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Abstract
This study proposes a decomposition-ensemble based carbon price forecasting model,
which integrates ensemble empirical mode decomposition (EEMD) with local poly-
nomial prediction (LPP). The EEMD method is used to decompose carbon price time
series into several components, including some intrinsic mode functions (IMFs) and
one residue. Motivated by the fully local characteristics of a time series decomposed
by EEMD, we adopt the traditional LPP and regularized LPP (RLPP) to forecast
each component. This led to two forecasting models, called the EEMD-LPP and
EEMD-RLPP, respectively. Based on the fine-to-coarse reconstruction principle, an
auto regressive integrated moving average (ARIMA) approach is used to forecast
the high frequency IMFs, and LPP and RLPP is applied to forecast the low frequency
IMFs and the residue. The study also proposes two other forecastingmodels, called the
EEMD-ARIMA-LPP and EEMD-ARIMA-RLPP. The empirical study results showed
that the EEMD-LPP and EEMD-ARIMA-LPP outperform the two other models. Fur-
thermore, we examine the robustness and effects of parameter settings in the proposed
model. Compared with existing state-of-art approaches, the results demonstrate that
EEMD-ARIMA-LPP and EEMD-LPP can achieve higher level and directional predic-
tions and higher robustness. The EEMD-LPP and EEMD-ARIMA-LPP are promising
approaches for carbon price forecasting.
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1 Introduction

Global climate change has become a serious global challenge in recent decades. To
address this escalating climate change problem, theEuropeanUnion (EU) launched the
EU Emissions Trading Scheme (ETS) in January 2005 (Ellerman and Buchner 2007).
China has been the largest carbon emission emitter since 2009, contributing almost
25% of total worldwide emissions (Qin et al. 2017). The ETS has had a global impact
on emission reductions, with the goals set out in the Paris Agreement. In December
19, 2017, China formally launched an initial national carbon trading market. The first
phase of the market covers power generation; the new cap is approximately twice the
size of the EU’s carbon market and ten times the size of California’s cap and trade
system in the United States.1

The emergence of ETS has transformed carbon emission permits into a new asset
class, called “carbon emission allowances” (Neuhoff et al. 2006; Hintermann 2010).
Like other commodities, carbon emission allowances can be bought and sold in the
carbon markets. Corporations, organizations, and investors can trade both the spot and
future of emission allowances. The establishment of an appropriate ETShas become an
important issue forChina to allow it to effectively compete in global carbonfinance and
achieve sustainable development (Lo 2016; Jotzo and Löschel 2014). Accurate carbon
price forecasting has been recognized as an effectiveway to formulate relevant policies
for carbon emissions trading and to reduce the risk of carbon assets in the carbon
markets (Koop and Tole 2013; Zhu et al. 2015). As such, carbon price forecasting is
critically important for governments and traders in the carbon trading market. Carbon
price is affected by many factors, including short-term market fluctuations, the effects
of significant trend breaks, and long-term trends (Benz and Trück 2009; Wei et al.
2010; Tang et al. 2017; Chen et al. 2013). The carbon price time series is nonlinear,
non-stationary, and is highly volatile. This makes accurately forecasting carbon prices
a significant challenge (Feng et al. 2011; Zhu and Wei 2013).

Existing carbon price forecasting studies can be divided into two categories. The
first category can be interpreted as multivariate models, which model the relationship
between carbon price and factors (García-Martos et al. 2013; Chevallier 2009, 2010,
2011a, b; Fezzi and Bunn 2009). The second category is univariate models, also
known as the time series forecasting approach. These models generally include two
kinds of methods: the traditional econometric method (Byun and Cho 2013; Benz and
Trück 2009) and artificial intelligence (AI) method (Zhu and Wei 2013; Fan et al.
2015; Atsalakis 2016). Because it is difficult to determine the appropriate factors
affecting carbon price, time series forecasting approach received widely concerns.
In the time series forecasting approach, the decomposition-ensemble framework is
becoming increasingly popular. This framework first decomposes the complex time
series into several components that have simple structures, which are more easily
forecasted. These components are individually forecasted and then we ensemble the
results to obtain the final forecasting result (Yu et al. 2008; Zhang et al. 2015; Zhu
et al. 2016).

1 Data from “http://www.chinadaily.com.cn/a/201803/27/WS5ab9b38ca3105cdcf65148ca.html”.
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Decomposition-ensemble forecasting models have been shown to perform better
than the single econometric and AI model (Yu et al. 2008; Tang et al. 2011). Over
the past decades, some decomposition-ensemble approaches have been proposed to
forecast the carbon price. Zhu et al. (2016) proposed a novel decomposition-ensemble
paradigm, which incorporates least square support vector machine (LSSVM), auto
regressive integrated moving average (ARIMA), and particle swarm optimization.
Sun et al. (2016) proposed a combined forecasting model based on variational mode
decomposition and spiking neural networks to forecast carbon price.

Lately, empirical mode decomposition (EMD), invented by Huang et al. (1998),
decomposes a raw non-linear and non-stationary signal into a set of intrinsic mode
functions (IMFs) and one residue, without leaving the time domain. EMD is easy to
implement and offers the ability to estimate subtle changes in frequency (Huang et al.
2011). The decomposition scale of EMD depends on the characteristics of the signal
itself and does not require a priori basic function. EMD is based on local extreme
points: cubic spline interpolation, based on the local extreme point signal envelope to
strike down the average envelope (Chen et al. 2006). Therefore, EMD is a fully local
and self-adaptive approach, and can decompose the local characteristics of the raw
time series into several fluctuations and trend items. EMD-based forecasting models
have been widely adopted within the forecasting research community (Yu et al. 2008;
Xiong et al. 2013; Chen et al. 2012; Ren et al. 2015). Considering the characteristics
discomposed by EMD, combining EMD-based decompositionwith a local forecasting
method, which can capture the local characteristics of a time series, is a novel attempt
to improve forecasting performance.

The local polynomial prediction (LPP), developed by Farmer and Sidorowichl
(1988), works effectively by analyzing the local characteristics of a time series in
the frame of nonlinear dynamics. LPP displays promising forecasting performance
with fast speed in low dimensional and smoothing problems (Regonda et al. 2005; Lu
2002; Beran et al. 2002; Su and Li 2015). Similar to AI model, the forecasting process
of LPP is also based on the technique of phase space reconstruction (Packard et al.
1980; Takens 1981). LPP does not require a long time series and it can effectively
model different scales of nonlinearity in different period of time series because of
using the localization method (Farmer and Sidorowich 1988; Fan and Yao 2008). The
decomposition feature of EMD motivated us to investigate the forecasting ability of
LPP and RLPP approaches under the EMD framework. This study proposes a novel
carbon price forecasting model integrated with the promising and relatively simple
LPP approach. The ensemble EMD (EEMD), developed by Wu and Huang (2009) to
overcome the mode mixing effect in EMD, is used to decompose the original carbon
price time series. The LPP approach is used to individually forecast each component.
The obtained model is called EEMD-LPP in this study.

It is worth noting that the parameters of the LPP are typically estimated using
ordinary least squares (OLS), which can have large variance under certain conditions.
Regularization techniques can modify the OLS solution towards better predictions
(Kugiumtzis et al. 1998). In this study, a well-known regularization technique, namely
ridge regression, is used to estimate the LPP (RLPP) parameters. A new forecasting
model, called the EEMD-RLPP, is developed. The EEMD-RLPP model applies the
EEMD method as a decomposition tool and uses RLPP as forecasting tool. Selecting
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the optimal model for each component can improve forecasting performance in the
decomposition-ensemble framework. Some hybridmodels have been developed based
on this idea (Zhang et al. 2015; Zhu et al. 2016). The empirical results show that hybrid
models demonstrate satisfactory performance. We integrate the ARIMA, which has a
strong capability of modeling short-term memory and random process, with LPP and
RLPP to develop two new models: EEMD-ARIMA-LPP and EEMD-ARIMA-RLPP.
Based on the fine-to-coarse reconstruction principle developed by Zhang et al. (2008),
the ARIMA approach is used to forecast the high frequency IMFs, whereas LPP and
RLPP are used to forecast the low frequency IMFs and the residue.

The features of this study are represented as follows: (1)Motivated by the fully local
characteristics of a time series decomposed by EEMD, we first integrate the LPP and
RLPP approach with the EEMDmethod for carbon price forecasting. (2) Based on the
fine-to-coarse reconstruction principle, we combined LPP and RLPP with ARIMA
to forecast different components according to the components’ characteristics. (3)
Experimental results demonstrate the effectiveness of the proposed approach for car-
bon price forecasting. (4)Under the decomposition-ensemble framework,we analyzed
the robustness of the related parameters and how the parameters affect the forecasting
result in the proposed model.

The rest of this study is organized as follows: Sect. 2 describes the methods,
including EEMD, LPP, and ARIMA. Section 3 presents the proposed EEMD-based
forecasting models in detail. Section 4 presents the experimental study, mainly includ-
ing data sources, evaluation criteria, experimental results, and comparisons with state
of the art approaches. Concluding remarks are drawn in Sect. 5.

2 Methods

2.1 EEMD

EEMD was developed to overcome the mode mixing problem of EMD through per-
forming the EMD over an ensemble of the data plus Gaussian white noise (Wu and
Huang 2009). EEMD is considered to be a significant improvement over the EMD
method. EEMD can decompose a complex signal into finite IMFs and one residue that
have simple pattern and stationary fluctuation based on the local characteristic time
scale of the signal.

For an original time series y0(t) (t � 1, 2, . . . , n), where n is the length of the time
series. The EEMD procedures are described as follows:

(1) Initialize the number of ensemble (N ) and the standard deviation (σ ) of the added
white noise.

(2) Add N random white noises {n1(t), n2(t), . . . , nN (t)} to the original data and
produce a group of new data {y1(t), y2(t), . . . , yN (t)}.

(3) Decompose every newdata yi (t)(i � 1, 2, . . . , N ) usingEMD to obtain N groups
of IMFs components and N groups of residues. The EMD method is described
as follows:

1) Identify all the local minima and local maxima of the a time series X (t) .
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2) Connect all local extrema by the cubic spline interpolation to individually
create the upper envelope eup(t) and the lower envelope elow(t).

3) Compute the point-by-point mean value m1(t) of the upper envelope and the
lower envelope: m1(t) � [eup(t) + elow(t)]/2.

4) Calculate the difference between x(t) and m1(t):d1(t) � X (t) − m1(t).
5) Check the property of d1(t): (1) If d1(t) satisfies the conditions of an IMF,

then an IMF is derived and denoted as c1(t), while x(t) is replaced with the
residue r1(t) � x(t) − d1(t); (2) if d1(t) is not an IMF, replace x(t) with
d(t) and repeat the steps 1–4 until d(t) meets the conditions of an IMF.

6) Repeat steps 1)–5) until the residue r (t) cannot further extract an IMF, then
the originally data X (t) can be expressed as the sum of the IMFs and the
residue:

X (t) �
v∑

i�1

ci (t) + r (t)

where v is the total number of IMFs, ci (t) is the i th IMF at time t .

(4) Average N groups of IMFs components and residue respectively to obtain the
responding mean value {C1,C2, . . . ,Cn} and Res, and then the original data can
be expressed as:

yo(t) �
v∑

i�1

Ci + Res

2.2 LPP and RLPP

2.2.1 Phase Space Reconstruction

Assume an observed time series of x1, x2, . . . , xn . The first step in the local prediction
is phase space reconstruction. Based on the approach introduced by Packard et al.
(1980) and Takens (1981), the time series can be embedded in a state space by using
delay coordinates. The state vector has the following form:

Xt � [xt , xt−τ , . . . , xt−(m−1)τ ]
T

In this expression,m is the embedding dimension, τ is the delay time, and T denotes
the transpose. According to phase space reconstruction theory, there is a smooth map
f : Rm → Rm between the current state Xt and the future state Xt+T1 . For conve-
nience, them-dimensional states are usually mapped into one dimensional value, such
that:

xt+T1 � f (Xt )

for all integers t and where the forecasting time T1 and τ are also assumed to be
integers.
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2.2.2 LPP

Farmer and Sidorowich (1988) first used local approximation to fit the functional rela-
tionship between the state vectors and to compare the forecasting capability between
different order approximations. Themost general form for a dth degreem-dimensional
polynomial is as follows:

Ad (x1, . . . , xm) �
∑

i1�0,...,im�0
ai1...id x

i1
1 . . . ximm

where
m∑
j�1

i j ≤ d . The empirical results show that the local quadratic polynomial, i.e.

the second order approximation, performs better inmost cases (Farmer andSidorowich
1988). This expression is described as:

xt+T1 �
m∑

i�1

a0i (xt−(i−1)τ ) +
m∑

i�1

m∑

j�i

ai j xt−(i−1)τ xt−( j−1)τ

where T1 is the forecasting step, m is the embedding dimension, τ is the delay time,
and ai j are coefficients. Unlike global approximation methods, such as the artificial
neural network (ANN) and support vector machine, which use global data to model
the smooth map. LPP estimates the function coefficient by partitioning the embedding
space into the k nearest neighbors {Xr } (r � 1, 2, . . . , k). These neighbors are identi-
fied by computing the distance between the current state vector Xr and its preceding
delay vectors with an imposed metric ‖·‖ (i.e. the k state vector Xr ′ with an r

′
< r that

minimizes ‖Xr − Xr ′ ‖), and using OLS to linearly fit a LPP model and predict the
future value. The key of local approximation is to correctly select the local neighbor-
hood size; this provides sufficient points tomake the local parameter fitting stablewhile
adding more points would not lead to significant improvements. To ensure solution
stability, the number of neighbors k is consistently larger than embedding dimension
m (Farmer and Sidorowich 1987).

2.2.3 RLPP

A typical and well-known regularization technique is ridge regression, proposed by
Hoerl and Kennard (1970). This technique balances the bias and the variance of the
regression by introducing a regularization term based on least squares, as follows:

n∑

i�1

⎛

⎝yi −
m∑

j�0

ω j xi j

⎞

⎠
2

+ λ

m∑

j�0

ω2
j , λ > 0

In this expression, ω j is the coefficient and λ is the penalty parameter, which plays
a vital role in controlling the bias of the regression, while being able to be specified
by users. Here, we combine the LPP with the ridge regression method, i.e. using the
ridge regression to fit the LPP to develop a regularized LPP (RLPP), defined as:
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xt+T1 �
m∑

i�1

a0i (xt−(i−1)τ ) +
m∑

i�1

m∑

j�i

ai j xt−(i−1)τ xt−( j−1)τ + λ

⎛

⎝
m∑

i�1

m∑

j�i

a2i j +
m∑

i�1

a20i

⎞

⎠, λ > 0

The penalty parameter λ can be determined by trial and error. The coefficients
ai j (i � 0, . . . ,m, j � 1, . . . ,m) can be estimated by nearest neighbor points.

2.2.4 Procedures of LPP and RLPP

For a time series x1, x2, . . . , xn , to predict the future value xn+T1 , the LPP and RLPP
procedures are as follows:

(1) Determine the embedding dimension m, delay time τ , and the nearest neighbors
number k (and the penalty parameter λ when using RLPP).

(2) Calculate the distance of delay vector Xn from other vectors X j , 1 + (m −
1)τ ≤ j ≤ n − T1, in the state space. For computational efficiency, we
use the maximum norm (i.e. ‖A − B‖ � ‖a1 − b1, a2 − b2, . . . , am − bm‖ �
max(|a1 − b1|, |a2 − b2|, . . . , |am − bm |) to measure the distance between state
vectors.

(3) Rank the distance d j , identify the k nearest neighbors X j1, X j2, . . . , X jk , and fit
a model of the form:

LPP: xt+T1 �
m∑

i�1

a0i (xt−(i−1)τ ) +
m∑

i�1

m∑

j�i

ai j xt−(i−1)τ xt−( j−1)τ

RLPP : xt+T1 �
m∑

i�1

a0i (xt−(i−1)τ ) +
m∑

i�1

m∑

j�i

ai j xt−(i−1)τ xt−( j−1)τ

+ λ

⎛

⎝
m∑

i�1

m∑

j�i

a2i j +
m∑

i�1

a20i

⎞

⎠ , λ

> 0

In these expressions, the parameters ai j (i � 0, . . . ,m, j � 1, . . . ,m) of LPP are
computed using the ordinary least squares. The RLPP is fitted using ridge regression.

(4) Use the fitted model to estimate a T1 step ahead forecast x̂n+T1 for the vector Xn .

2.3 ARIMA

Theoretically, ARIMA is the most general class of models for forecasting a time
series. The ARIMA is a generalization of an autoregressive moving average (ARMA)
(Box et al. 2015). ARMA is generally applied to stationary series. ARIMA can be
applied in non-stationarity time series using an initial differencing, which is used to
eliminate the non-stationarity. An ARIMA (p, d, q) typically consists of three parts:
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autoregression (order p), difference (order d), andmoving averageMA (order q). This
can be expressed as:

∇d xt � c + ϕ1xt−1 + ϕ2xt−2 + · · · ϕpxt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q

In this expression,∇ � (1−B), B refers to the backward shift operator for B(xt ) �
xt−1; xt is the observation data at time t; c is the constant; p and q are the numbers of
autoregressive and moving average terms in the ARIMA, respectively; ϕ1, ϕ2, . . . , ϕp

and θ1, θ2, . . . , θq are the autoregressive and the moving average parameters to be
estimated, respectively; εt is the random error at time t ; and εt ∼ N (0, σ 2).

3 Proposed EEMD-Based Carbon Price ForecastingModel

There are three main steps in a typical decomposition-ensemble model: (1) decompo-
sition of the original complicated series; (2) individual prediction for each component;
and (3) aggregating the forecasting result of all components to generate a final fore-
casting result of the original time series. Based on the general framework of the
“Divide-and-Conquer” principle, we developed four different hybrid models based
on the EEMD method to forecast the nonlinear, non-stationary carbon price time
series.

3.1 Model 1: EEMD-LPP

The EEMD-LPP forecasting model generally consists of the following three steps:
Step 1 The original carbon price time series is first decomposed by EEMD method

into n IMFs and one residue series, denoted as Res.
Step 2 The LPP is used to model the extracted IMF components and residue, and

to individually forecast each component.
Step 3 Simple addition has been shown to be an effective aggregation method (Tang

et al. 2012). As such, the forecasting result of all extracted IMF components and the
residue are added, to generate a final forecasting result of the original time series.

3.2 Model 2: EEMD-RLPP

The main step of EEMD-RLPP model is like the EEMD-LPP, except for in Step 2,
where the RLPP is used as an individual forecasting tool to forecast the extracted IMF
components and residue, instead of using LPP.

Figure 1 illustrates the methodological procedures associated with Models 1 and
2.
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EEMD

IMF1

∑ 

Carbon price time 
series Input

Output

Decomposition

IMF2 IMFn Res

(R)LPP1 (R)LPP2 (R)LPPn (R)LPPn+1

Forecasting result 
of IMF1

Forecasting result 
of IMF2

Forecasting result 
of IMFn

Forecasting result 
of Res

Final forecasting 
result

Individual 
forecasting

Ensemble 
forecasting

Fig. 1 The methodological procedures of the proposed EEDM-(R)LPP model

3.3 Model 3: EEMD-ARIMA-LPP

UnlikeEEMD-LPP andEEMD-RLPP,EEMD-ARIMA-LPP incorporates theARIMA
and the LPP to forecast different components, based on their data characteristics. The
IMFs can be divided into two parts based on their frequency (Zhang et al. 2008): (1)
High frequency parts (HFs), which are characterized by highly fluctuations and low
amplitude, reflecting the information of normalmarket fluctuationswhich have a short-
term impact on the carbon price; (2) Low frequency parts (LFs), characterized by low
fluctuations, expressing the effects of significant trend breaks, with a medium-term
impact on carbon price. The residue drives the major long-term trends in carbon price.
Here, we use the fine-to-coarse reconstruction algorithm proposed by Zhang et al.
(2008) to identify the HFs and LFs of the carbon price to determine the forecasting
model for each component. The identification process is as follows:

(1) Compute the mean value s̄i of the cumulative sum series si � ∑i
p�1 I MFi (i �

1, 2, . . . , n) from I MF1 to I MFi , where n is the total number of IMFs.
(2) Apply a t test to determine fromwhich I MFi themean value s̄i most significantly

departs from zero. The significance level α is generally selected as 0.05.
(3) If s̄i start to deviate from zero, then I MF1 to I MFi are identified as HFs, and

the remaining I MFs are identified as LFs
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The ARIMAmodel has a strong ability to model a short-term memory and random
process. This makes it suitable for forecasting HFs. The LPP is used to forecast the LF
components and the residue. The procedures of the EEMD-ARIMA-LPP forecasting
model can be summarized as follows:

Step 1 Decompose the original carbon price time series using EEMD.
Step 2 Identify the HFs and LFs of the extracted IMF components.
Step 3 Use the ARIMA to forecast each component of HFs and use the LPP to

forecast each LF component and the residue.
Step 4 Add the forecasting result of all IMF components and the residue to obtain

the final forecasting result of the original time series.

3.4 Model 4: EEMD-ARIMA-RLPP

The main step of EEMD-RLPP model is like the step of the EEMD-ARIMA-LPP
model, except for Step 3, where the RLPP is used to forecast each LF component and
the residue instead of LPP.

Figure 2 summarizes the procedures associated with proposed Models 3 and 4.

4 Experimental Study

4.1 Data

The European Climate Exchange (ECX) is the largest carbon market under the EU
ETS. The ECX includes spot, futures, and options of the EU allowance (EUA) and
CertifiedEmissionReduction (CER),which has themaximum trading volumeofEUA.
In this study, two daily carbon EUA future prices with maturity dates in December
2014 (Dec 14) and December 2015 (Dec 15) form the ECX. These were selected as
the experimental data, and are freely available from the Intercontinental Exchange
(ICE) website (http://www.theice.com). For Dec 14, the daily trading data cover the
period from September 28, 2010 to December 15, 2014, excluding public holidays, for
a total of 1079 observations. For Dec 15, the trading data is from November 29, 2011
to December 14, 2015, excluding public holidays, for a total of 1035 observations.

Figure 3 shows the time series curves of Dec 14 and Dec 15, and demonstrates
that carbon prices have highly uncertain, nonlinear, and complicated characteristics.
For the convenience of LPP and RLPP modeling and optimal parameter searches, the
experimental data are divided into three subsets: the training set, the validation set, and
the testing set (70%, 15% and 15% respectively). The training set and the validation set
are used to find the best parameters using trial and error, where λ ∈ (0, 1]m ∈ [1, 10],
τ ∈ [1, 4] and k ∈ [2m + 1, L],m, τ , k are integers. In contrast, λ is presented in terms
of decimals and L denotes the length of training set after phase space reconstruction.
Then, the testing set is used to verify the validity of the newly proposed models using
the previously identified parameters. Table 1 reports the divided sample of Dec 14 and
Dec 15.
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EEMD

IMF1

∑ 

Energy price time 
series

Input

Output

Decomposition

Inden�fica�on

IMF2 IMFn Res

IMF1 IMFm IMFn

ARIMA ARIMA (R)LPP

Final forecasting 
result

Individual 
forecas�ng of 
HFs, LFs and 
residual

Fine-to-coarse reconstruction

HFs LFs

IMFm+1

(R)LPP (R)LPP

Forecasting 
result of 

IMF1

Forecasting 
result of 
IMFm

Forecasting 
result of 
IMFm+1

Forecasting 
result of 

IMFn

Forecasting 
result of Res

Ensemble 
forecas�ng

Fig. 2 The methodological procedures of the proposed EEDM-ARIMA-(R)LPP model

4.2 Evaluation Criteria

To measure the forecasting ability of the hybrid models, two main criteria are used to
evaluate the level forecasting and directional forecasting. First, the root mean squared
error (RMSE) is selected as the evaluation criterion of level forecasting, defined as:

RMSE �
√√√√1

n

n∑

t�1

[
x̂(t) − x(t)

]2

where x(t) is the actual value, x̂(t) is the predicted value, and n is the number of
predictions. Smaller RMSE values are associated with a more accurate model.

Second, the directional prediction statistic (Dstat ) is used tomeasure the directional
forecasting performance, expressed as:

Dstat � 1

n

n∑

t�1

at ∗ 100%
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Fig. 3 Dec 14 and Dec 15 carbon future price time series

In this expression, at � 1 if [x(t + 1) − x(t)] ∗ [x̂(t + 1) − x(t)] ≥ 0; otherwise,
at � 0. The greater the value of Dstat , the more accurate the prediction is.

To further compare the predictive accuracy of different models from a statistical
perspective, the Diebold–Mariano (DM) statistic is introduced to test the statistical
significance of the forecasting difference (Diebold and Mariano 2002). Assuming e1t
and e2t are two sets of forecast errors, generated by two different forecasting models
respectively, the DM test is based on the loss differential dt � e1t − e2t . In this study,
the loss function is set to mean the absolute percentage error (MAPE), defined as:

MAPE � 1

n

n∑

t�1

∣∣∣∣
x̂(t) − x(t)

x(t)

∣∣∣∣

4.3 Decomposing Carbon Price Using EEMD and Identifying HFs and LFs

Two importantEEMDparametersmust be establishedbefore it canbeused: the number
of the ensemble N and the amplitude of white noise σ . Referring to previous studies,
this study set N as 100 and σ as 0.1 times the standard deviation of each series (Zhang
et al. 2008). Figure 4 shows the decomposition result of Dec 14 and Dec 15.

Figure 4 shows the extracted IMFs for Dec 14 and Dec 15 experienced changing
frequency and amplitudes. These IMFs were arranged from high frequency to low
frequency. The fine-to-coarse reconstruction algorithm was applied to identify HFs
and LFs, with a significance level set at 0.05. Table 2 presents the results, which show
that the Si of Dec 14 started to significantly deviate from 0 at the point i=6. Therefore
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Table 1 Samples of carbon future prices

Carbon future price Type Size Date

Dec 14 Sample set 1079 September 28,
2010–December 15,
2014

Training set 757 September 28,
2010–September
12,2013

Validation set 161 September
12,2013–May 2,2014

Test set 161 May 5,2014–December
15, 2014

Dec 15 Sample set 1035 November 29,
2011–December 14,
2015

Training set 725 November 29,
2011–September
29,2014

Validation set 155 September
30,2014–May 11,2015

Test set 155 May
12,2015–December
14, 2015

IMF1 to IMF5 belonged to HFs, whereas IMF6 to IMF9 were associated with LFs.
For Dec 15, the Si started to significantly deviate from 0 at the point i � 4, illustrating
that IMF1 to IMF3 were HFs, and the IMF4–IMF 9 were LFs.

4.4 Experimental Results and Analysis

To study the forecasting abilities of the proposed models with other widely used
forecasting models, the EEMD-LSSVM, EEMD-ARIMA, and EEMD-ANN served
as benchmark models. For LSSVM, the Gaussian RBF kernel function was chosen;
the values of the parameters sigma squared and gamma were set using the grid-search
method (Fan et al. 2016). For ANN, the hidden nodes were set to 7, and the number of
input neurons was determined using autocorrelation and partial correlation analyses
(Yu et al. 2016). For ARIMA, the parameters were selected based on the Akaike’s
information criterion (AIC) (Wang et al. 2015).

All components used one-step-ahead forecasting; results were aggregated as the
final forecasted value of the original series. The ARIMA method was realized
using EViews 8.0 statistical software; LSSVM and ANN were implemented through
programming using the Matlab R2012b platform; and the LPP and RLPP were imple-
mented through programming using the Python 2.7 platform. Table 3 illustrates the
optimal parameters of the proposed four models for the two carbon future prices fore-
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(a)

(b)

Fig. 4 Decomposition result of carbon price using EEMD a Dec 14. b Dec 15
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casting. Tables 4 and 5 compare model performances in terms of RMSE and Dstat ;
Table 6 reports the results of the DM test.

In terms of level accuracy measured by RMSE, EEMD-LPP achieved the best
level accuracy on Dec 14; EEMD-LPP-ARIMA performed better on Dec 15. In all,
EEMD-LPP and EEMD-ARIMA-LPP outperformed the other five models. Under the
decomposition-ensemble framework, LPP generated better forecasts than any other
single model when EEMDwas used as the decomposition method. Applying ARIMA
to forecast HFs may not necessarily improve the forecasting result; this is because
LPPmay also performwell onHFs. EEMD-RLPP and EEMD-ARIMA-RLPP showed
poor level accuracy on Dec 14 and Dec 15. This may be mainly because the compo-
nents decomposed by EEMD have a simple pattern, stationary fluctuation, and less
noisy data. A regularization technique introduces more bias in the forecasting process,
increasing the forecasting error.

Regarding the direction forecasting accuracymeasured by Dstat , Table 5 shows that
the EEMD-ARIMA-LPP model performed best on Dec 14, followed by EEMD-LPP.
OnDec 15, these twomodels performed the best. Of the othermodels, EEMD-ARIMA
achieved a higher value of Dstat . Compared with level accuracy, EEMD-RLPP and
EEMD-ARIMA-RLPP performed satisfactory on direction accuracy. This implies that
level accuracy is not necessarily endowedwith high directional prediction accuracy. In
all, EEMD-LPP and EEMD-ARIMA-LPP were the most accurate and also achieved
the highest directional accuracy. This indicates the two models have similar powerful
forecasting capability.

Based on theDM test result shown in Table 6, at a 5% significance level, the EEMD-
LPP-ARIMA and EEMD-LPPmodel performed better than other comparative models
on bothDec 14 andDec 15, except EEMD-LPP-ARIMAoutperformsEEMD-LSSVM
on Dec 14 at a 10% significance level. Additionally, there is no statistically significant
difference between EEMD-LPP and EEMD-ARIMA-LPP. EEMD-RLPP and EEMD-
ARIMA-RLPP were inferior to EEMD-LPP and EEMD-ARIMA-LPP, and were also
inferior to EEMD-ARIMA and EEMD-LSSVM on Dec 15 at a confidence level of
99%. This illustrates a less than satisfying performance by the proposed EEMD-RLPP
and EEMD-ARIMA-RLPP model. The introduction of regularization techniques did
not improve the forecasting ability of LPP under the EEMD method.

The forecasting results show that among the proposed four models, EEMD-LPP
and EEMD-ARIMA-LPP generated the most accurate forecasts. These two models
achieved similar forecasting performance, indicating that LPP performs well when
forecasting HFs and LFs. EEMD-RLPP and EEMD-RLPP-ARIMA did not perform
effectively, and were inferior to the benchmark EEMD-LSSVM, EEMD-ARIMA
model.

The components decomposed using the EEMD were endowed with a simpler pat-
tern and more stable fluctuations. After the phase space reconstruction, LPP more
precisely approximated the hidden smooth map between the state vectors compared
to the complex AI techniques. In this way, EEMD-LPP model could achieve better
forecasting result. Compared to the traditional ARIMA method, LPP modeled differ-
ent scales of nonlinearity in different period because of localization, leading to better
performance when forecasting LFs and residue. Introducing regularization techniques
to estimate LPP parameters introduces more bias, lowering the forecasting accuracy.

123



A Novel Decomposition-Ensemble Based Carbon Price… 1265

Ta
bl
e
3
O
pt
im

al
pa
ra
m
et
er
s
of

pr
op

os
ed

fo
ur

m
od

el
s
fo
r
th
e
tw
o
ca
rb
on

fu
tu
re

pr
ic
es

C
ar
bo

n
pr
ic
e

Pa
ra
m
et
er
s

IM
F1

IM
F2

IM
F3

IM
F4

IM
F5

IM
F6

IM
F7

IM
F8

IM
F9

R
es

D
ec

14
m

(L
PP

)
5

8
8

5
6

7
4

6
8

4

τ
(L
PP

)
1

1
1

1
1

1
1

3
2

2

k
(L
PP

)
56

6
75

0
56

6
38

1
48

3
59

8
19

5
36

1
70

5
20

4

m
(R

L
PP

)
7

5
4

8
4

4
4

8
4

7

τ
(R

L
PP

)
1

1
1

1
1

2
3

1
1

1

k
(R

L
PP

)
38

3
11

9
17

9
9

9
74

0
38

1
15

λ
0.
43

0.
12

0.
09

0.
12

0.
13

0.
10

0.
12

0.
48

0.
61

0.
41

p
3

4
4

4
4

d
0

0
0

0
0

q
2

4
4

2
3

D
ec

15
m

(L
PP

)
5

6
8

6
6

8
8

4
7

8

τ
(L
PP

)
1

1
1

1
1

1
3

1
3

1

k
(L
PP

)
36

6
54

4
71

9
24

1
33

5
46

8
50

7
34

3
41

1
74

3

m
(R

L
PP

)
5

5
6

5
5

5
8

4
8

4

τ
(R

L
PP

)
1

3
2

1
1

1
1

1
2

1

k
(R

L
PP

)
18

8
11

13
11

11
11

17
9

54
3

9

λ
0.
14

0.
12

0.
11

0.
14

0.
17

0.
12

0.
21

0.
89

0.
32

0.
09

p
2

4
4

d
0

0
0

q
2

4
4

123



1266 Q. Qin et al.

Table 4 RMSE comparisons for different models

Model Dec 14 Dec 15

RMSE Rank RMSE Rank

EEMD-LPP 0.047 1 0.027 2

EEMD-RLPP 0.061 5 0.042 5

EEMD-ARIMA-LPP 0.055 2 0.025 1

EEMD-ARIMA-RLPP 0.061 6 0.047 6

EEMD-LSSVM 0.060 4 0.032 3

EEMD-ARIMA 0.058 3 0.033 4

EEMD-ANN 0.079 7 0.063 7

Table 5 Dstat comparisons for different models

Model Dec 14 Dec 15

Dstat Rank Dstat Rank

EEMD-LPP 0.876 2 0.884 1

EEMD-RLPP 0.807 6 0.851 4

EEMD-ARIMA-LPP 0.888 1 0.884 1

EEMD-ARIMA-RLPP 0.857 4 0.800 6

EEMD-LSSVM 0.832 5 0.838 5

EEMD-ARIMA 0.875 3 0.877 3

EEMD-ANN 0.708 7 0.652 7

Thus, RLPP may not effectively forecast the components decomposed by EEMD.
Figure 5 shows the difference between the actual values and each one-step ahead pre-
dicted values. The predicted values were generally close to their actual values, further
demonstrating the forecasting ability of EEMD-LPP and EEMD-ARIMA-LPPmodel.

4.5 Robustness of Parameters

The experimental results above show there are different parameter settings for different
components in the LPP method. The optimal parameter settings of each component in
LPP are obtained using trial and error, creating challenges for the real-world applica-
tions of the proposed model. As such, we focused on finding a robust and generalized
parameter combination for all components and investigated how the parameters of the
LPP method affect the forecasting result.

Here, all components are assigned the same parameters i.e. same embedding dimen-
sionm, delay time τ , and nearest neighbors k to create individual forecasts. To examine
the generalizability of the experimental parameter combination, an orthogonal design
(OD) is used to study the effect of multi-factors and multi-level problems (Fang and
Wang 1994). Here, we applied the L9(34) orthogonal array for the experiment design;
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Fig. 5 Difference between the actual values and each one-step ahead predicted values a Dec 14. b Dec 15

Table 7 Parameter combinations
of L9

(
34

) Combinations Factors

m τ k

C1 2 1 0.4n

C2 2 2 0.5n

C3 2 3 0.6n

C4 4 1 0.5n

C5 4 2 0.6n

C6 4 3 0.4n

C7 6 1 0.6n

C8 6 2 0.4n

C9 6 3 0.5n

the levels of the three parameters were as follows: m ∈ {2, 4, 6}, τ ∈ {1, 2, 3},
k ∈ {0.4n, 0.5n, 0.6n}, where n denotes the length of the training data. Details about
the orthogonal array are provided in Fang and Wang (1994) and Qin et al. (2015).
Table 7 shows the L9(34) orthogonal array; Table 8 shows the experimental results of
these parameter combinations for the two series. Table 9 illustrates the range analysis
of the orthogonal experiment in terms of the average rank for both series.

Tables 7, 8, and 9 show that the combination (m=4, τ =1 and k=0.4n) achieves
the best average result of the two series. Furthermore, we compared the experimental
results obtained by the combination with the parameters obtained using trial and error.
Table 10 shows the results; column “T&E” in this table denotes the parameter com-
bination selected by trial-and-error. The differences between the two combinations of
the three parameters are extremely small. The optimal combination (m=4, τ =1 and
k=0.4n) is slightly better than the combination obtained using trial and error method
in some cases. There may be an over-fitting phenomenon when using trial and error
to obtain the best parameters. Thus, the proposed EEMD-LPP mode is shown to be
robust for the three parameters.
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Table 8 Experiment results in terms of RMSE for the two series

Combinations Dec 14 Rank Dec 15 Rank Average rank

C1 0.047 1 0.028 3 2.0

C2 0.059 6 0.042 6 6.0

C3 0.072 8 0.046 8 8.0

C4 0.052 2 0.026 1 1.5

C5 0.055 4 0.041 5 4.5

C6 0.071 7 0.046 8 7.5

C7 0.055 3 0.027 2 2.5

C8 0.057 5 0.040 4 4.5

C9 0.072 8 0.045 7 7.5

Table 9 Range analysis of the orthogonal experiment in terms of the average rank

Combinations Factors Average ranking

m τ k

C1 2 1 0.4n 2.0

C2 2 2 0.5n 6.0

C3 2 3 0.6n 8.0

C4 4 1 0.5n 1.5

C5 4 2 0.6n 4.5

C6 4 3 0.4n 7.5

C7 6 1 0.6n 2.5

C8 6 2 0.4n 4.5

C9 6 3 0.5n 7.5

K1 16 6 14
∑ � 44

K2 14 15 15

K3 15 23 15

Level 1 5.3 2.0 4.7

Level 2 4.5 5.0 5.0

Level 3 4.8 7.7 5.0

Optimal level 4 1 0.4n

Order of effect τ m k

4.6 Comparisons of the State of Art Approaches

In order to further investigate and demonstrate the superiority of the proposed EEMD-
LPP and EEMD-ARIMA-LPP model, we compare the forecasting accuracy of the
proposed models with the state of the art carbon price forecasting models. Based on
data availability, we compared the proposed models and a newly adaptive multi-scale
ensemble learning paradigm proposed by Zhu et al. (2016). For a fair comparison, we
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Table 10 Differences in RMSE and Dstat between the two combinations of the three parameters

Time series RMSE Dstat

T&E m=4, τ =1,
k=0.4n

Difference T&E m=4, τ =1,
k=0.4n

Difference

Dec 14 0.047 0.052 −0.005 0.876 0.888 −0.008

Dec 15 0.027 0.026 0.001 0.884 0.897 −0.013

Table 11 Comparison results Model RMSE Dstat

EEMD-LPP 0.034 0.925

EEMD-ARIMA-LPP 0.032 0.931

EEMD-HLT-
 0.047 0.919

EEMD-LSSVM 0.052 0.906

EEMD-ARIMA 0.052 0.894

LSSVM 0.105 0.669

ARIMA 0.111 0.650

used the same historical observations for training and testing to obtain an objective
comparison result and the LPP parameters are selected as the experiential parameter
mentioned above. The comparison results are illustrated in Table 11.

Table 11 shows that EEMD-LPP and EEMD-ARIMA-LPP are better than
the EEMD-HLT-
 model with respect to both level and directional forecast-
ing. This further demonstrates the superiority of the proposed EEMD-LPP and
EEMD-ARIMA-LPP and the effectiveness of the experiential parameter combina-
tion.

5 Concluding Remarks

To improve the forecasting performance of carbon price time series, which have highly
non-linear and non-stationary characteristics, we proposed four hybrid forecasting
models based on the principle of “Divide-and-Conquer.” The proposed models use
the popular and effective EEMD method as decomposition tool. To investigate the
forecasting capability of these newly proposed models, three widely used forecasting
models were used as benchmarks: EEMD-SVR, EEMD-ARIMA, and EEMD-ANN.
The empirical study shows that EEMD-LPP and EEMD-ARIMA-LPP model sta-
tistically outperform other models with higher forecasting accuracy with respect to
both level and directional forecasting. The EEMD-LPP and EEMD-ARIMA-LPP are
promising to forecast carbon prices; in contrast, EEMD-RLPP and EEMD-RLPP-
ARIMA do not perform effectively. This may mainly be because the components
decomposed using the EEMDmethod have stationary fluctuations and less noisy data.
Thus, introducing regularization techniques to estimate LPP parameters may intro-
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duce more bias and lower the forecasting accuracy. Additionally, several experiments
were conducted to analyze the robustness of the parameters in LPP. We further com-
pared the proposed EEMD-LPP and EEMD-ARIMA-LPP model with state-of-the-art
approaches using the same historical observations. The experimental results further
demonstrated the effectiveness of the proposed EEMD-LPP and EEMD-ARIMA-LPP
models. In our future work, we are interested in extending the proposed approach to
a multi-step-ahead model.
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