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Abstract
In economic (financial) time series analysis, prediction plays an important role and
the inclusion of noise in the time series data is also a common phenomenon. In partic-
ular, stock market data are highly random and non-stationary, thus they contain much
noise. Prediction of the noise-free data is quite difficult when noise is present. There-
fore, removal of such noise before predicting can significantly improve the prediction
accuracy of economic models. Based on this consideration, this paper proposes a new
shrinkage (thresholding) function to improve the performance of wavelet shrinkage
denoising. The proposed thresholding function is an arctangent function with several
parameters to be determined and the optimal parameters are determined by ensuring
that the thresholding function satisfies the condition of continuously differentiable.
The closing price data with the Shanghai Composite Index from January 1991 to
December 2014 are used to illustrate the application of the proposed shrinkage func-
tion in denoising the stock data. The experimental results show that compared with
the classical shrinkage (hard, soft, and nonnegative garrote) functions, the proposed
thresholding function not only has the advantage of continuous derivative, but also
has a very competitive denoising performance.

Keywords Economic (financial) time series · Wavelet shrinkage denoising ·
Thresholding function · Threshold rule · Continuously differentiable

1 Introduction

For describing and analyzing complex socio-economic objects and activities,
economic-mathematical modeling (Kolosinska and Kolosinskyi 2013) has become
one of the most effective methods in terms of mathematical models in combination
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with new engineering decisions, and the modeling also becomes part of economics
itself. As an abstract category, knowledge economics (Svarc and Dabic 2017) must
be expressed in a tangible concrete form. This can be achieved by means of math-
ematical modeling of its processes as managerial objects. The results of theoretical
research and the development of mathematical models (methods) (Neittaanmäki et al.
2016) have been successfully used to solve real and important economic and financial
problems: analysis and forecast of the flow of budget financial resources (Konchitchki
and Patatoukas 2014), control of development and operation support at any budget
level (Power et al. 2017), quality (risk) assessment (Bruzda 2017) of economic (finan-
cial) systems management in terms of energy-entropic approach, risk management
(Boubaker and Raza 2017) of investment processes. Up to now, the traditional eco-
nomic (financial) analysis methods are still widely used. However, the requirements
of the market economy and global finance, and the rapid development of science and
technology necessitate new, higher theoretical support and precise analytical methods.

In a wider framework that treats time series as signals, economic (financial) time
series models are making use of new mathematical tools and signal processing tech-
nologies which go beyond traditional Fourier transform into two new and related
methodologies: the time–frequency analysis and the time-scale method. Both have
benefited from the newly developed mathematical tool: the wavelet transform (Tiwari
et al. 2016; Jiang et al. 2017). The concept of “wavelet” originated from the study
of time–frequency signal analysis, wave propagation and sampling theory (Morlet
et al. 1982a, b). When signal is nonstationary, the traditional spectral analysis cannot
preserve the time dependence of relevant patterns. Results of the wavelet transform
can be presented as a contour map in the time–frequency plane, allowing the chang-
ing spectral composition of nonstationary signals to be measured and compared. So,
the wavelet transform is more suitable for the analysis of economic data since most
economic and financial time series are nonstationary (Yang et al. 2017). One of the
main reasons for the discovery and use of wavelets and wavelet transforms is that the
Fourier transform does not contain the local information of signals (Pal and Mitra
2017). Wavelet analysis allows a general function to be decomposed into a series of
(orthogonal) basis functions called wavelets, with different frequency and time loca-
tions. In wavelet analysis, signals consist of different features in time and frequency
domain, but their high-frequency components would have a shorter time duration than
their low-frequency components (Dewandaru et al. 2016). A particular feature of the
function can be identified with the positions of the wavelets into which it is decom-
posed (Chen and Li 2016). Since it provides a very useful tool for time–frequency
localization, the wavelet transform has enjoyed an ever increasing success in various
scientific, engineering, and signal processing applications. Like many other complex
systems, economic and financial systems also include variables simultaneously inter-
acting on different time scales (Tzagkarakis et al. 2016) so that relationships between
variables can occur at different horizons. Therefore, the wavelet analysis is an exciting
method for solving difficult problems in economics and finance.

In the field of economy and finance, prediction always plays a very important role
(Singh and Challa 2016). Long-term prediction is used to control the behavior of a
dynamic economic system, and short-term prediction is intended to give an accurate
track of economic activities. The wavelet method has also received a large attention
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in analysis of economic and financial data for forecasting purpose; including crude oil
price forecast (de Souza e Silva et al. 2010; Jammazi 2012; Jammazi and Aloui 2012;
Chang and Lee 2015; Alzahrani et al. 2014; Tiwari 2013; He et al. 2012a, b; Naccache
2011; Yousefi et al. 2005), stock market (financial time series) forecast (Tiwari and
Kyophilavong 2014; Kim and In 2007; In and Kim 2006; Bagheri et al. 2014; Huang
2011; Shin and Han 2000), commodity market forecast and energy futures prices
(Vacha and Barunik 2012; Vacha et al. 2013), and metal market forecast and risk
management (Kriechbaumer et al. 2014; Michis 2014; He et al. 2012a, b).

In the field of signal processing, a signal is rarely observed in isolation from a
combination of noise since noise is present in various degrees in almost all environ-
ments; and noise can correspond to actual physical noise in the measuring devices, or
to inaccuracies of the model used (Vaseghi 2008). Similarly, in economic and financial
fields, almost all economic data records contain noise because of inevitable measure-
ment errors and seasonalities. And the sources of noise mainly include Gaussian noise
(Dhifaoui 2018), white noise (Benedetto et al. 2015; Li and Shang 2018; Kinateder
et al. 2017; Oet et al. 2016; Gidea and Katz 2018), red (color) noise (Ftiti et al. 2015),
shot noise (Egami and Kevkhishvili 2017; Liang and Lu 2017) and so on. In addition
to the above noises in the classical sense, the economic systems also have their specific
types of noise: micro-market noise (Hammoudeh andMcAleer 2015), micro-structure
noise (Zu and Boswijk 2014; Barunik and Hlinkova 2016), noise traders (Hoesli et al.
2017; Page and Siemroth 2017; Shahzad et al. 2017; Yildirim-Karaman 2018; Ramiah
et al. 2015) and so on. Thus, traditionally, for noisy economic data, the corresponding
economic (financial) behavior would have been regarded as almost completely unpre-
dictable (Cao et al. 1996) since noise is a random process; whereas we now know that
at least in principle it is possible to forecast their future evolution exactly (Wang et al.
2012; Furlaneto et al. 2017; Cavalcante et al. 2016). In practice, there are some limits
to the predictability of economic and financial behaviors due to noise or measurement
errors. Based on the noisy economic (financial) time series data, there are two ways
to predict the economic behavior. One is to make prediction directly on the original
time series without making noise reduction (Lahmiri 2016; Sehgal and Pandey 2015).
Another is to reduce the noise firstly, then to make predictions on the denoised time
series, and finally to translate the predictions of the denoised time series data back
into predictions of the original data (Gao et al. 2010; Afanasyev and Fedorova 2016;
Bai and Wei 2015). It could be argued that in practice, a better approach could often
be to reduce noise in the data before performing the forecast. Since noisy model is not
invertible, estimation of the noise-free data is quite difficult and requires newmethods.

The success of a noise processing method depends on its ability to characterize
and model the noise process, and to use the noise characteristics advantageously to
differentiate the signal from the noise. This problem leads to some interesting forms
of denoising (Jammazi et al. 2015; Sun and Meinl 2012). When looking at a financial
time series, it is often useful to consider the data as observations sampled from a noisy
version of some underlying functions, known as data generating process. The data
generating process may be considered to be a function from a function space. We can
specify very simple functions, known as atoms (Greenblatt 1998), which may be taken
in linear combinations to represent any functionwithin a particular function space. The
famous continuous wavelets yield a redundant decomposition (Elad 2010), but they
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have properties that may be more suitable to noise than those of other decomposition
techniques (Ftiti et al. 2015). Wavelet denoising methods have been widely used in
financial (economic) data analysis and processing. They mainly include compressed
sensing based denoising method (Yu et al. 2014), the generalized optimal wavelet
decomposing algorithm (Sun et al. 2015), wavelet band least square method (Barunik
and Hlinkova 2016), wavelet coherence and phase-difference method (Ferrer et al.
2016), a seasonal Mackey–Glass-GARCH (1, 1) model (Kyrtsou and Terraza 2010),
instrumental variables combined with wavelet analysis method (Ramsey et al. 2010),
wavelet denoising-based back propagation neural network (Wang et al. 2011), wavelet
decomposition, particle swarm optimization and neural network (Chiang et al. 2016),
the cross-wavelet power spectrum, wavelet coherency and phase difference method
(Aguiar-Conraria et al. 2008), and statistical white noise tests and generalized variance
portmanteau test method (Boubaker 2015).

The above analysis describes two aspects of the application of wavelet transform in
economic and financial fields: prediction and denoising. Though wavelet analysis is
not a forecasting technique, its distinguishing features (excellent temporal resolution,
computational efficiency, overall methodological simplicity, and the possibility to
decompose time series according to time scales) allow one to believe it can be helpful
in forecasting economic and financial processes. In theory, wavelets should enable
one to conduct a more precise study via building models specified within (or across)
different frequency bands and computing forecasts as aggregates of the forecasted
values for the component series, at the same time, they may significantly simplify
the analysis via transforming the predicted variables in such a manner that it may be
possible to find better forecast models. Another of the most important characteristics
of wavelets is their denoising property. The wavelet transform (WT) can be adapted to
distinguish noise in signal through its properties in the time and frequency domains.
The ideas of noise removing by WT are based on the singularity information analysis
and the thresholding of the wavelet coefficients. Only few wavelet coefficients in the
lower bands could be used for approximating the main features of the clean signal.
Hence, by setting the smaller details to zero, up to a predetermined threshold value,
we can reach a nearly optimal elimination of noise while preserving the important
information of the clean (desired) signal. A particular wavelet method called wavelet
shrinkage denoising (Donoho and Johnstone 1995) has caused its advocates to claim
that it offers all that we might desire of a technique, from optimality to generality.
Wavelet shrinkage denoising is also a nonparametric method. Thus, it is distinct from
parametric methods in which we must estimate parameters for a particular model that
must be assumed a priori (Taswell 2000).

Time series analysis is usually about identifying signal from noise. A time series is a
collection of observations well-defined data items obtained through repeatedmeasure-
ments during a period of time. But data, particularly economic (financial) data, can be
truly noisy, partly because the outcome is often a human construct, which can only be
measured with some error. Noise can stem from other factors, such as the collection of
data on variables that are not correlated with the outcome of interest, or the addition of
interaction and/or higher order terms, which can easily fail in-sample goodness-of-fit
tests (Breiman 2001), meaning the combination of many variables and their transfor-
mations in a conventional, say, linear regression (Zografidou et al. 2017; Wei et al.
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2018; Amasyali and EI-Ghoary 2018), can be so flexible or fit the observed data so
well that it has little value in the explanation of new or out-of-sample data. Because of
the noises from the system internal and external factors, the uncertainty increases in
the financial markets and economic activities. Due to the uncertainty, the prediction
task becomes more complex and difficult. In recent years, researchers are attracted
towards the study of noise on the economic (and financial) predictions. And these pre-
dictions included economic model predictive control (Rashid et al. 2016; Bayer et al.
2016), bankruptcy predictions (Jardin 2017; Barboza et al. 2017), intraday predictions
(Ruan andMa 2017; Gunduz et al. 2017), contagion prediction strategy of the financial
network (Sui et al. 2016), stock price trend prediction (Gopal and Ramasamy 2017),
residential price trend prediction (Francke and Minne 2017) and so on. Obviously,
financial time series involve different time scales such as intraday (high frequency),
hourly, daily, weekly, monthly, or tick-by-tick stock prices of exchange rates. The
analyses of financial time series have economic importance. Especially, stock index
(price) prediction (Chiang et al. 2016) is a challenging application of modern time
series forecasting, essential for the success of many businesses and financial institu-
tions. On the other hand, with the continued liberalization of cross-border cash flow,
international financial market has become increasingly interdependent. Investors are
highly susceptible to exchange risk and fluctuations in equity prices throughout the
world. Consequently, this paper only relates to stock index (price) prediction problem.
For investor, stock price (index) data are always one of themost important information.
Stock price prediction usually provides the fundamental basis for decision models to
achieve good returns, which is the first and the most important factor for any investor.
This can help to improve companies’ strategies and decrease the risk of potentially
high losses, it can also help investors to cover the potential market risk to establish
some techniques to progress the quality of financial decisions (Hussain et al. 2016).
Unfortunately, stock price (index) is non-stationary and highly-noisy due to the fact
that stockmarkets are affected by a variety of random factors. Predicting stock price or
index with the noisy data directly is usually subject to large errors. In order to improve
the prediction accuracy of the stock price, it is very necessary to denoise the original
stock data.

In this paper, we mainly study denoising methods and the WT is utilized to remove
noise from the stock prices data for prediction purpose. It is well known that volatility
is an intrinsic characteristics of the stock market. While the prices of stock indices
fluctuate daily, the price movements do not always reflect the value of the indices or
their associated long-term trends. This is due in part to various noises (random factors)
in the stock market, such as those caused by speculation and program trading, among
others. In fact, the reasons for the volatility of stock prices are very complicated.
They are the result of the combined effect of many random factors, not caused by a
single factor. In practice, the observed stock data are contaminated by a lot of noise.
These types of noise may be diverse, including classical (Gaussian, white, color,
shot) noise and financially specific noise (micro-market noise, micro-structure and
noise trader). Therefore, the noise in the stock prices data involved in this paper is a
mixture of many random factors, not a single type of noise. The goal of this paper is
to investigate the wavelet shrinkage denoising methods and the threshold rules based
on stock prices data, the focus is on constructing a new shrinkage (thresholding)
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function. The remainder of the paper is organized as follows. In Sect. 2 we briefly
introduce the concepts of shrinkage denoising and wavelet transform, and several
classical thresholding functions are also introduced. In order to improve the denoising
performance, in Sect. 3 we devote to designing a novel shrinkage function which has
continuous derivatives (i.e., the differentiability property). In Sect. 4 the L2 risks of
different thresholding functions are compared and analyzed, we also discuss the two
classic (universal, minimax) threshold rules. Some experiments based on stock data
are done in Sect. 5 to validate the denoising performance of the proposed thresholding
function. Finally, Sect. 6 summarizes the results and presents the conclusions.

2 Wavelet Transform and Shrinkage Denoising

In economic and financial time series (signals) processing and analysis, detection
of signals in the presence of noise and interference is a critical issue. The wavelet
transform (WT) has become an important tool to suppress the noise due to its ability
to detect transient features in signals. The WT has primary properties such as sparsity
or compression which means that WT of real-world signals tend to be sparse, i.e., they
have a few large coefficients that contain the main energy of the signal and other small
coefficients which can be ignored. In essence, the WT is equivalent to a correlation
analysis system, so that we can expect its output to be maximumwhen the input signal
most resembles the analysis template and much smaller coefficients when there is
mostly noise. This is the basic principle of wavelet denoising. This principle is the
basis for the matched filter which is the optimum detector of a deterministic signal
in the presence of additive Gaussian white noise. However, compared with matched
filter, the advantage of the WT is that WT use several scales to decompose the signal
into several resolutions. Denoising techniques are based on the idea that the amplitude
(correlation factor) rather than the location of the spectrum of the signal is different
from the noise. It might also be noted that denoising should not be confused with
smoothing (despite the use by some authors of the term smoothing as a synonym for the
term denoising). Whereas smoothing removes high frequencies and retains low ones,
denoising attempts to remove whatever noise is present and retain whatever signal is
present regardless of the signal’s frequency content. It is well known that the energy of
the noise is spread among all the coefficients in thewavelet domain. Due to the fact that
the WT of a noisy signal is a linear combination of the WT of the noise and the clean
signal, the noise power can be suppressed significantly with a suitable threshold value
while the main signal features can be preserved. Therefore, in the wavelet domain,
the denoising can be done by simply thresholding the WT coefficients based on the
so-called wavelet shrinkage. The functionality of the shrinkage process is due to the
threshold value and the thresholding rule. The related works on signal denoising via
wavelet shrinkage have shown that variouswavelet thresholding schemes for denoising
have near-optimal properties in the minimax sense (Donoho and Johnstone 1998).

Wavelet transform is generally used to analyze non-stationary time series for gen-
erating information in both the time and frequency domains. It may also be regarded
as a special type of Fourier transform at multiple scales and decomposes a signal into
shifted and scaled versions of a “mother” wavelet. The continuous wavelet transform
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(CWT) is defined as the convolution of a time series x(t) with a wavelet function w(t)
(Gomes and Velho 2015):

CW T ψ
x (b, a) � ϕψ

x (b, a) � 1√|a|
∫

x(t)ψ∗
(

t − a

b

)
dt (1)

where a is a scale parameter, b is the translational parameter and ψ* is the complex
conjugate ofψ(t). Let a �1/2s and b �k/2s, where s and k belong to the integer set Z .
The CWT of x(t) is a number at (k/2s, 1/2s) on the time-scale plane. It represents the
correlation between x(t) and ψ*(t) at that time-scale point. Thus, as a discrete version
of (1) the discrete wavelet transform (DWT) is defined as

DW T ψ
x (k, s) � ϕψ

x

(
k

2s
,
1

2s

)
�

∫ ∞

−∞
x(t)ψ∗

(
t − k

/
2s

1
/
2s

)
dt

(2)

which separates the signal into components at various scales corresponding to succes-
sive frequencies. Note that DWT corresponds to the multi-resolution approximation
expressions for analysis of a signal in many frequency bands (or at many scales).
In practice, multi-resolution analysis is carried out by starting with two channel fil-
ter banks composed of a low-pass and a high-pass filter, and then each filter bank
is sampled at a half rate (1/2 down sampling) of the previous frequency. The num-
ber of repeats of this decomposition procedure will dependent on the length of data.
The down sampling procedure keeps the scaling parameter constant (1/2) throughout
successive wavelet transforms (Li and Kuo 2008), so that it benefits from simple com-
puter implementation. DWT has been well developed and applied in signal analysis
of various fields. In this paper, DWT is utilized to remove noise from the stock prices
data by constructing the appropriate shrinkage (thresholding) function.

The pioneered studies on wavelet shrinkage denoising include RiskShrink, a
practical spatially adaptive method which works by shrinkage of empirical wavelet
coefficients (Donoho and Johnstone 1994), an asymptotically minimax method which
translates the empirical wavelet coefficients towards the origin for curve estimation
based on noisy data (Donoho et al. 1995), and SureShrink which suppresses noise by
thresholding the empirical wavelet coefficients (Donoho and Johnstone 1995). Gen-
erally these methods are collectively referred to as “WaveShrink” which is based
on the principle of shrinking wavelet coefficients towards zero to remove noise.
WaveShrink is now well established as a technique for removing noise from corrupted
signals.

Many scholars have provided a large number of applications of wavelets in eco-
nomics and finance by making use of DWT in decomposing economic and financial
data. These works paved the way to the application of wavelet analysis for empirical
economics and finance. The ensemble empirical model decomposition (EEMD) (Wu
and Huang 2009), the ensemble version of empirical model decomposition (EMD)
(Huang et al. 1998), appliedwith the goal of feature extraction, aims at creating features
by extracting quasi-periodic components from signals. The components generated by
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this nonparametric method can be used as inputs to classification models, effectively
removing most of the human bias from feature generation. This decomposition tech-
nique andDWThave been applied successfully inmany fields and are especially useful
for non-stationary time series. A lot of studies have applied the EEMD and DWT to
predictive tasks in the field of economics and finance. Prediction on the highly oscilla-
tory, non-stationary time series generated by financial instruments such as stock prices
and market indices present one of the most popular and important problems in time
series research. Wavelet analysis is well known for its ability of certain wavelet-based
methods of signal estimation for forecasting economic and financial time series, and
for its ability to examine the frequency content of the processes under scrutiny with a
good joint time–frequency resolution. The endogenously varying time window, which
underlies this type of frequency analysis, makes this approach efficient computation-
ally, enables a precise timing of events causing or influencing economic fluctuations
and makes it possible to analyze economic relationships decomposed according to
time horizons. From the above analysis we can get the following conclusions. In
addition to the application of signal (time series) denoising, the application of wavelet
analysis in economic predictions is even more important because conventional DWT’s
good decorrelation property allow one to believe that it can be helpful in forecasting
economic and financial processes. A surprising implication of the development of
forecasting techniques to real and financial economic variables is the recognition that
the results are strongly dependent on the analysis of scale. Only in the simplest of
circumstances will forecasts based on traditional time series (data) aggregates accu-
rately reflect what is revealed by the time scale decomposition of the time series. In
practice, the WT (CWT and DWT) leads to an analysis of less complicated univari-
ate and multivariate processes, to which tailor-made forecasting techniques can be
applied.

Suppose we observe data (time series) y=(y1, y2, …, yn)T given by

yk � f (tk) + σ zk (k � 1, 2, . . . , n) (3)

where tk � k/n, f (·) is a deterministic function which is potentially complex and
spatially inhomogeneous, {zk} are independent Gaussian random variables with zero
mean and unit variance, and σ is the standard deviation of the Gaussian noise. Our
goal is to estimate f (·) with small L2 risk (Donoho and Johnstone 1994, 1995):

R
(

f̂ , f
)

� 1

n

n∑
k�1

E
[

f̂ (tk) − f (tk)
]2

(4)

where f̂ (tk) is the estimated sample value of f (tk). Obviously, L2 risk is the mean-
square-error (MSE).

WaveShrink has been widely used to estimate the function f (·) and it has very broad
asymptotic near-optimality properties, e.g., WaveShrink achieves, within a factor of
log n, the optimal minimax risk over each functional class in a variety of smoothness
classes and with respect to a variety of loss functions, including L2 risk. The approach
of WaveShrink comprises the following step:
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(a) A forwardWTof the observed data, i.e., transformdata y into thewavelet domain;
(b) Thresholding the wavelet coefficients, i.e., shrink the empirical wavelet coeffi-

cients towards zero;
(c) Inverse wavelet transform of the thresholded coefficients, i.e., transform the

shrunken coefficients back to the data domain.

Shrinkage of the empirical wavelet coefficients works best when the underlying
set of the true coefficients of f (·) is sparse. In other words, when the overwhelm-
ing majority of the (non-important) coefficients of f (·) are small, and the remaining
few (important) large ones explain most of the functional form of f (·). Therefore, an
admissible shrinkage function (also known as a thresholding function) should have
the following two ingredients: (a) throw away the small non-important coefficients;
and (b) keep the large important coefficients.

The shrinkage functions used in theWaveShrink are the hard and the soft shrinkage
functions, and they are all the basic ones. The hard shrinkage function can be described
as the process of keeping the important coefficients unchanged, and setting the value
of the non-important coefficient to zero if its absolute value is lower than the threshold
λ. This is mathematically expressed as

δH
λ (x) �

{
0, |x |≤ λ

x, |x |> λ
(5)

where threshold value λ∈ [0, ∞).
The soft shrinkage function can be considered as an extension of the hard shrinkage.

It sets the non-important coefficients to zero if their absolute values are lower than the
threshold, and then shrinks the (nonzero) important coefficients toward zero. More
specifically, the important coefficients are reduced by the absolute threshold value.
Mathematically, this can be expressed as (Donoho 1995)

δS
λ (x) �

⎧⎨
⎩
0, |x |≤ λ

x − λ, x > λ

x + λ, x < −λ

(6)

Both the hard and the soft shrinkages have advantages and disadvantages. The soft
shrinkage is continuous with discontinuous derivative, and its estimates tend to have
bigger bias due to the shrinkage of large coefficients. Due to the discontinuities of the
shrinkage function, the hard thresholding estimates tend to have bigger variance and
can be unstable, that is, sensitive to small changes in the data (Gao 1998).

In order to remedy the drawbacks of the hard and the soft shrinkages, the
WaveShrink denoising technique can use the non-negative garrote shrinkage function
which was first introduced by Breiman (1995). The non-negative garrote shrinkage
function is defined as follows

δG
λ (x) �

{
0, |x |≤ λ

x − λ2
/

x, |x |> λ
(7)
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From the above three shrinkage functions, we can summarize the following con-
clusions: (a) The hard shrinkage function is discontinuous at the threshold λ; (b) The
soft shrinkage function is continuous everywhere; (c) Like the soft shrinkage, the
non-negative garrote shrinkage function is continuous, therefore, it is more stable than
the hard shrinkage. In addition, the non-negative garrote shrinkage approaches the
identity line as |x| gets large (close to the hard shrinkage), so it has smaller bias than
the soft shrinkage for large coefficient. These results suggest that the non-negative
garrote shrinkage function provides a good compromise between the hard and the
soft shrinkage functions. However, these three functions in common is that they all
have a single threshold. Gao and Bruce (1997) introduced a general firm (also called
semisoft) shrinkage function with two thresholds (λ1, λ2):

δλ1,λ2 (x) �
⎧⎨
⎩
0, |x |≤ λ1

sgn(x)λ2(|x |−λ1)
λ2−λ1

, λ1 < |x |≤ λ2

x, |x |> λ2

(8)

where sgn(·) is the sign function. For values of x near the lower threshold λ1, the firm
shrinkage δλ1, λ2(x) behaves like the soft shrinkage δS

λ1(x). For values of x above the
upper threshold λ2, δλ1,λ2(x) � δH

λ2(x) � x . Obviously, the firm shrinkage with λ1 �
λ2 is the hard shrinkage, and the firm shrinkage with λ2 �∞ is the soft shrinkage.
This means that the firm shrinkage generalizes the hard and soft shrinkage in the
WaveShrink.

By choosing appropriate thresholds (λ1, λ2), semisoft shrinkage outperforms both
hard and soft shrinkages and it has all the benefits of the best of the hard and soft
without the drawbacks of either (Gao 1998). However, a distinct disadvantage of the
semisoft shrinkage is that it requires two thresholds. This makes threshold selection
problems much harder and computationally more expensive for adaptive threshold
selection procedures.

Thewaveforms of the hard (λ=3.31), soft (λ=3.31), non-negative garrote shrinkage
functions (λ=3.31) and the semisoft shrinkage function (λ1 �2.331, λ2 �7.259) are
shown in Fig. 1.

In spite of the fact that the improved thresholding functions such as non-negative
garrote and semisoft are a good compromise between hard and soft functions and have
advantages over both of them, their fixed structure, their dependency on the threshold
value, and sometimes lack of higher order differentiability, decrease their functionality
and flexibility. Therefore, it is necessary to investigate a more desirable thresholding
function with continuous higher order derivatives.

3 NewNonlinear Thresholding Function

In order to simplify the threshold selection process and reduce the computational
burden, we will construct a new shrinkage function which contains only one threshold
parameter λ. At the same time, the designed thresholding function must be as much
as possible to overcome the defects of the hard and the soft shrinkage functions.
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Fig. 1 The waveforms of the shrinkage functions

The basic principles for constructing the new thresholding function are as follows.
First, the proposed shrinkage function should have continuous derivatives in order
to solve the potential problems of other shrinkage functions. Secondly, this function
should remain the wavelet coefficients unchanged if the absolute values are higher
than the threshold value λ. From amathematical point of view, the proposed shrinkage
function should approximate the linear function y=x as much as possible. Finally, the
proposed function should set the wavelet coefficients to zero if the absolute values
are lower than the threshold value λ. Similarly, mathematically, the proposed function
should approximate the function y=0. Due to the fact that the necessary condition for
implementing an adaptive learning gradient-based algorithm is the differentiability of
the thresholding function, the first principle above is to consider the differentiability
property of the shrinkage function. The second and third principles are to overcome
the disadvantages of the hard and the soft shrinkage, i.e., the proposed thresholding
function tries to avoid large estimate variance and large estimate bias.

According to the above basic principles, the proposed shrinkage function should
have the following properties. If the wavelet coefficients x fall within the interval [−λ,
λ], the thresholding function should be replaced by y=0; If the wavelet coefficients x
are outside the interval [−λ, λ], the thresholding function should be replaced by y=x.
It is based on this idea that we will look for the suitable function to approximate these
properties.

Mathematically, when we need to approach a function near the origin, an arctan-
gent function is often used since it is usually used to obtain a better approximation.
The arctangent function is defined as the inverse of the tangent function and it is also
denoted by y=arctan(x). The domain of arctangent function is a real number domain,
and its range is {y|−π /2<y <π /2}. Obviously, the function y=arctan(x) has two hor-
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Fig. 2 The waveform of arctangent function

izontal asymptotes y=π /2 and y=−π /2. It is one-to-one function and onto function.
The waveform of the arctangent function is shown in Fig. 2.

From Fig. 2 we can see that the arctangent function passes through the origin,
i.e., y=0 if the x value is very small. On the contrary, y ≈x when the x value leaves
the origin. This means that arctan(x) has the desired properties of the thresholding
function we need, therefore, arctan(x) can be used as a basic function to construct the
new shrinkage function with continuous derivatives.

In order to increase the flexibility and capability of the proposed shrinkage (thresh-
olding) function, three shape tuning factors are added to it as follows:

η(λ, x, α, β, k) �
⎧⎨
⎩

x − sgn(x)
[
λ − β · arctan(k · λ2α+1)

]
, |x |≥ λ

β · arctan(k · x2α+1), |x |< λ
(9)

where α, β and k are all real numbers that need to be determined, and the value of α

should be nonzero positive integer to ensure that the thresholding function is an odd
function. In order to facilitate the processing of various signals, the proposed shrinkage
function is not only a continuous function but also has a higher order derivative.

We now investigate the differentiability property through applying this property
on the proposed function. The necessary and sufficient condition for differentiability
of the function at point x=λ with respect to the threshold variable is continuity and
equality of left and right derivatives at the given point.
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The partial derivative of the proposed shrinkage function is

∂η(λ, x, α, β, k)

∂x
�

{
1, |x |≥ λ

β · (2α+1)·k·x2α
1+(k·x2a+1)2

, |x |< λ
(10)

due to the continuity of the partial derivative, i.e.,

∂η(λ, x, α, β, k)

∂x

∣∣∣∣
x�λ−

� ∂η(λ, x, α, β, k)

∂x

∣∣∣∣
x�λ+

(11)

the parameter β can be obtained

β � 1 + (k · λ2a+1)2

(2α + 1) · k · λ2α
(12)

The second order partial derivative of the proposed shrinkage function is

∂2η(λ, x, α, β, k)

∂x2
�

{
0, |x |≥ λ

2(2α + 1)kβ αx2α−1−k2(α+1)x6α+1

[1+(kx2a+1)2]2
, |x |< λ

(13)

Similarly, due to the continuity of the second order partial derivative, i.e.,

∂2η(λ, x, α, β, k)

∂x2

∣∣∣∣
x�λ−

� ∂2η(λ, x, α, β, k)

∂x2

∣∣∣∣
x�λ+

(14)

the parameter k can also be obtained

k �
√

α

α + 1

1

λ2a+1 (15)

By substituting (15) into (12) we get

β � λ√
α(α + 1)

(16)

Similarly, by substituting (15) and (16) into (9), a differentiable shrinkage function
is resulted as follows:

η(λ, x, α) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − sgn(x)
[
λ − λ√

α(α+1)
arctan

(√
α

α+1

)]
, |x |≥ λ

λ√
α(α+1)

arctan
(√

α
α+1

1
λ2α+1

x2α+1
)
, |x |< λ

(17)
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In practical applications, the parameter α must be given a determined value before
using the shrinkage function. To determine the optimal value of α, we can further
simplify the formula (17) as follows:

η(λ, x, α) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − λsgn(x)
[
1 − 1√

α(α+1)
arctan

(√
α

α+1

)]
, |x |≥ λ

λ√
α(α+1)

arctan
[√

α
α+1

( x
λ

)2α+1]
, |x |< λ

(18)

By analyzing the formula (18), we can get the following two results:
(a) When |x|≥λ, i.e., the absolute values of the wavelet coefficients are higher than

the threshold λ, the proposed shrinkage function should be close to a hard thresholding
as much as possible because the hard shrinkage has a smaller (estimate) bias than the
soft thresholding. Therefore, for the (important) wavelet coefficients, the value of α

must satisfy the following condition:

q1 � 1 − 1√
α(α + 1)

arctan

(√
α

α + 1

)
is as small as possible

Obviously, when α=1, the q1 value is minimized because the parameter α is a nonzero
positive integer, and in this case, q1 �0.5648. This result shows that for the important
wavelet coefficients, the proposed shrinkage function is closer to the non-negative
garrote shrinkage. So the proposed function also has the advantage of the non-negative
garrote shrinkage.

(b)When |x| <λ, i.e., the absolute values of thewavelet coefficients are lower than the
threshold λ, the proposed function should set the non-important wavelet coefficients to
zero as much as possible in order to reduce the noise. Thus, for the wavelet coefficients
belonging to the noise, the value of α must satisfy the following condition:

λ√
α(α + 1)

arctan

[√
α

α + 1

( x

λ

)2α+1] → 0

This condition requires that the value of α be as large as possible.
From the above analysiswe can see that the two results are contradictory.Obviously,

we need to consider these two results comprehensively in order to select the optimal
value of α. To this end, we also need to use the L2 risk (or MSE) as a criterion of
judgement because the L2 risk is also a comprehensive balance of estimate variance
and bias (Gao and Bruce 1997). In the next section, we will discuss the selection of the
optimal α value and will give formulas of bias, variance and L2 risk of the proposed
shrinkage estimate of a Gaussian random variable.

4 The L2 Risks and the Optimal Thresholds

For the sake of convenience, the proposed shrinkage function can be simply expressed
as ηλ(x). Let X~N(θ , 1), where the symbol N represents the Gaussian distribution.
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Fig. 3 The risk functions of the proposed shrinkage with different α values

Under shrinkage function ηλ(·) and threshold λ, define the mean, variance and L2 risk
function of the shrinkage estimate of θ by (Gao 1998)

Mλ(θ ) � E[ηλ(X )], Vλ(θ ) � var[ηλ(X )] (19)

Rλ(θ ) � E[ηλ(X ) − θ ]2 � Vλ(θ ) + [Mλ(θ ) − θ ]2 (20)

where [Mλ(θ )−θ ]2 is the square bias. After some simple mathematical manipulations
we get

Rλ(θ ) � Vλ(θ ) · θ2 − 2θ · Mλ(θ ) (21)

Obviously, from (20) we know that the L2 risk can be decompose into squared
bias and variance components. Equation (20) implies that the contribution of the bias
component to the L2 risk function is larger than that of the variance component.
Therefore, the bias is minimized by selecting the optimal α value, which in turn
minimizes the L2 risk function. In this case, even if the variance is not its minimum,
the L2 risk function may still make the bias and the variance achieve an optimal
tradeoff.

In order to determine the value of the parameter α that minimizes the L2 risk, we
can compute and compare the L2 risk functions of different α values. Let α=1, 2, 3,
5, 7 and the threshold λ=3.31, the corresponding waveforms of the L2 risk functions
of the proposed shrinkage function are shown in Fig. 3.

From Fig. 3 we can know that the L2 risk function of the proposed shrinkage
function is the optimal when α=1. That is, the proposed function with α=1 provides
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Fig. 4 The risk functions of the hard, soft and the proposed functions

an optimal compromise between estimated bias and variance. Thus, given α=1, the
waveform of the proposed thresholding function is also shown in Fig. 1.

For comparison, we also plot L2 risk functions of the hard shrinkage (λ=3.31), the
soft shrinkage (λ=3.31) and the proposed shrinkage functions (λ=3.31). The results
are shown in Fig. 4.

From Fig. 4 we can see that the proposed shrinkage function is indeed an optimal
tradeoff between the hard and soft thresholding functions. In addition, although the
performance of the proposed thresholding function may not be optimal, it is important
that we obtain a new nonlinear continuous differentiable shrinkage function by apply-
ing differentiability property to the proposed function. That is, the proposed function
has the potential advantage in flexibility and capability.

Besides the thresholding function, selection of the optimum threshold value also
plays an important role in the wavelet shrinkage denoising. Threshold selection meth-
ods are divided into three main groups.

The first group contains universal-threshold methods in which the threshold value
is chosen uniquely for all wavelet coefficients of the noisy signal. The main method
of this group (RiskShrink or VisuShrink) is introduced with the above hard and soft
thresholding function as the first practical technique in signal denoising (Donoho
and Johnstone 1994; Donoho et al. 1995). The second group (SureShrink) includes
subband-adaptivemethods that the threshold value is selected differently for eachdetail
subband (Donoho and Johnstone 1995), where “Sure” is the abbreviation of Stein’s
unbiased estimate of risk. In the third group, spatially adaptive group of threshold
selection, each detail wavelet coefficient has its own threshold value (Mihcak et al.
1999).
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In VisuShrink method, the famous universal threshold is proposed by Donoho and
Johnstone:

λ � σ · √
2 log2 N (22)

where σ is the standard deviation of Gaussian white noise, and N is the total number
of wavelet coefficients, in general, N is also the number of the samples of the noisy
data. The wavelet transform of many noiseless objects is very sparse, and filled with
essentially zero coefficients. After contamination with noise, these coefficients are all
nonzero. If a sample that in the noiseless case ought to be zero is in the noisy case
nonzero, and that character is preserved in the reconstruction, the reconstruction will
have an annoying visual appearance: it will contain small blips against an otherwise
clean background.

The threshold (2log2N)1/2 avoids this problem because of the fact that when {zi}
is a white noise sequence independent and identically distribution N(0, 1), then, as
N→∞,

P{max|zi |>
√
2 log2 N } → 0 (23)

where P represents the probability. So, with high probability, every sample in the
wavelet transform in which the underlying signal is exactly zero will be estimated as
zero (Donoho and Johnstone 1994).

The universal threshold also has its limitations because the standard deviation of
noise in practice is unknown. For practical use, it is important to estimate the noise
intensity σ from the data rather than to assume that the noise intensity is known.
Therefore, we can use an estimate from the finest scale empirical wavelet coefficients
(Donoho and Johnstone 1995):

σ̂ � median{|xJ−1,k |}
0.6745

(0 ≤ k < 2J−1) (24)

where {xij} are the noisy wavelet coefficients, and 2J=N is the number of noisy data.
It should be noted that the number of signal samples is an integer power of 2, but this
need not be the case in general.

From (24) we know that it is important to use a robust estimator like the median,
in case the fine-scale wavelet coefficients contain a small proportion of strong useful
signals mixed in with noise.

In addition to the VisuShrink, we also use another procedure (SureShrink) that
suppresses noise by thresholding the empirical wavelet coefficients (Donoho and
Johnstone 1995). The thresholding is adaptive: A threshold level is assigned to each
dyadic resolution level by the principle of minimizing the Stein unbiased estimate
of risk (Sure) for threshold estimates. The procedure is used to recover a function
of unknown smoothness from noisy sampled data. The computational effort of the
overall procedure is order N ·log(N) as a function of the sample size N .

Here, we do not elaborate on the derivation process of SureShrink, and mainly
introduce its ingredients as follows: (a) Discrete wavelet transform of noisy data. The
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N noisy data are transformed via the discrete wavelet transform, to obtain N noisy
wavelet coefficients {xj,k}; (b) Thresholding of noisy wavelet coefficients. Let ηλ(x)�
sgn(x)(|x|−λ)+ denote the soft threshold, which sets to zero data x below λ in absolute
value and pulls other data toward the origin by an amount λ. The wavelet coefficients
xj,k are subjected to soft thresholding with a level-dependent threshold level λj; (c)
Stein’s unbiased estimate of risk (Sure) for threshold choice. The level-dependent
thresholds are found by regarding the different resolution levels (i.e., different j) of
the wavelet transform as independent multivariate normal estimation problems.

Through use of a data based choice of threshold, SureShrink (also called minimax
threshold) is more explicitly adaptive to unknown smoothness and has better large-
sampleMSE properties. The values of the threshold with unit noise standard deviation
(σ �1) for some values of the number of data sample points are listed in Table 2 of
the literature (see Donoho and Johnstone 1994). The Table shows the case where the
number of samples N is an integer power of 2. In practice, if N does not satisfy this
condition, wewill use the principle inwhich the actual number of samplesN is adopted
the value of the nearest integer power of 2.

5 Experimentation and Numerical Results

Stock prices as time series are always one of the most important information to
investors. However, stock prices are essentially dynamic, nonlinear, nonparametric,
and chaotic in nature. This implies that the investors have to handle the time series
which are non-stationary, noisy, and have frequent structural breaks (Oh and Kim
2002). In fact, stock prices’ movements are affected by many macro-economical
factors such as political events, company’s policies, general economic conditions,
commodity price index, bank rates, investors’ expectations, institutional investors’
choices, and psychological factors of investors. Obviously, these factors are uncer-
tain (random). For the financial time series, these factors are the noises that cause the
stock price to fluctuate. Thus, analyzing stock price movement accurately is not only
extremely challenging but also of great interest to investors.

5.1 Data Preparation

The empirical data set of Shanghai Composite Index (SCI) closings prices are used for
numerical analysis. These data are collected on the Shanghai Stock Exchange (SSE).
The total number of values for the SCI closing prices is 5790 trading days (about 284
trading months), from January 2, 1991 to August 29, 2014. The original (raw) data
series of the closing price of every trading day are shown in Fig. 5.

From Fig. 5, we can see that the observed data are contaminated by a lot of noise
(Wang et al. 2011). The reason for these noises may be the classical noises, it may also
be the financial system-specific noises. The noises can be removed from the observed
data by different wavelet shrinkage (thresholding) functions.
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Fig. 5 The raw data of each trading day

5.2 Evaluation Criterion

For actual stock price data y, we can represent it as

y � s + n (25)

where s is the clean source signal, and n is additive noise. As mentioned above, there
are many reasons for the noise. The noise n may be the market fluctuation caused by
economic (or political) factors, or by investors’ expectations and psychological factors,
etc. Considering various factors comprehensively, the noise nmanifests itself as white
noise. Two measures are utilized to evaluate the denoising performance relative to the
actual stock price. These are signal-to-noise ratio (SNR), and root mean-square error
(RMSE) which are given as follows:

SN R � 10 log10
||s||22

||s − ŝ||22
(26)

RM SE �
√

1

N
||s − ŝ||22 (27)

where ŝ is the denoised signal, and N is the number of sample of the signal s. Larger
value of SNR and smaller value of RMSE indicate good denoising performance. How-
ever, in practice, it is very difficult to separate the clean signal s and the noise n from
the observed signal y. Therefore, in this paper we will use the actual data y instead of
the clean data s to approximately estimate the performance indices SNR and RMSE.
Of course, this will produce a certain estimation error.
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5.3 Wavelet Decomposition

There are a variety of wavelets proposed in the literature for performing DWT, and
each has its own application domain with unique resolution capability, efficiency,
and computational cost etc. In addition, the appropriate number of levels of wavelet
decomposition can be determined by the nature of a time series, according to entropy
criterion (Coifman and Wickerhauser 1992), or application’s characteristics (Li and
Shue 2001). In general, the number of levels of decomposition depends on the length
of the time series.

The type of wavelet is represented by “dbk” (k �1, 2, …, 45, …). The db refers to
a particular family of wavelets. They are technically speaking called the Daubechies
extremal phase wavelets. The number refers to the number of vanishing moments.
Basically, the higher the number of vanishing moments, the smoother the wavelet (and
longer the wavelet filter). The length of the wavelet (and scaling) filter is two times that
number. For example, the length of db2 wavelet filter is 4, the length of db3 wavelet
filter is 6, and so on. Different types of wavelet have different sparse representation
of the same signal. The more sparse the signal representation, the better the denoising
effect. For the SCI data (signal), we expect to find a wavelet type which can represent
the signal most sparsely so as to achieve optimal denoising of the signal. In addition,
boundary effects are very common in the processing of finite- length signals. It is well
known that the wavelet transform is calculated as shifting the wavelet function in time
along the input signal and calculating the convolution of them. As the wavelet gets
closer to the edge of the signal, computing the convolution requires the non-existent
values beyond the boundary. This creates boundary effects caused by incomplete
information in the boundary regions. To deal with boundary effects, the boundaries
should be treated differently from the other parts of the signal. If not properly made,
distortion would appear at the boundaries. Two alternatives to deal with boundary
effects can be found. The first one is to accept the loss of data and truncate those
unfavorable results at boundaries after convolution between signal and wavelet. But
simply neglect these regions in analysis yields to a considerable loss of datawhich is not
allowed in many situations where the edges of the signal contain critical information.
The other one is artificial the extension at boundaries before processing signals. In
fact, there is another approach that employs the usual wavelet filters for the interior
of the signal and constructs different boundary wavelets at the ends of the signal.
This method has been shown to be merged into the class of signal extension. Various
extension schemes have been developed to deal with the boundaries of finite length
signals (Brislawn 1996; Ferretti andRizzo 2000;Khashman andDimililer 2008; Sezen
2009; Su et al. 2012). Because the SCI data are very long and the edges of the signal do
not contain vital information, the boundary effects of the SCI data are not considered
in this paper.

We use a series of experiments to determine the type of wavelet that best fits the SCI
data (closing prices). For ease of comparison, we use the hard thresholding function
and theminimax threshold rule to denoise the party of the SCI data (about 5000 closing
price data). The wavelet decomposition level is 6, and the wavelet types are “db1”,
“db2”, …, “db12”, respectively. The experimental results are shown in Table 1.
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Table 1 Comparison of the wavelet types for the part of the daily data

db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12

SNR 43.12 44.15 44.50 44.61 44.90 44.60 44.69 44.49 44.53 44.66 44.69 44.70

RMSE 9.66 8.58 8.25 8.14 7.87 8.15 8.06 8.26 8.21 8.10 8.06 8.05

Table 2 Comparison of the wavelet decomposition levels for the part of the daily data

Level 1 2 3 4 5 6 7 8

Period 2–4 4–8 8–16 16–32 32–64 64–128 128–256 256–512

SNR 42.10 40.74 40.17 40.02 40.0 44.90 40.0 40.0

RMSE 10.90 12.71 13.56 13.81 13.86 7.87 13.86 13.86

When the decomposition level is greater than 7, the performance indices SNR and RMSE remain constants
and do not change with the level. In this way, the decomposition levels above 8 and their corresponding
indices are not listed in the table

From Table 1 we have found that the largest SNR obtained using “db5” is slightly
larger than that of the other wavelets, and the smallest RMSE also obtained using
“db5” is slightly smaller than that of the other wavelets. The theoretical significance
of this result is that when we use db5 to represent the SCI data, the representation is
the most sparse and the best denoising effect can be obtained. That is why we choose
db5 instead of other.

In theory, the wavelet analysis method can handle the non-stationarity and nonlin-
earity of financial time series, but its effectiveness is greatly impacted by the result
of the wavelet decomposition of the financial time series. In the process of discrete
wavelet decomposition, a key issue is the choice of decomposition level. Different lev-
els of decomposition correspond to different periods, such as levels 1–3 correspond
to 2–4, 4–8, 8–16 days periods, and so on. It is well known that the maximum decom-
position level (M) can be calculated as: M= log2(N), where N is the series length. For
the purpose of denoising, it is necessary to determine the most suitable decomposition
level from 1 to M. Along with the increase of decomposition level, more sub-signals
and detailed information of series at larger temporal scales would appear. In spite of
this, it is not true that the greater the level of decomposition, the better the denoising
effect. In other words, level 1 is no more noisy than level 2, and level 2 is no more
noisy than level 3, and so no. In general, for different noisy signals, the most suitable
decomposition level is also different. It is based on this consideration that we still
use the experimental method to determine the most suitable wavelet decomposition
level. For the above SCI data (about 5000 closing price data), we use the wavelet
“db5”, the hard thresholding function and the minimax threshold rule to achieve the
task of denoising. The wavelet decomposition levels are 1, 2, …, 12, respectively. The
experimental results are shown in Table 2.

From Table 2 we have also found that the largest SNR and smallest RMSE obtained
using six as the number of levels of wavelet decomposition. The results show that for
the denoising task of the SCI data, the most suitable wavelet decomposition level is
6. So, “db5” and a six level decomposition are used in the next subsection. In this
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Table 3 Comparison of the
universal threshold rule for daily
data

Hard Soft Nonnegative
garrote

Proposed

SNR 52.3289 48.2558 50.0593 51.9226

RMSE 3.467 5.3490 4.3461 3.5070

case, the noise variance in the raw data is estimated to be σ2 �17.32 (σ�4.16) using
Eq. (24).

5.4 Denoising Performance

In order to analyze the denoising performance, we use different shrinkage functions
and different threshold rules to remove the noise (given σ2 �17.32 or σ�4.16) from
the original (raw) data (as shown in Fig. 5).

We first investigate the universal threshold rule. In this experiment, the correspond-
ing SNR and RMSE values of the different thresholding functions are computed and
recorded. The results are shown in Table 3.

For the universal threshold rule, from Table 3 we can know that the denosing
performance (SNR and RMSE) of the hard shrinkage function is the best, and the
performance of the soft shrinkage function is the worst. In addition, the denoising
performance of the proposed thresholding function is better than that of the soft and
non-negative garrote shrinkage, but slightly worse than that of the hard shrinkage.
That is to say, the denoising performance of the proposed shrinkage function is close
to the best one.

To more intuitively observe the denoising effect, we draw part of the data (raw data
and their corresponding denoised data) together. The waveforms are shown in Figs. 6,
7, 8 and 9.

And then, we investigate the minimax threshold rule. Similarly, for the original
(raw) data, we also compute and record the corresponding SNR and RMSE values of
the different shrinkage functions. The results of the denoising performance are shown
in Table 4.

From Table 4 we can know that for the minimax threshold rule, the denoising
performance of the proposed thresholding function is the best and the performance of
the soft shrinkage is still the worst.

In addition, the data in Table 4 also shows that the denoising performance of the
proposed thresholding function is much better than that of the hard and non-negative
garrote shrinkage functions. This means that the proposed shrinkage function is very
suitable for the minimax threshold rule.

For the minimax threshold rule, we also draw the part of the data (raw data and
their corresponding denoised data) together. The waveforms are shown in Figs. 10,
11, 12 and 13.

With a comprehensive consideration of Tables 3 and 4, we can summarize the
following conclusion. The proposed thresholding function can provide excellent
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Fig. 6 Comparison of raw data and hard shrinkage denoising data for the universal threshold rule
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Fig. 7 Comparison of raw data and soft shrinkage denoising data for the universal threshold rule

denoising effects for both the universal threshold rule and the minimax threshold
rule.

The above analysis is based on daily trading data. As the amount of data for the
daily closing price is too large (a total of 5790 samples), it is not easy to observe the
overall trend of data changes. Therefore, we can observe the monthly closing price
to predict the future trend of the stock. More importantly, the monthly closing price
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Fig. 8 Comparison of raw data and nonnegative garrote shrinkage denoising data for the universal threshold
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Fig. 9 Comparison of raw data and proposed shrinkage denoising data for the universal threshold rule

is also one of the focus of investor attention. We define the closing price for the last
trading day of the month as the closing price for the month. Thus, the above 5790
trading days are converted into 284 trading months. The corresponding waveform of
the monthly trading data is shown in Fig. 14.
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Table 4 Comparison of the
minimax threshold rule for daily
data

Hard Soft Nonnegative
garrote

Proposed

SNR 52.8374 50.9953 52.5650 58.0284

RMSE 3.1564 3.9021 3.2570 1.7364
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Fig. 10 Comparison of raw data and hard shrinkage denoising data for the minimax threshold rule

From Fig. 14 we can know that the observed (monthly) data are also contaminated
by a lot of noise (Wang et al. 2011). For noisy (monthly) closing price data, we still
use different thresholding functions and different threshold rules to achieve denoising
tasks. The results of the universal threshold rule are shown in Table 5.

FromTable 5 we can see that the denoising performance of the hard shrinkage is the
best and the performance of the soft shrinkage is theworst. The denoising performance
of the proposed thresholding function is similar to that of the non-negative garrote
shrinkage but slightly better than that of the non-negative garrote shrinkage. That is,
the proposed thresholding function has a near-best denoising effect.

Similarly, for the monthly closing price and the different thresholding functions,
the denoising performance for the minimax threshold rule are shown in Table 6.

From Table 6 we can also see that for the monthly trading data, the proposed
thresholding function has the best denoising performance.

In addition, comparing Tables 3 with 5, 4 with 6, we can see that the denoising
performance indexes for the monthly trading data are different from the indexes for
the daily trading data. This is because the structure of the monthly data has changed
comparing with the daily data. From the above definition, we know that the monthly
trading data is only take the last one of the daily trading data in themonth. Nonetheless,

123



754 F. He, X. He

1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250
620

640

660

680

700

720

740

760

780

Time (Trading day)

S
to

ck
 c

lo
si

ng
 p

ric
e

Partial date for the minimax threshold rule

raw data
denoised data (soft)

Fig. 11 Comparison of raw data and soft shrinkage denoising data for the minimax threshold rule
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Fig. 12 Comparison of rawdata and non-negative garrote shrinkage denoising data for theminimax threshold
rule

from Tables 5 and 6 we know that the proposed thresholding function can still provide
excellent denoising performance for the monthly trading data.

In the above analysis, we have known that the closing price of every trading day
of the Shanghai Composite Index (SCI) itself contained noise which may be caused
by many random factors. In general, the noise manifests itself as zero-mean Gaussian
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Fig. 13 Comparison of raw data and proposed shrinkage denoising data for the minimax threshold rule
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Fig. 14 The monthly trading data

white noise and the noise intensity σ can be estimated using Eq. (24). However, the
estimated noise intensity is also different for different wavelet types. Given wavelet
decomposition level 6, we calculate the noise intensity for “db1”, “db2”, …, “db12”,
respectively. The results are shown in Table 7.
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Table 5 Comparison of the
universal threshold rule for
monthly data

Hard Soft Nonnegative
garrote

Proposed

SNR 50.2106 40.7857 45.0028 45.3120

RMSE 4.2758 12.6551 7.7878 7.5154

Table 6 Comparison of the
minimax threshold rule for
monthly data

Hard Soft Nonnegative
garrote

Proposed

SNR 50.9748 45.3393 49.3559 52.1915

RMSE 3.9157 7.4918 4.7180 3.4039

Table 7 The noise intensities for different wavelet types

db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12

σ2 19.54 17.86 17.14 16.89 17.32 17.05 17.14 17.44 17.20 17.23 17.12 17.03

σ 4.42 4.23 4.14 4.11 4.16 4.13 4.14 4.16 4.15 4.15 4.14 4.13

Table 8 Comparison of the
universal threshold rule for the
largest noise variance

Hard Soft Nonnegative
garrote

Proposed

SNR 51.6660 47.8795 49.5595 51.4757

RMSE 3.6121 5.5859 4.6035 3.6921

From Table 7 we can see that the largest noise variance σ2 obtained using “db1”
is slightly larger than that of the other wavelets, this value (σ2 �19.54 or σ�4.42)
means that the raw (closing price) data is most affected by the noise (random factor).
The above experiments (for daily data and monthly data) are only considered in a case
of noise variance σ2 �17.32 (or σ�4.16), to more fully investigate the denoising
performance of various thresholding functions, we use the largest noise variance (σ2

�19.54) for the following experiments.
We first verify the universal threshold rule. In this case, we can compute and record

the corresponding SNR and RMSE values of the different shrinkage functions. The
results are shown in Table 8.

For the universal threshold rule and the largest noise variance, from Table 8 we can
know that the denosing performance of the hard shrinkage function is the best, and
the performance of the soft shrinkage function is the worst. Obviously, the denoising
performance of the proposed thresholding function is better than that of the soft and
non-negative garrote shrinkage, and the performance of the proposed function is almost
the same as that of the hard thresholding function.

And then, we investigate the minimax threshold rule. Similarly, for the largest noise
variance (σ2 �19.54), we also compute and record the corresponding SNR and RMSE
values of various thresholding functions. The results are shown in Table 9.
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Table 9 Comparison of the
minimax threshold rule for the
largest noise variance

Hard Soft Nonnegative
garrote

Proposed

SNR 52.3679 50.5477 51.9973 57.4802

RMSE 3.3317 4.1084 3.4770 1.8495

From Table 9 we can know that the denoising performance of the proposed shrink-
age function is the best and the performance of the soft shrinkage is still the worst.
In addition, the denoising performance of the proposed shrinkage function is much
better than other shrinkage functions. This result again illustrates that the proposed
thresholding function is very suitable for the minimax threshold rule.

6 Conclusion

In the prediction of the relevant economic indicators based on the noisy time series
data, the prediction accuracy without the denoising process is not satisfactory. There-
fore, the noisy observed data are usually first subjected to denoising and wavelet
shrinkage denoising is the most commonly used method. For the actual economic
(financial) data, the denoising effect of the traditional shrinkage functions (e.g., soft
shrinkage) is not ideal. This motivates us to find a more appropriate shrinkage func-
tion to improve the denoising performance. The proposed thresholding function has
a continuous derivative which satisfies the necessary condition for implementing an
adaptive learning gradient-based algorithm. In addition, we have also conducted an
experiment with the SCI closings prices in order to verify the performance of the
proposed thresholding function. The experiment has given the following results: (a)
for the universal threshold rule, the denoising performance of the proposed function
is better than that of the soft and the nonnegative garrote shrinkage functions, but
slightly worse than that of the hard shrinkage; (b) for the minimax threshold rule, the
denoising performance of the proposed thresholding function is better than that of the
other shrinkage functions.

In this paper, we only consider the denoising of the time series data. How to combine
denoising and forecasting effectively is a future research topic.
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