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Abstract
Exponential family random graph models (ERGM) are increasingly used in the study
of social networks. These models are build to explain the global structure of a network
while allowing inference on tie prediction on a micro level. The number of papers
within economics is however limited. Possible applications for economics are however
abundant. The aim of this document is to provide an explanation of the basicmechanics
behind the models and provide a sample code (using R and the packages statnet
and ERGM) to operationalize and interpret results and analyse goodness of fit. After
reading this paper the reader should be able to start their own analysis.

Keywords Exponential random graph model (ERGM) · Statnet · Networks · Tie
formation · Innovation networks · p-Star (p*)

1 Introduction

Networks are representations of relational data. Nodes represent entities while the
links connecting them represent any form of interaction or connection between the
entities. A large diversity of networks exists ranging from networks of social contacts
between individuals to inventor networks, collaboration networks, financial networks
and so on.

These networks attract the interest of researchers who want to explain the structure
of these networks. In other words, the would like to know why certain agents are
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central in a network and why other are at the periphery, why some networks are
densely interconnected and why others are sparse. In essence, we want to know why
firms a is connected to firm b, or what it the probability that firm a will connect to
firm c and how does this impact the overall structure of the network. This allows us
to identify if technological proximity between firms has a significant impact on the
choice of collaborator between firms and if this strategy has a significant impact on
the structure of the network.

The motivations for link creation cannot be observed directly from a visual repre-
sentation of interactions, nor are they clear from glimpsing at a database containing
relational data. In order to identify the motivations for entities to create links and
identify the global network structure, a more in-depth analysis is required.

Methods such as, Interpretive Structural Modeling, Total Interpretive Structural
Modeling, and Graph Theory Matrix allow for an analysis of the interactions between
variables but do not allow to for conclusions on the structure of the networks we aim
at analysing. In other words, the methods allow for identifying a correlation between
technological proximity and social proximity but do not explain the structure of the
network that allows this conclusion. Econometric analysis could shedmore light on the
motivations behind an observed link through logistic regressions. The probability of a
link could be explained by a number of variables. There is one important limitation to
this method. Due to the hypothesis of independence of the observations the probability
of a link between two nodes can never be explained by the presence of another link
inside the network. It is feasible that a link between two nodes exists only because of
the presence of other links in the network. Take for instance the idea that John and
Mary are connected solely because they have a common contact: Paul. Methods such
as Block-models cannot account for the impact of the structure of the network on the
probability of a link.

ERGM models are modified logistic regressions that allow for the probability of a
link to depend upon the presence of other links inside the network (amongst other vari-
ables). ERGMs are able to take into account directed interactions as well as weighted
interactions between nodes. The latter is an important point, since it allows an analysis
beyond a simple binary relation between nodes approaching the idea of fuzzy logic.

An ERGM identifies the probability distribution of a network so that it can generate
large samples of networks. The samples are then used to infer on the odds of a particular
link inside a network. Applications for this method are numerous in many fields of
research as shown by the increasing trend in the number of publications using ERGM
models (see Fig. 1). In economics the number of published papers appears to be
relatively low when compared to the other social sciences. Only 19 published papers
could be found in the Scopus database (and even less in the web of science database).
The topics are however quite diverse: knowledge sharing in organizations (Caimo and
Lomi 2015), alliance networks (Cranmer et al. 2012; Lomi and Pallotti 2012; Lomi
and Fonti 2012; Broekel andHartog 2013; van der Pol 2018) and geographic proximity
(Ter Wal 2013).

Since ERGMs allow for hypothesis testing, they can be put into use rather quickly
within existing theoretical frameworks adding the possibility to analyse relational data
in addition to normal data.
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Evolution of the number of ERGM publications

Fig. 1 Evolution of the number of publications involvingERGmodels for all disciplines (statistics included).
(Source: Scopus)
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Fig. 2 An example of a sub-graph. This particular structure is called a two-star

The growing interest, and development of a theory of economic networks, provides
a fertile ground for the use of ERGM models from the geography of innovation to
venture capital investments. The aim of this paper is to provide an overview of the
basic statistical theory behind ERGM models, which will be dealt with in the first
section. Section 3 discusses the concept of dependence and the explanatory variables
that can be included in the models. Section 4 discusses estimation methods while
Sect. 5 provides the R scripts and the interpretation of an example using data for the
French aerospace sector alliance network.

2 Theory

2.1 The Canonical form of ERGMModels

The aim of an ERGM is to identify the processes that influence link creation. The
researcher includes variables in themodel that are hypothesised to explain the observed
network, the ERGM will provide information relative to the statistical significance of
the included variable much like a standard linear regression. In addition, an ERGM
provides a probability distribution for the network allowing the creation of a large set
of networks which can be used for analysis.

It is useful at this point to explain that sub-structures of a network can (and are
predominantly) used as explanatory variables. Substructures are small graphs con-
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tained inside the network. An example can be found in Fig. 2. The presence of some
of these structures reflects certain link creation phenomena. A random network, i.e
a network in which links are created at random, shows a low number of triangles. A
triangle is an interconnection of three nodes, the smallest possible complete subgraph.
Randomly generated networks have a low level of clustering because they have only
a small number of triangles. The presence of triangles in an empiric network bares
witness that there is a process that generates a significant number of triangles that is
not the result of random link creation e.g, a tendency to create a link between common
friends. A network with a small number of large stars and a large number of small stars
can be the results of having a small number of very popular nodes. This is found in
citation networks as well as lexicographical networks. Including sub-structures allows
the modeling of certain processes as would any other variable.

In an ERGMwe can find two types of explanatory variables: structural and node or
edge-level variables. The latter come from other data sources and can be for example
age, size of a firm, proximity, gender and so forth. The structural variables can contain
indicators such as triadic closure, degree distribution and subgraphs.

2.2 The Odds of a Link

We are interested in assessing the probability of a link between two nodes, given a
certain number of variables. We note G a graph, and i and j two nodes that exist in
the graph. If i is linked to j in graph G this is written Gi j = 1 while the absence of a
link between these two nodes is written Gi j = 0.1 In addition, we note θ is a vector
of parameters and X a vector containing variables.

We suppose that the probability of a link is influenced by different variables.We are
interested in identifying the extend to which each variable influences the probability
of a link. A widespread method for the study of probabilities is the logistic regression.
The advantage of this method is that the logistic curve ensures that the computed
values remain between 0 and 1 and allow for an easier analysis of the results, since
they provide the marginal probability of a tie.

log(odds(Gi j = 1)) = log

(
p(Gi j = 1)

p(Gi j = 0)

)
= exp

{
θi j=1 · Xi j=1

}
exp

{
θi j=0 · Xi j=0

} (1)

where we add i j = 1 for the parameters and variables when a link between i and j
exists and i j = 0 when the link is absent. Using these equations the probability of a tie
between i and j would be independent from the probability between i and k. Indeed, a
logistic regression works under the hypothesis of independence of observations. In the
case of networks, observations are however not independent. For instance, common
friends tend to connect more in social networks, common collaborators have a higher
tendency towards collaboration. A model that aims at explaining a network structure
should be able to include these tie formation processes.

1 The values 0 and 1 refer to values found in an adjacency matrix, 1 indicating the presence of a link, 0 the
absence.
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We hence modify the initial equations to include the network structure as observed
before the link. This modification is introduced by Strauss and Ikeda (1990). We note
Gc

i j the network without link i j :

odds(Gi j = 1) = p(Gi j = 1|Gc
i j )

1 − p(Gi j = 1|Gc
i j )

= p(Gi j = 1|Gc
i j )

p(Gi j = 0|Gc
i j )

(2)

In Eq. 2 the odds of a link between nodes i and j now depend on the structure of
the network before a link between i and j is created (noted by |Gc

i j ). The probabilities
are now conditional.

We discussed previously that some of the variables in the model can be subgraphs.
The manner in which these are included in the model is simply by the count of these
sub-structures. In other words, the value of the variable triangles is the number of
triangles in the network. The same is true for stars, circuits and shared partners. This
has as a consequence that the counts of these variables are not the same when a link
between two nodes is present or absent. For instance the number of edges changes by
one. This means that we need to differentiate between the value of the variables when
a link is present and when it is absent. We hence note the vector of variables v(G+

i j )

when a link between i and j is added (hence the “+”) and v(G−
i j ) when the link is

absent. By including this differentiation we can rewrite Eq. 2 using the result in Eq. 1:

odds(Gi j = 1) = p(Gi j = 1|Gc
i j )

p(Gi j = 0|Gc
i j )

=
exp

{
θ ′ · v

(
G+

i j

)}

exp
{
θ ′ · v

(
G−

i j

)} (3)

where v(G+
i j ) represents the vector of variables in the network with the link between

i and j present and v(G−
i j ) the vector of variables with no link between i and j .

With some basic algebra we can develop the previous equation a bit further:

exp
{
θ ′ · v

(
G+

i j

)}

exp
{
θ ′ · v

(
G−

i j

)} = exp
{
θ ′ · v(G+

i j )
}

· exp
{
−θ ′ · v

(
G−

i j

)}
(4)

= exp
{
θ ′ (v

(
G+

i j

)
− v

(
G−

i j

))}
(5)

When developing the vector of variables we have:

= exp
{
θ ′
1 ·

(
v1

(
G+

i j

)
− v1

(
G−

i j

))
+ · · · + θ ′

n ·
(
vn

(
G+

i j

)
− vn

(
G−

i j

))}
(6)

Equation 6 shows that each parameter of the model is associated not with the counts
of sub-structure but with the difference in counts. The difference from having an extra
link, and the absence of said link. In essence (v1(G

+
i j ) − v1(G

−
i j )) represents the

variation in the number of counts of network statistic 1 that result from the additional
link. The variables are hence referred to as “change statistics”. In order to remove the
exponential from the right hand side of the equation we apply the logarithm:
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log

⎛
⎝exp

{
θ · v

(
G+

i j

)}

exp
{
θ · v

(
G−

i j

)}
⎞
⎠ = θ ′

1 ·
(
v1

(
G+

i j

)
− v1

(
G−

i j

))
+ · · ·

+ θ ′
n ·

(
vn

(
G+

i j

)
− vn

(
G−

i j

))
(7)

So we can rewrite Eq. 7 noting v1(�1Gi j ) the change statistic for a link between i
and j for variable 1 as follows:

log

⎛
⎝exp

{
θ · v

(
G+

i j

)}

exp
{
θ · v

(
G−

i j

)}
⎞
⎠ = θ ′

1 · v1(�1Gi j ) + · · · + θ ′
n · vn(�nGi j ) (8)

Each variable now accounts for the change in counts of network statistics. It is
important to remind us that Eq. 8 accounts for the odds of one edge in the network
while we are interested in the probability for the whole network. Following Besag
(1972) we can invoke here the Hammersley–Clifford theorem. Since this theorem is
based on concepts out of the reach and the purpose of this document we will not
detail the theorem. For a detailed explanation please refer to Hammersley and Clifford
(1971).

The theorem states that the probability of a network can be defined solely by the
counts of subgraphs. This is important because it tells us that all we have to do is
identify the correct subgraphs to ensure that a model of the network structure can be
found. The more accurate the subgraphs to more reliable the inference of additional
covariates.

2.3 The Probability Distribution of a Network

The Hammersley–Clifford theorem states that the probability of a graph can be
identified solely by counts of subgraphs. As such, we know that the probability is
proportional to these variables. Since we have an observed network that we wish to
replicate we look for the probability that the network generated by the model (X ) is
identical to the observed network (x). The logarithm is applied to bound the probabil-
ity:

log(p(X = x)) ∝ θ · v(G) (9)

p(X = x) ∝ exp {θ · v(G)} (10)

The right-hand side of the equation now needs to be normalized in order to obtain
a proper probability distribution. The normalization is not straightforward, indeed, in
order to normalize the probability of a network one needs to normalize by all possible
networks with the same number of nodes:

p(X = x) = exp {θ · v(G)}∑
y∈Y exp {θ · v(G)} (11)
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With y a possible network structure in the set of all possible networksY . The numer-
ator is normalized by the sum of the parameters over all possible network structures.

Note that this number is large. For a network with n nodes the number of possible

graphs is 2
n(n−1)

2 . So even for a graph with 10 nodes there are 35,184,372,088,832 pos-
sible graphs. The major problem to overcome with ERGMs is exactly this normalizing
constant.

With some simple algebra we find a general form for this model. Using θ as a vector
of parameters and v(G) a vector of variables for network G:

p(X = x) = exp {θ · v(G)}
exp

{
log

(∑
y∈Y exp {θ · v(G)}

)} (12)

p(X = x) = 1

ψ(θ)
· exp {θ · v(G)} (13)

Equation 13 is the most general and commonly used form of the model (Lusher
et al. 2012). Equation 13 also gives the canonical form of an ERGM model. Since
the density of the random variable (the network structure) has the particular form in
Eq. 13 it is referred to as an exponential family. In addition, since the structures are
represented by a random variable, they are random graphs.

Putting both elements together and this results in an Exponential Family Random
Graph. Since ERGM is easier to pronounce than EFRGM, the models are referred to
as ERGM.2

The canonical form gives the equation we wish to estimate. However, before we
tackle the question of estimation we need to explore in more detail the variables that
we would want to include in the model. We have stated previously that counts of
subgraphs can be used as explanatory variables. The following section will explain
which particular subgraphs are to be included in a model.

3 The Dependence Assumption

The previous section has shown that ERGMs are capable of providing conditional
probabilities for links. This dependence assumption is important because it allows
the researcher to study different phenomena that rule the formation of networks. This
section will show how the hypothesis of dependence of links is connected to the choice
of subgraphs that may be included in an analysis.

3.1 TheMarkovian Hypothesis

Links between nodes rarely appear at random, agents have specific reasons to connect
with one agent rather than another. The motivations behind interactions are numerous
and complex and have been subject to scrutiny from researchers in different strands of

2 This type of model is also referred to as the P∗ family of models (Anderson et al. 1999; Lusher et al.
2012).
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Fig. 3 Node level dependence
illustration: the Markovian
neighborhood
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the social sciences. This research shows that people or firms with common acquain-
tances or collaborators will have a higher tendency to cooperate for example. This
makes sense for two reasons, first, having common partners means common working
practices which have a positive impact on collaboration. Second, when searching for
collaborations firms tend to rely on referrals. A collaboration already in place allows
firms to observe in detail the efficiency of other firms, referrals that result from coop-
eration should hence be trustworthy. In addition cooperators of a firms have a higher
probability to be in contact with each other since they are more likely to meet during
social or professional events.

The odds of a link depend on the neighborhood of the node and not on the entire
rest of the graph. In more formal terms: two potential links Xi j and Xkl are in the same
neighborhood if {i, j} ∩ {k, l} �= 0. For instance, the dotted lines in Fig. 3 represent
potential links. The odds of this link will depend upon the nodes f and d have in
common, in this case node a. This shows that not all subgraphs are compatible with
analyzing this phenomenon. Any substructure that cannot account for a common node
should not be included.

Since it is hypothesized that only neighboring nodes impact the odds of a link,
we seek node-level dependence. This level of dependence is also referred to as a
nearest-neighbors level of dependence3 or dyadic dependence (Harris 2013).

For the purpose of the identification of relevant structures we need to find all struc-
tures that are subject to a Markov (or nearest-neighbor) level of dependence.

Suppose we have the social network depicted in Fig. 4. The graph shows social
interactions between four agents, a, b, c and d. Markovian dependence suggests that a
link between a and b depends on the connections between common nodes. The nodes
a and b have in common are d and c. A link between a and b hence depends upon
connections between a−c, a−d, b−c and b−d.

When one identifies all the possible dependencies one can generate a dependence
graph. The dependence graph for the complete Markov graph in our example can be
found in Fig. 5. In red we find the dependence links for link a−b, it shows the links
on which a−b depends.

3 Nearest-neighbor systems have been studied by Besag (1972).
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Fig. 4 Markov graph a

b

cd

Fig. 5 Dependence graph
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From this graph one can identify the substructures that comply with Markovian
dependence. All subgraphs in the dependence graph can be included in a model to
add Markovian dependence. For example, the dotted line between ab and ad in Fig. 6
represents a 2-star centered on agent a (Fig. 7).

Using the same method as for the 2-star one can also identify a triangle between
the three agents on the links bd, bc and dc. The Markov model hence includes three
configurations: edges, 2-stars and triangles. With the inclusion of these configurations
the Markovian model takes the form in Fig. 6. In more complex graphs one could also
identify 3-stars, 4-stars, some example can be found in Figs. 8–11.

In more complex graphs one could also identify 3-stars, 4-stars etc.
It should be obvious here that the number of distinct 2-stars is large and it is near

impossible to add a parameter for each distinct 2-star in the dependence graph. To
reduce the number of variables a hypothesis is made that each type of configuration
has the same probability of appearance, this allows for the inclusion of one parameter
per substructure. In the case of Markov dependence the ERGMmodel would have the
following form:

p(x = X |θ) = 1

ψ(θ)
exp

{
θE · vE (x) + θS2 · vS2 + · · · + θSn−1 · vSn−1 + θ� · v�

}
(14)
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Fig. 6 Dependence graph and configuration identification

ad ab

a b

d

Fig. 7 2-Star identification in the dependence graph

(a) (b) (c) (d)

Fig. 8 Triads. a Empty. b Dyad. c 2-Star. d Triad

(a) (b) (c) (d)

Fig. 9 K-stars. a Empty. b Dyad. c 2-Star. d Triad
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(b)(a) (c)

Fig. 10 Shared partners. a 1 partner, b 2 partners, c 3 partners

(a) (b) (c)

Fig. 11 Shared partners (dyadic). a 1 partner, b 2 partners, c 3 partners

where θE is the parameter for the number of edges, θS2 the parameter for the number of
2-stars and θ� the parameter for the number of triangles. Note here that the model does
not include simultaneously a 1-star and an edge parameter since they would be the
same variable. With this model one is able to study if common nodes have a positive
impact on the odds of link creation.

In addition the combination of the 2-star parameter and the triangle parameter
account for triadic closure effects. In other words, are triangles created because 3
nodes are connected at the same time, or are triangles formed by the closing of a
2-star.

Of course, Markovian dependence is only one of the possible levels of dependence.
One can imagine higher levels of dependence, or even any level of dependence to
be empirically relevant. One could suggest that firms evolving on the periphery of
a network to have a higher probability to connect with firms in the center of the
network than between them. The previous model was hence extended by Wasserman
and Pattison (1996) to allow for a general level of conditional dependence giving the
researcher a total liberty in the theories to test. Whatever the level of dependence
chosen, the dependence graph gives the substructure that may be included (Frank and
Strauss 1986).

3.1.1 Higher Levels of Dependence

It is possible to assume that theMarkovian level of dependence is not adequate or does
not capture the full complexity ofmechanisms of link creation. Links can be dependent
without there being a common node involved. For instance, consider a case in which
people work on the same floor in a company. The probability of a social link does
not depend upon a common node but simply on the fact that they are geographically
close, belong to the same community or have common cultural aspects (White 1992).
In order to be able to model more complex aspects of social interactions and indeed
even strategic interactions, one needs to be able to account for more structural aspects
than stars and triangles (however potent in explanatory power these might be). The
latter implies that the links are only dependent on each-other if nodes are part of
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a same neighborhood (neighborhood takes a broad definition here, it can be social,
geographical or cultural). Due to the inclusion of general dependence the model is
transformed to take the form:

p(x = X) = 1

ψ(θ)
exp

{ ∑
A∈M

λA · zA(x)

}
(15)

where A indicates the neighborhood as part of the ensembleM of all possible neighbor-
hoods. The parameter λA will take a positive value when the probability of observing
network x is increased.With the broad definition of “neighborhood” this model is able
is almost limitless. The latter results in a problem, the model is too general.

We have seen in the previous subsection that the structures that can included in the
ERGM model are defined by the dependency graph. In the case of a generalization
of the dependency assumption, i.e all ties may be dependent upon all other ties, the
dependency graph is a complete graph and all possible subgraphs can be considered
as variables. This leaves a tremendous amount of parameters to be estimated.

Pattison and Robins (2002) and Carrington et al. (2005) offer two solutions to this
problem. Their aim is to find a way to reduce the number of subgraphs to be included
in the model. The only way to achieve this is to reduce the level of dependency from
general to a more restricted level. A first step is to simply fix a level of dependency
which will automatically switch all other parameters to 0. This means that once one
defines a condition under which links are dependent upon each other a setting is
defined. Defining a level of dependency can be simply supporting the hypothesis that
links between firms depend upon a common region, or sector, size or any other group.
s is a setting, s being a subset of the set of nodes M : s ∈ M . The restriction gives a
new dependence graph which will contain a restricted number of subgraphs to include.
All parameters for substructures that are not part of the dependency graph are equal
to 0. Obviously, defining the settings oneself required extensive knowledge about the
network at hand. The inclusion of these settings results in what Pattison and Robins
(2002) refer to as partial conditional dependence.

Of course, one can also include other types of variables to a model, such as age of
the firm, geographic location, amount of public funds received etc. These variables
are referred to as node variates or node attributes The addition of these attributes
is introduced by Robins et al. (2001). The idea here is that links depend upon the
attributes of the nodes they are connecting. In other words the probability that two
nodes are connected depends upon the attribute of the node. These models are also
called social selection models and take the following form:

p(Y = y | X = x) = 1

ψ(θ)
· exp

{∑
i

θ z(x) + θa · za(x, y)
}

(16)

where the exponent a indicates parameters and structures relative to the inclusion of
dyadic dependence for the purpose of social selection.

In the same paper Robins et al. also described a social influence model in which
the attributes of the nodes are a result of the structure of the network (nodes take a
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particular attribute according to the nodes in the neighborhood for example). In other
words, the probability that a node variables takes a particular value depends upon
the structure of the network and the values of this (or indeed any other) node-level
variable.

We hence need to add a node variables to the model. Suppose we note Yi the value
of a node variable for node i . This variable can be anything from a geographic region
to the amount of public investment received by firms to the number of publications or
patents. When this variable is included in the ERGM the model is written:

p(Y = y | X = x) = 1

ψ(θi )
· exp

{∑
i

θ z(y, x)

}
(17)

Just as it is possible to put values on nodes it is also possible to values on dyads.
The question then is to know if the value of the dyad increases the probability of nodes
being connected. Think of situations where we would like to know if the amount
of investment between firms is related to cooperation or if technological proximity
between firms induces collaboration. Note here that the difference between dyadic
covariates and actor attributes resides in the value on the link between two nodes. In
the case of proximity is refers to the proximity of both firms, it is hence not a firm-level
variable. The value only makes sense when we consider firms two-by-two.

All the extensions made to the ERGM framework allow researchers to answer a
large variety of questions about social and economic processes.Many other extensions
which are beyond the scope of this document, but worth noting, are multivariate
relations in networks (Pattison andWasserman 1999) and dynamic networks in which
new ties depend upon the structure of the network at time t − 1. It is also possible
to model multivariate networks using ERGM. The idea is then that each link can
exist in different matrixes, each corresponding to a different type of link (social, work,
geography etc.). This extension allows researchers to study interplay between different
networks and how each network is affected by the other networks.

Before looking at estimation methods for ERGM models one problem needs to be
addressed: the degeneracy problem.

3.2 Solving Degeneracy: Curved ERGMs

ERGMmodels are prone to degeneracy issues. When estimating the model the change
statistics can behave in such away that the largemajority of the probability distribution
is placed on either an empty or a full graph. As we will discuss in more detail a bit
later, a simulation is performed to identify the probability distribution of a graph.
This is done on a step by step basis, starting with an empty network and adding links
one by one until a maximum likelihood is achieved. This probability distribution is a
function of the change statistics and is thus impacted by the change in log-odds for an
additional tie (for a given effect). In other words if an additional edge would create two
new 2-stars, then the log-odds of observing that tie would increase by two multiplied
by the parameter of the 2-star variable. A random graph model is considered stable
if small changes in the parameter values result in small changes in the probabilistic
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structure of the model (Handcock et al. 2003). When a new edge is added to the graph
this not only increases the number of edges but might also increase the number of
other sub-configurations that might be included in the model. The parameters of the
model control the number of sub-graphs of a particular type that are expected in the
graph. For instance a 2-star might be transformed into a triangle by the addition of
an edge which also adds two 2-stars. A 2-star can become at 3-star and so on. This
cascading effect will result in the simulation procedure jumping over the MLE and
converge to a full graph. Lusher et al. (2012) [chapter 6] show that, in the case of the
Markov (or triad model), the number of expected triangles increases as the parameter
for triangles increases. They highlight a phase transition for certain values of the
parameter where the number of expected triangles increases more than exponentially.
This transition explain that the probability density distribution has high weights either
on a (close to) empty graph or on a complete graph.4 This problem is increasingly
present as the number of nodes increases. The larger the network the higher the number
of substructures one can have.

In order to avoid the model to put too much weight on the full graphs, Snijders et al.
(2006) propose to add several variables based on their concept of partial conditional
dependence. The idea is to include a weighted degree distribution to the model, giving
a high weight to low density while decreasing the weights as the degree increases.
This reduces the impact of the high density variables responsible for the degeneracy
of the initial model. Mathematically we can then write (using the notations of the
initial paper):

u(d)
α =

n−1∑
k=0

e−αkdk(y) (18)

where dk(y) is the number of nodes with degree k and α the parameter of the weights.
This is referred to as the geometrically weighted degree distribution. The degree dis-
tribution can also be written as a function of the stars in the network. After all, a degree
distribution is nothing more than a distribution of stars. Nodes with a degree of five are
5-stars, degree two are 2-stars and so forth. We can hence formulate the distribution
as follows:

usλ = S2 − S3
λ

+ S4
λ2

− · · · + (−1)n−2 · Sn−1

λn−3 =
n−1∑
k=2

(−1)k · Sk
λk−2 (19)

where Sk is a the number of stars of degree k and lambda the parameter. Thismethod is
referred to as Alternating k-stars. The difference between the geometrically weighted
degree distribution and the K-stars is resides in the alternating signs. A large value of
3-stars is counterbalanced by a negative value for 4-stars due to the inverse sign of
the parameter. The addition of the weights ensures that the change in change statistics
stays small. Indeed Snijders et al. (2006) show that the change statistics can be written:

zi j = −(1 − e−α)
(
e−α ˜yi+ + e−α ˜y j+

)
(20)

4 In addition, the degeneracy of the model can result in problems with the estimation procedures.
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where ˜yi+ is the density of firm i when the link between i and j is added. Equation
20 shows that the value of the change statistic is reduced by the factor −(1 − e−α).
This factor hence ensures that the change statistics do not take too high values and
result in a nested probability distribution. The inclusion of either the alternating k-
stars or the geometrically weighted degrees transform the ERGMmodel into a Curved
Exponential Random Graph Model (Efron 1975).

All that is left to do now is estimate the model.

4 Estimation

Estimation allows for the identification of the parameters that maximize the likelihood
of a graph. Since we only have one observation (the observed graph) a set of graphs
from the same distribution is required. The set of graphs that may be generated by
this procedure should have the observed graph as a central element to ensure a valid
sample.

4.1 Markov Chain Monte Carlo

In the first section we identified the general form of an ERGMmodel (see Eq. 13). The
odds of a graph were normalized by the sum of the parameters of all possible graphs.
This leaves us with a constant to estimate which is near impossible. A workaround has
to be found for ERGMs to be useful. A first development by Besag (1975), Strauss
and Ikeda (1990) was to estimate the model using pseudo-likelihood estimation. The
properties of this method are however not clear (Snijders et al. 2006; Robins et al.
2007) we shall hence focus here on more recent methods that are better understood.

A method for estimating the parameters of ERGMs using a sample is developed by
Anderson et al. (1999), Snijders (2002), Geyer and Thompson (1992). They estimate
the model by Markov Chain Monte Carlo (MCMC) to find the maximum likelihood
estimates (MLE). The idea is to extract a sample from a distribution that follows Eq.
13 asymptotically, not requiring the direct computation of the normalizing constant.
Their paper points out that almost any maximum likelihood can be accomplished by
a MCMC.

AMarkov chain is a sequence of random variables such that the value taken by the
random variable only depends upon the value taken by the previous variable. We can
hence consider a network in the form of an adjacency matrix in which each entry is
a random variable. By switching the values of these variables to 0 or to 1 (adding or
removing a link from the network) one can generate a sequence of graphs such that
each graph only depends upon the previous graph. This would be aMarkov chain. The
hypothesis is then that if the value at step t is drawn from the correct distribution than
so will the value at step t + 1. Unlike regular Monte-Carlo methods, the observations
that are sampled are close to each-other since they vary by a single link. However, one
would need a method for selecting which variable should change state in order to get
closer to the MLE, this is done using the Metropolis–Hastings algorithm or the Gibbs
sampler.
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4.2 Metropolis–Hastings Algorithm and the Gibbs Sampler

The Metropolis–Hastings algorithm picks a variable at random and changes it’s state.
This results in either a new edge in the network or in the disappearance of an edge.
The probability of the graph is then computed and only if the probability of the altered
graph is higher than the previous one is the new graph retained for the next step. In
other words the new graph is retained as long as the likelihood is increased:

min

{
1,

pθ(x∗)
pθ (xm−1)

}
(21)

This decision rule is called the Hastings ratio. The advantage of this ratio is that it
does not include the normalizing constant ψ(θ).

Since the Markov chain starts at 0, a burn-in in needed to remove part of the chain
to identify if the chain has converged or not (the burn-in can be parameterised in most
software).

The steps taken by the Metropolis–Hastings algorithm are quite small. These small
steps are implemented in order to avoid overstepping the global optimum which can
easily happen in the case of larger parameter spaces. Other methods allow for bigger
steps and as such converge faster and need a lower burn-in. The risk of larger steps
is however overstepping the global optimum and convergence towards other local
optima. The Metropolis–Hastings algorithm may be slower than others but is more
precise in it’s estimation.

Some programs use the Gibbs sampler, which is a special case of the Metropolis–
Hastings algorithm (Hunter and Handcock 2006). The difference between Gibbs and
Metropolis–Hastings resides in the chosen step. In the case of the Gibbs sampler, the
state of each element in the vector of parameters is chosen and updated conditionally on
the state of the other parameters. This means that if this decision rule was implemented
in theMetropolis–Hastings algorithm theprobability that the change is retained is equal
to one. This makes the Gibbs sampler a relatively fast method. This sampling method
is used by the different algorithms that are used to estimate ERGM models.

Both methods allow for the generation of a sample of graphs that can be used
for inference. The sample of graphs is obtained by varying not the parameters but
the variables of the model until it is centered around the observed graph. Now that a
sample of graphs has been foundwe need to estimate the parameters of themodel. Two
of the most widely used estimation algorithms, the “Stepping” and “Robbins–Monro”
algorithm will now be reviewed.

4.3 The“Stepping Algorithm”

This method introduced by Hummel et al. (2012). It has the advantage of approach-
ing the MLE directly while “Robbins–Monro” does not. ERGM models are indeed
estimated using the maximum likelihood method. Starting from the canonical ERGM
form we define the log likelihood function as:

L(θ) = θ · v(G) − log(ψ(θ)) (22)
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The problem here is the presence of the normalizing constant which cannot to
computed. The improvements of this method over the previously one resides in the use
of a log-normal approximation. The algorithmproposed herewill converge towards the
log-likelihood using a step-by-step method. The sampler used in with this estimation
procedure is the Metropolis–Hastings sampler discussed previously. Once a sample of
graphs has been identified the estimation algorithm is launched. Since the normalizing
constant in Eq. 22 cannot be compute a workaround has to be found. The idea is to
give starting parameters (θ0).The log-likelihood ratio can then be written (Hummel
et al. 2012):

L(θ) − L(θ0) = (θ − θ0)
T V (G) − logEθ0

[
exp(θ − θ0)

T V (g)
]

(23)

Geyer and Thompson (1992) point out that maximizing this ration by the means of
a sample distribution of graphs generated with θ0 only behaves well when θ is close
to θ0. In other words one has to choose the correct starting point for the algorithm to
find the MLE. The MLE solves the equation:

E
θ̂
v(G) = v(Gobs) (24)

The idea is to suppose that the MLE is not the observed value of the parameters
but some point between the mean value parameterization and the observed value. A
parameter γ defines the steps taken:

ω̂t = γt · v(G) + (1 − γt )ω̄ (25)

whereωt represents the estimate in themean parameter space.5 Ideally then, wewould
want γ = 1 so that the expected value of the parameters is the observed value. If this
is the case the algorithm is considered to converge, this is shown in Fig. 12 which is
the output of the R code. Once convergence is detected a large sample based on the
parameters is computed and the MLE are estimated and gives as the final values.

Step 1: Set the iteration number equal to 0 and choose initial parameters for vector
η0.

Step 2: Use MCMC to simulate graphs from the probability function for parameter
vector η0.

Step 3: Compute the mean of the sample.
Step 4: Define a pseudo observation that is a convex combination of the mean of the

sample and the observed value.
Step 5: Replace the observed value by the pseudo observation.

4.4 Stepping AlgorithmOutput

Robbins–Monro The Robbins–Monro algorithme is a stochastic approximation
method introduced by Robbins and Monro (1951) which is used by Snijders (2001)

5 In the algorithm the initial values are chosen to be the MPLE.
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1 I t e r a t i o n # 1 . T ry ing gamma= 0 .17
2 I t e r a t i o n # 2 . T ry ing gamma= 0 .14
3 I t e r a t i o n # 3 . T ry ing gamma= 0 .16
4 I t e r a t i o n # 4 . T ry ing gamma= 0 .22
5 I t e r a t i o n # 5 . T ry ing gamma= 0 .25
6 I t e r a t i o n # 6 . T ry ing gamma= 0 .34
7 I t e r a t i o n # 7 . T ry ing gamma= 0 .31
8 I t e r a t i o n # 8 . T ry ing gamma= 0 .46
9 I t e r a t i o n # 9 . T ry ing gamma= 0 .74
10 I t e r a t i o n # 10 . T ry ing gamma= 0 .97
11 I t e r a t i o n # 11 . T ry ing gamma= 1
12 I t e r a t i o n # 12 . T ry ing gamma= 1
13 Now end ing wi th one l a r g e sample f o r MLE.
14 E v a l u a t i n g log−l i k e l i h o o d a t t h e e s t im a t e . Using 20 b r i d g e s : 1 2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 .

Fig. 12 R output for the stepping algorithm

and Snijders (2002) to estimate ERGM models. Typically the method estimates:

E {Zθ } = 0 (26)

where Zθ is a vector of parameters equal to u(Y ) − u0 where u0 is the observed
value of the statistics. This allows us to rewrite the equation as a moment equation.
The algorithm gives starting parameter values equal to the average of the parameter
values. The initial parameters that will launch phase two are defined by (Lusher et al.
2012):

θ t+1 = θ t − at · D−1 (
z
(
xm

) − z(xobs)
)

(27)

whereD is the co-variancematrix, the diagonal of thismatrixwill be used as the scaling
matrix. a defines the convergence, it is set to at = at−1

2 . The idea is that each step
brings the values closer to the MLE. Hence large steps might result in the exceeding
the MLE and divergence. The fact that the ar reduces in value with each step allows
a smooth path to the MLE. As we move closer to the observed values of the statistics
z(xm) − z(xobs) tends towards zero. The R output in Fig. 12 shows how the steps (a)
start at a value of 0.1 and tend towards 0 with each iteration of the second phase of
the algorithm. At the start of each step the starting parameters are considered to be
the average values of the previous step. The number of iterations varies from model to
model. The iterations stop once the trajectories of the generated statistics cross those
of the observed ones (Lusher et al. 2012).

The burn-in represents the number of simulations that are removed from theMCMC
in order to make the chain “forget” the starting point. In other words it is to make sure
the starting values do not impact the final result.

Finally the algorithm checks for convergence using a convergence statistic. Just as
in the case of the stepping algorithm one supposes that the MLE is reached when the
distance between the observed values and the average of the simulated ones is close
to 0. If there is no convergence than one can relaunch the estimation with as starting
parameters the results of the previous simulation (Lusher et al. 2012).

The largest difference between this method and the stepping method resides in two
factors. First this method approaches an estimate of theMLE and does not evaluate the

123



Introduction to Network Modeling Using Exponential… 863

1 Robbins−Monro a l g o r i t hm wi th t h e t a _0 equa l t o :
2 edges t r i a n g l e
3 −4.676219 1 .456380
4 Phase 1 : 13 i t e r a t i o n s ( i n t e r v a l =1024)
5 Phase 1 comple t e ; e s t im a t e d v a r i a n c e s a r e :
6 edges t r i a n g l e
7 3676 .692 1175 .308
8 Phase 2 , subphase 1 : a= 0 . 1 , 9 i t e r a t i o n s ( b u r n i n =16384)
9 t h e t a new : −4.66068075119643
10 t h e t a new : 1 .42768924899568
11 Phase 2 , subphase 2 : a= 0 .05 , 23 i t e r a t i o n s ( b u r n i n =16384)
12 t h e t a new : −4.64740903958273
13 t h e t a new : 1 .4235669242362
14 Phase 2 , subphase 3 : a= 0 .025 , 58 i t e r a t i o n s ( b u r n i n =16384)
15 t h e t a new : −4.62881856406474
16 t h e t a new : 1 .41405593966042
17 Phase 2 , subphase 4 : a= 0 .0125 , 146 i t e r a t i o n s ( b u r n i n =16384)
18 t h e t a new : −4.60985096388914
19 t h e t a new : 1 .39932813390954
20 Phase 3 : 20 i t e r a t i o n s ( i n t e r v a l =1024)
21 E v a l u a t i n g log−l i k e l i h o o d a t t h e e s t im a t e .

Fig. 13 R output for the Robbins–Monro algorithm

MLE function directly. Second, the steps are of a higher magnitude and can exceed the
MLE if the starting values are close to the MLE. The use of either of the algorithms
purely depends upon the model to be estimated. One algorithm might have better
convergence in one case while the opposite can be true in another case. Note however
that both use the Metropolis–Hastings method for the simulation of the MC.

Now that we have discussed which variables can be included and how to estimate
the parameters we will turn to an application using R (Fig. 13).

5 Code R and Example

We use here different R packages (Hunter et al. 2008; Handcock et al. 2008; Butts
2008).

The data (and hence the results of the estimations) are from the French aerospace
collaboration network. Using patent data, collaborations were identified which were
used to create a network. Previous studies have focused on the factors that influence
collaboration (Cantner and Meder 2007; van der Pol and Rameshkoumar 2018). The
aim of the study is to understand if technological proximity played a significant role in
the structuring of the collaboration network. We hence used a dyadic covariate called
“proximity”. The network contains 176 firms.

1 #Import data .
2 Network <− read . table ("ADJ_MATRIX.csv" , sep=" ; ")

The data used here was already in the form of an adjacency matrix and hence could
be used directly. It is however also possible to use edgelists. Since the data needs to
be transformed into a network object the network package will be needed. The latter
is able to transform edgelists into adjacency matrices.
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1 #Import the dyadic covariates
2 proximity <− read . table ("Proximity_matrix . csv" , sep=" ; ")
3 proximity . e <− read . table ("Proximity_matrix_exp. csv" , sep=" ; " , dec=" ,")
4 citation <− read . table ("Citation_matrix . csv" , sep=" ; ")

Since I’m using two measures of proximity I have two matrices and a matrix that
includes the number of citations between firms. These need to be imported in the
same manner as the network itself.

1 #We now transform the imported data into network objects with the package ’network’
2 Network <− as .matrix(Network)
3 proximity <− as .matrix(proximity)
4 proximity . e <− as .matrix(proximity . e)
5

6 #Transform to network format
7 Network <− as .network(Network, directed = FALSE)
8 proximity <− as .network(proximity , directed=FALSE)
9 exp_proximity <− as .network(exp_proximity , directed=FALSE)

10 citation <− as .network( citation , directed=TRUE)

We now have different objects to work with: the network and dyadic covariates
in the form of networks. Note that the model constructed here is for un undirected
network as shown by the option directed = FALSE in the as.network function.

We now have to decide which variables to include in the model. Let’s start with a
simple model containing only edges. We invoke here the ergm() function from the
ergm package:

1 model <− ergm(Network ~ edges)

This gives us the most basic form of an ERGM model, the estimation method
defaults to Monte Carlo MLE (Geyer and Thompson 1992).

1 ==========================
2 Summary of model f i t
3 ==========================
4

5 Formula: Network ~ edges
6

7 Iterations : 7 out of 20
8

9 Monte Carlo MLE Results :
10 Estimate Std . Error MCMC \%p−value
11 edges −3.85280 0.05649 0 <1e−04 ∗∗∗
12 −−−
13 Signif . codes: 0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’ . ’ 0.1 ’ ’ 1
14

15 Null Deviance: 21349 on 15400 degrees of freedom
16 Residual Deviance: 3113 on 15399 degrees of freedom
17

18 AIC: 3115 BIC: 3122 (Smaller is better . )

The parameter for the variable edges has an estimated value of −3.8528. This
means that the probability of two ties connecting is:
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p(i → j) = exp(−3.85)

1 − exp(−3.85)
= 0.02174241 (28)

Recall Eq. 6, this equation stated that the variables were change statistics. The
parameter should hence be multiplied by the change in the number of subgraphs.
In other words, if an additional edge creates three triangles the parameter should be
multiplied by three. Since an additional edge only creates one new edge we do not
multiply. Let’s try the same but with only triangles as explanatory variable.

1 ==========================
2 Summary of model f i t
3 ==========================
4

5 Formula: Network ~ triangles
6

7 Iterations : NA
8

9 Stepping MLE Results :
10 Estimate Std . Error MCMC \% p−value
11 triangle −1.91496 0.01712 0 <1e−04 ∗∗∗
12 −−−
13 Signif . codes: 0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’ . ’ 0.1 ’ ’ 1
14

15 Null Deviance: 21349 on 15400 degrees of freedom
16 Residual Deviance: 8935 on 15399 degrees of freedom
17

18 AIC: 8937 BIC: 8945 (Smaller is better . )

The parameter for the variable triangles has an estimated value of −1.9146. This
means that the log-odds of two nodes connecting is:

− 1.9146 ∗ δ tr iangles (29)

where δ tr iangles gives the change in the number of triangles. Hence the log-odds
depend upon the number of triangles that will be created by an additional tie:

• If the link creates 1 triangle, the log-odds are 1 * −1.9146. The probability is then
0.1284

• If the link creates 2 triangles, the log-odds are 2 * −1.9146. The probability is
then 0.0213

Let’s see how we interpret estimates when we have more than one variable: the
Markov model.

1 ==========================
2 Summary of model f i t
3 ==========================
4

5 Formula: Network ~ edges + kstar (2) + triangles
6

7 Iterations : NA
8

9 Monte Carlo MLE Results :
10 Estimate Std . Error MCMC% p−value
11 edges −28.30222 0.22246 0 <1e−04 ∗∗∗
12 kstar2 7.68159 0.07356 0 <1e−04 ∗∗∗
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13 triangle 57.09972 0.79544 0 <1e−04 ∗∗∗
14 −−−
15 Signif . codes: 0 ’∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’ . ’ 0.1 ’ ’ 1
16

17 Null Deviance: 21349 on 15400 degrees of freedom
18 Residual Deviance: 35811780 on 15397 degrees of freedom
19

20 AIC: 35811786 BIC: 35811809 (Smaller is better . )

In this case an additional edge, if it creates x 2-stars and y triangles, has log-odds:

−28.30 + x · 7.68 + y · 57.099

Since the model includes lower and higher order subgraphs (2-stars are a substruc-
ture of triangles) we can conclude here that triadic closure is significant in the network.
In other words, 2-stars are closed to form triangles.

Note however the values of the information criteria AIC and BIC, stating these val-
ues are high is an understatement. The model must suffer from some kind of problem.
Section 5.3 will show how to deal with degeneracy and other problems.

Now we want to see how proximity (technological in the case of this study) influ-
ences the structuring of the network. Let’s start with a simple model using the edge
covariate “proximity”. The comment for adding an edge covariate is simple edgecov.
Similarly node covariates (age, gender, type of firm, country...) are added using the
nodecov() or node f actor command. The node factor command is particularly useful
since it allows to compare log-odds to a reference point. For example, one could cat-
egorise the R&D expenses of firms into low, average and high. The ERGM would
then give the log-odd of 2 categories as compared to a third. In other words is a link
more likely for firm with average expenses than for low? This feature seems not to be
available for edge covariates however.

The followingmodel only contains edges and the edge covariate.Afirst pointwe can
notice is that the AIC and BIC criteria are lower with the addition of the edgecovariate.
The model is hence improved with the addition of the proximity parameter. Firms with
proximity are 2.13 times more likely to connect in this network (ceteris paribus).6 The
probability of an additional edge is then positively impacted by the technological
proximity. More specifically the average degree of the network is positively impacted
by technological proximity.

1 ==========================
2 Summary of model f i t
3 ==========================
4

5 Formula: Network ~ edges + edgecov(proximity)
6

7 Iterations : 7 out of 20
8

9 Monte Carlo MLE Results :
10 Estimate Std . Error MCMC% p−value
11 edges −4.5222 0.1972 0 < 1e−04 ∗∗∗
12 edgecov. proximity 0.7575 0.2058 0 0.000234 ∗∗∗

6 e0.7575 since this is the odds and not the log-odds.
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13 −−−
14 Signif . codes: 0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’ . ’ 0.1 ’ ’ 1
15

16 Null Deviance: 21349 on 15400 degrees of freedom
17 Residual Deviance: 3096 on 15398 degrees of freedom
18

19 AIC: 3100 BIC: 3115 (Smaller is better . )

A network analysis performed on this network showed that the network has a
scale-free structure. This information can be helpful in the modeling of the ERGM
as we have information on the distribution of the degrees. The same is valid for any
other information about the network, small-world properties, level of clustering or
centrality distribution. The information provided by SNA allows a first understanding
of the structural properties of the network that will allow for a more robust model once
edge and nodal covariates are added.

So if the network ha a scale-free structure the structure should be explained by the
degree distribution. To check this we can add different degrees to the model. This can
be done by using the command degree(). On can simple add one statistic for one
degree, i.e degree(3), for the impact of nodes with degree 3, or add multiple degrees
as was done in the following model. Note that the addition of multiple degrees is
achieved by writing degree(a : b) to add all the degrees between a and b.

1 ==========================
2 Summary of model f i t
3 ==========================
4

5 Formula: Network ~ edges + degree(2:6) + edgecov(proximity)
6

7 Iterations : 7 out of 20
8

9 Monte Carlo MLE Results :
10 Estimate Std . Error MCMC% p−value
11 edges −4.2417 0.1606 0 < 1e−04 ∗∗∗
12 degree2 −0.8945 0.2233 0 < 1e−04 ∗∗∗
13 degree3 −1.4608 0.2381 0 < 1e−04 ∗∗∗
14 degree4 −1.8040 0.2720 0 < 1e−04 ∗∗∗
15 degree5 −1.6668 0.2699 0 < 1e−04 ∗∗∗
16 degree6 −2.0959 0.4109 0 < 1e−04 ∗∗∗
17 edgecov. proximity 0.5451 0.1726 0 0.00159 ∗∗
18 −−−
19 Signif . codes: 0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’ . ’ 0.1 ’ ’ 1
20

21 Null Deviance: 21349 on 15400 degrees of freedom
22 Residual Deviance: 2989 on 15393 degrees of freedom
23

24 AIC: 3003 BIC: 3056 (Smaller is better . )

The addition of these variables to the model once again decreases the AIC and the
BIC, the model is hence enhanced. The structure of the network can be explained by
a degree distribution.

1 ==========================
2 Summary of model f i t
3 ==========================
4
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5 Formula: Network ~ edges + degree(2:6) + edgecov(proximity2)
6

7 Iterations : 7 out of 20
8

9 Monte Carlo MLE Results :
10 Estimate Std . Error MCMC \% p−value
11 edges −4.2382 0.1815 0 < 1e−04 ∗∗∗
12 degree2 −0.8764 0.2053 0 < 1e−04 ∗∗∗
13 degree3 −1.4438 0.2229 0 < 1e−04 ∗∗∗
14 degree4 −1.7876 0.2728 0 < 1e−04 ∗∗∗
15 degree5 −1.6763 0.2874 0 < 1e−04 ∗∗∗
16 degree6 −2.1068 0.4595 0 < 1e−04 ∗∗∗
17 edgecov.proximity2 0.5446 0.1941 0 0.00502 ∗∗
18 −−−
19 Signif . codes: 0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’ . ’ 0.1 ’ ’ 1
20

21 Null Deviance: 21349 on 15400 degrees of freedom
22 Residual Deviance: 2989 on 15393 degrees of freedom
23

24 AIC: 3003 BIC: 3057 (Smaller is better . )

These models seem to work qui nicely. We discussed in the previous sections that
models were prone to degeneracy and the solutions to this problem. Let’s have a look
at how we can model ERGMs with alternating k-stars and a geometrically weighted
degree distribution.

5.1 Curved Exponential RandomGraphModels

Studies show that the addition of weights on the degree distribution helps to avoid
bi-modal distributions in the parameter space, i.e avoids the generated networks from
being either full or close to empty.Different forms can be added to theR code. Sincewe
have here an undirected network we can use either the alternating k-stars altkstar()
or the geometrically weighted degree distribution gwdegree. For directed graph there
are additional commands which work in similar manner as what we show here. We
include here a statistic for the gwdegree with the option f i xed = TRUE. The latter
means that we do not make an estimation of the scaling parameter, we want it to be
equal to 1. The resulting model is hence not a curved ERGM.

1 ==========================
2 Summary of model f i t
3 ==========================
4

5 Formula: Network ~ edges + triangles + edgecov(proximity2) + gwdegree(1 ,
6 fixed = TRUE)
7

8 Iterations : NA
9

10 Stepping MLE Results :
11 Estimate Std . Error MCMC% p−value
12 edges −5.717e+00 1.829e−01 0 < 1e−04 ∗∗∗
13 triangle 1.802e+00 3.026e−05 0 < 1e−04 ∗∗∗
14 edgecov.proximity2 6.811e−01 2.159e−01 0 0.001607 ∗∗
15 gwdegree 2.917e−01 8.380e−02 0 0.000502 ∗∗∗
16 −−−
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17 Signif . codes: 0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’ . ’ 0.1 ’ ’ 1
18

19 Null Deviance: 21349 on 15400 degrees of freedom
20 Residual Deviance: 4170 on 15396 degrees of freedom
21

22 AIC: 4178 BIC: 4208 (Smaller is better . )

In order to have a curved exponential random graph model, the parameter that
defines that we fixes in the previous code has to be estimates as well. In the following
code we estimated the model with an edgewise shared partners variable. This vari-
able is used to check for transitivity. By switching the option f i xed = TRUE to
f i xed = FALSE the model becomes curved. The results now include an estimate for
the parameter alpha of the model. Note here that the parameter can only be interpreted
if the gwesp statistic is significant.

1 ==========================
2 Summary of model f i t
3 ==========================
4

5 Formula: Network ~ edges + edgecov(proximity) + gwesp(alpha = 1, fixed = FALSE)
6

7 Iterations : NA
8

9 Stepping MLE Results :
10 Estimate Std . Error MCMC% p−value
11 edges −5.39343 0.45601 0 <1e−04 ∗∗∗
12 edgecov. proximity 0.48255 0.51641 0 0.05 ∗∗∗
13 gwesp 1.19503 0.08333 0 <1e−04 ∗∗∗
14 gwesp. alpha 0.88784 0.09792 0 <1e−04 ∗∗∗
15 −−−
16 Signif . codes: 0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’ . ’ 0.1 ’ ’ 1
17

18 Null Deviance: 21349 on 15400 degrees of freedom
19 Residual Deviance: 2847 on 15396 degrees of freedom
20

21 AIC: 2855 BIC: 2885 (Smaller is better . )

The interpretation of these estimates are much more complex than previously. The
parameters need to be exponentiated to find λ that we saw in the equations (Hunter
2007). We hence find e0.88784 = 2.42. Since the parameter is positive we can conclude
that transitivity is present.

5.2 Goodness of Fit Diagnostics

In order to check if a model is a good fit we use the mcmc.diagnostics command.
This gives us a number of outputs, notable the matrix of correlations and p values for
both the individual parameters and the model as a whole.

1 Sample s ta t i s t i cs cross−correlations :
2 kstar2 edgecov. proximity
3 kstar2 1.0000000 0.5494967
4 edgecov. proximity 0.5494967 1.0000000
5

6 Individual P−values (lower = worse) :
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Sample statistics
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Fig. 14 Goodness of fit diagnostics

7 kstar2 edgecov. proximity
8 0.3126642 0.9294963
9 Joint P−value (lower = worse) : 0.6994233 .

The p values are high for the parameters and the model, we can hence conclude
that the model is globally significant. In order to go into a bit more detail when it
comes to the estimates, the commands also provides us with plots, see Figs. 14 and
15. We stated that an ERGM should fit the observed network perfectly, on average.
This means that from the simulated networks we expect the average values to be those
of the observed network. If this is not the case then the sample the model is based on
does not come from the same distribution as the observed network.

Figure 14 shows an example of what we want to observe. in the first graphs the
values oscillate around the mean which is what we want. The graphs on the right hand
show a centered distribution of the values, we hence conclude that the model is a good
fit. A bad example can be found in Fig. 15. The graphs show that the distribution is
not at all centered, and there is no oscillation around the mean. This model is hence a
bad fit.

One can also study the goodness of fit using the gof () command. Using a plot
command this provides a box plot (see Fig. 16).
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Fig. 15 Goodness of fit diagnostics, bad example
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Fig. 16 GOF: boxplot analysis
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The gof command can receive different parameters, one can chose to plot any
number of variables and decide to increase or decrease the number of simulations to
refine the results. The following code provides the GOF of the whole model (GOF =
Model) using 20 simulations (nsim = 10).

1 gof_model <− gof(model, GOF = ~Model, nsim=20)

The results give us a box plot per variable and a black line representing the observations
on the empirical network. Since we want the mean of the simulations to be equal to
the observed network, the dark line should coincide with the center of the boxplots
(the vertical line in the boxplot representing the median of the distribution). This is
the case here, the model is hence a good fit.

5.3 Improve BadModels

The fitting of an ERGM is a trial and error procedure. If a model behaves badly there
are a couple of parameters to change in order to improve results. Of course one should
only start these procedures once the variables chosen are stabilized. Starting with a
null model containing only edges and adding on to this model while comparing the
AIC and BIC values to find the variables of importance.

Once this is done and degeneracy is still observed one can start by switching esti-
mation methods. One method might work better in one case than the other.

The estimation algorithm can be chosen in the control arguments of the ergm()

command.

1 model <− ergm(Network~ edges , control=control .ergm(main.method = "Stepping") )
2 model <− ergm(Network~ edges , control=control .ergm(main.method = "Stepping" ,MCMC.

samplesize=70000, MCMC. interval=5000))

The burn-in can also solve problems, the burin represents the number of iterations
that are removed from the simulation. It other words, the higher the burnin the more
the procedure forgets about it’s initial parameters. Increasing this value hence allows
for keeping only the latest values which might represent the real values better. This
can be achieved by adding an option to the ERGM.

A second method of improving estimation would be to increase the sample size by
changing the parameter MCMC.samplesize. This increase will result in having more
precise estimates by an increase in the number of statistics drawn from the sample.
This, of course, increases computation time. The ERGM package includes multicore
features that can help reduce computation time drastically. All this requires is the
addition of some parameters to the control.ergm argument. Adding parallel = 4
notifies the package that the computer has 4 cores, parallel.t ype sets the type of
multicore. For a regular computer this should be fixed to “PSOCK”. Thiswill distribute
the computations over the 4 cores of the computer and hence increase speed.

1 a <− ergm(Network~edgecov(proximity2)+triangles+altkstar (1.812, fixed=FALSE) , control=
control .ergm(main.method=c("Stepping") , parallel=4, parallel . type="PSOCK" , MCMC.
samplesize=20000))
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6 Conclusion

With the interest for network analysis growing in economics, ERGM are an efficient
tool for an in-depth analysis while checking for statistical significance. The complex-
ity of social and economic phenomena are difficult to assess and even though existing
methods such as block-models and classic logistic regressions do not allow an assess-
ment of all the intricate rules that are at play. By taking into account the impact of the
current structure of the network ERGM distinguish themselves from other methods
of network analysis and allow for more accurate hypothesis testing. Being able to add
relational data to an analyses allows for increasing the precision of existing models as
well as the testing of new hypotheses.

Even though themodels are powerful, the tools used for their analysis still need to be
improved. The fast expansion of research on the subject of ERGMs is tackling issues
improving the quality of ERGMs overall. One important issue is worth mentioning
here, which is the size of the network under analysis. In the present paper the network
had a size of 176 nodes, large networks can cause significant issues with computation
time or the program simply refusing to run. Recent research is aiming at tackling this
issue (Schmid and Desmarais 2017; Bouranis et al. 2017).

Many questions in economics are related to the strategies of link creation which
are difficult to answer with other methods of analysis. Whether they are used to anal-
yse social networks, collaboration networks, trade networks or financial networks,
ERGMs can provide vital insights into the understanding of network dynamics. I
should however point out at this point that the hypothesis of modeling networks with
an exponential law should not be forgotten. Certain interactions might not be well
suited for exponential laws, a notable example is citations networks. Research has
shown that citation networks follow a power-law rather than an exponential law. For
networkswith an underlying power-lawone should look atDynamic ProcessModeling
which is based on a power-law.
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