 Errors obtained in Example 1 where δt = 0.01, N = 50 and α = 0.2, 0.8

t α = 0.2 α = 0.8

L∞-error RMS-error L∞-error RMS-error

0.2 1.674E−05 8.965E−06 2.235E−05 1.564E−05

0.4 3.742E−05 1.205E−05 9.541E−05 4.158E−05

0.6 7.186E−05 4.246E−05 6.570E−04 9.472E−05

0.8 5.064E−04 3.634E−04 3.342E−04 1.126E−04

1.0 5.321E−04 3.208E−04 3.758E−04 2.014E−04

dividend yield D = 0. As mentioned before, the time fractional B–S model can be
rewritten as:

∂αU

∂τα
= ∂2U

∂x2
+ (m − 1)

∂U

∂x
− mU ,

wherem = r/ 1
2σ

2 andwith strike price of $10 and up-and-out barrier option constraint

U (x, τ) =
{
0 ex ≥ eBu , 0 ≤ τ < T ,

ex − 10 0 < ex < eBu , τ = 0.

Thus up-and-out barrier option is the option that the option expires worthless if it
hits upper barrier, say, is reached from below before expiry. Figure 1a displays the
numerical solutions for up-and-out Barrier option price for different values α. Also,
we depict the difference in values for the up-and-out barrier option for t = 0 and
t = T = 2 in the Fig. 1b.

6 Concluding Remarks

The “globalness” character of the fractional order derivative in the model causes both
exact and numerical solutions quite complicated to get rather than oneswith the integer
order model. The time fractional B–S model is the general format of the classical B–S
model. In the current work, we revolutionize the modified Riemann–Liouville frac-
tional derivative to a Caputo fractional derivative by a variable transformation. Firstly,
the discretization process of the problem in temporal sense via the finite difference
scheme (accuracy of order 2 − α) is described. Then we will exhibit how to achieve
the approximated solution by using the MLS. Moreover, the convergence analysis of
this current method is discussed. Two mentioned numerical examples with analytical
solutions are chosen in order to illustrate the accuracy and convergence order of the
numerical method. In conclusion, in the application based point of view, we use this
time fractional B–S model and the proposed numerical technique to price double bar-
rier options. We have confidence in that the numerical techniques offered in this paper
can also be utilized in other alike fractional simulations for pricing different barrier
options in fractional B–S market.
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Table 4 Errors obtained in Example 2 where δt = 0.01, N = 50 and α = 0.2, 0.8

t α = 0.2 α = 0.8

L∞-error RMS-error L∞-error RMS-error

0.2 1.093E−05 8.172E−06 4.142E−05 1.323E−05

0.4 2.312E−05 1.125E−05 6.201E−05 3.392E−05

0.6 8.586E−05 3.206E−05 1.374E−04 8.479E−05

0.8 2.723E−04 1.364E−04 3.502E−04 1.215E−04

1.0 4.862E−04 2.521E−04 4.741E−04 2.631E−04
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Fig. 1 a up-and-out barrier option values with different values α for t = 1
2 and T = 2, b up-and-out barrier

option values for t = 0 and t = T = 2 when α = 0.25
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