
Computational Economics (2019) 53:1657–1686
https://doi.org/10.1007/s10614-018-9833-6

Possibilistic Moment Models for Multi-period Portfolio
Selection with Fuzzy Returns

Yong-Jun Liu1 ·Wei-Guo Zhang1

Accepted: 28 June 2018 / Published online: 11 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The aim of this paper is to investigate the effects of higher moments on multi-period
portfolio selection with fuzzy returns. This paper gives the definitions of possibilis-
tic mean and variance about the product of multiple fuzzy numbers. Based on these
definitions, three multi-period fuzzy portfolio optimization models are proposed. The
proposed models aim to maximize terminal wealth and minimize terminal risk by
taking into account some realistic constraints including higher moments, budget con-
straint, round-lot constraint, cardinality constraint and bound constraint. To ensure
the selection of the best solutions, a novel fuzzy programming approach-based self-
adaptive differential evolution algorithm is designed to solve the proposed models.
A numerical example is given to demonstrate the application of the proposed mod-
els. Computational results show that the designed algorithm is effective for solving
complex portfolio selection model with realistic constraints.

Keywords Multi-period portfolio selection · Fuzzy set · Higher moments ·
Differential evolution

1 Introduction

Portfolio selection is one of the most hot topics in modern finance. The problem
concerns about how to allocate investors’ wealth among a basket of securities by
their investment intentions. Most of existing research works mainly concern about
two main criteria, i.e., investment return and investment risk, see for instant in Kumar
and Bhattacharya (2012), Hjalmarsson andManchev (2012) and Shen (2015). In these
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models, they usually neglected the effects of higher moments on portfolio decision-
making. Actually, numerous empirical evidences indicate that higher moments should
be incorporated into portfolio selection models (Briec et al. 2007; Fang and Lai 1997).
In particular, Díaz et al. (2009) addressed the importance of considering skewness
and kurtosis when evaluated the performance of a portfolio. DiTraglia and Gerlach
(2013) pointed out that lower tail dependence contained important information for risk
averse investors. Fang and Lai (1997) used several empirical studies to illustrate the
returns of risky assets with fat tails. Meanwhile, they pointed out that, when the mean,
variance and skewness were the same, investors would prefer to select a portfolio
with smaller kurtosis which indicates the fat-tails or thin-tails. Kim (2015) analyzed
the return skewness of smaller portfolios using empirical returns from the Center for
Research in Stock Prices database. Leung et al. (2001) found that excluding the factor
of skewness may lead to an inefficient portfolio.

As stated above, the effects of higher moments on portfolio selection cannot
be neglected. In the real world, investors must consider many factors to meet the
requirements of real transactions. Meanwhile, different decision makers may have
different preferences. To select a proper portfolio, investors should take multiple cri-
teria and their own investment preferences into consideration. By probability theory,
some researchers have investigated the portfolio selection problem bymultiple criteria
approaches. For example, Ballestero et al. (2007) proposed a multi-criteria method-
ology for selecting portfolios with respect to an investor’s individual preferences
for risk and profitability. Leung et al. (2001) proposed a multi-objective approach
to combine the forecasts obtained by different analysts.Liu et al. (2006) proposed
a linear belief function (LBF) approach to evaluate portfolio performance by con-
sidering t market information and financial knowledge. Ge et al. (2014) presented
an interactive portfolio decision analysis approach to to promote multistakeholder
design negotiations on system portfolio selections. Utz et al. (2014) presented a tri-
criterion inverse portfolio optimization model and applied it to socially responsible
mutual funds. Yu and Lee (2011) presented five portfolio optimization models by
using multiple criteria. Carli et al. (2016) focused on applying multicriteria decision
making tools to determine an optimal energy retrofit plan for a portfolio of build-
ings. Liu et al. (2006) proposed a novel formula of characterizing robustness based
on portfolio theory, and constructed a multiobjective optimization model of the robust
learning to rank (LTR). Gong et al. (2017) designed an adaptive real coded genetic
algorithm for solving portfolio selection problem based on cumulative prospect the-
ory.

Notice that all the literatures mentioned above are proposed on the basis of prob-
ability theory. They often viewed a financial asset as a random variable with a
probability distribution over its return. However, there are many non-stochastic fac-
tors that affect the real stock markets and they are improper to deal with stochastic
approaches. With the widely use of fuzzy set theory in Zadeh (1965), numerous
researchers have realized that they could use fuzzy set theory to handle the uncer-
tainty in financial markets. Jalota et al. (2017) proposed four multi-objective portfolio
optimization problems based on credibility measure to study the return and illiq-
uidity of entire portfolio modelled using a L-R fuzzy number of power reference
family. Li et al. (2016) proposed three mean–variance–skewness models for port-
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folio selection with fuzzy returns and used empirical studies to show the fact that
portfolio returns were generally asymmetric, and investors would prefer a portfo-
lio return with larger degree of asymmetry when the mean value and variance were
same. Liu et al. (2006) discussed a multi-objective portfolio optimization problem
for portfolio selection with fuzzy return rates and fuzzy turnover rates. Li et al.
(2010) provided mean-variance-skewness model for portfolio selection with fuzzy
returns. Zhang et al. (2010b) dealt with the portfolio selection problems with general
transaction costs under the assumption that the returns of assets were character-
ized by LR-type possibility distributions. Mashayekhi and Omrani (2016) proposed
an integrated multi-objective Markowitz-DEA cross-efficiency model for portfo-
lio selection problem with fuzzy returns. Saborido et al. (2016) gave evolutionary
multi-objective optimization algorithms for fuzzy portfolio selection. Chen (2015)
designed a novel artificial bee colony algorithm for constrained possibilistic portfo-
lio selection problem. Li et al. (2015) formulated a fuzzy mean–variance–skewness
portfolio selection model and given its two variations. Notice that the studies on fuzzy
portfolio selection are mainly in single period cases. However, in the real world,
numerous investors’ investment behaviors are usually multi-period and they need to
rebalance their positions from time to time. Thus, it is necessary to extend single-
period portfolio selection models into multi-period cases. Recently, some researchers
have discussed multi-period portfolio selection problems in fuzzy investment envi-
ronment by using fuzzy set theory (Zhang et al. 2012; Guo et al. 2016; Mehlawat
2016).

Most of previously researches discussed portfolio selection in stochastic environ-
ment and single period portfolio selection in fuzzy environment have highlighted
the effects of higher moments on portfolio selection cannot be neglect. However,
so far, to the best of our knowledge, few studies have concerned about the effects
of higher moments on multi-period fuzzy portfolio selection. The purpose of this
paper is to investigate the effects of the higher moments on multi-period portfo-
lio selection in fuzzy investment environment. The contributions of this paper are
summarized as follows: (i) We define the possibilistic mean and variance about the
product of fuzzy variables. And then, we discuss fuzzy portfolio selection problem
by using them as measures of investment return and investment risk, respectively.
(ii) We propose three multi-period portfolio selection models to take into account
diverse decision criteria and investors’ different investment preferences, which can
provide investors with additional choices. (iii) We design a fuzzy programming-based
improved self-adaptive differential evolution (ISDE) algorithm to solve the proposed
models.

The rest of this paper is organized as follows. In Sect. 2, we introduce some
basic conceptions about fuzzy numbers. In Sect. 3, we formulate three possiblistic
moment models for multi-period portfolio selection with fuzzy returns. In Sect. 4,
we first employ fuzzy programming technique to transform our proposed models into
single-objective programmingmodels. And then, we design an improved self-adaptive
differential evolution algorithm to solve them. In Sect. 5, we give a numerical example
to demonstrate the application of the proposed models and illustrate the effectiveness
of the designed algorithm. In Sect. 6, we conclude the paper. Finally, we give technical
proofs in the “Appendix”.
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2 Basic Conceptions

Let A be a fuzzy set of the real lineRwith anormal, convex and continuousmembership
functionof bounded support. The family of fuzzynumbers is denotedbyF . Theγ -level
set of fuzzy number A is denoted by [A]γ = {x ∈ R|μA(γ ) ≥ γ } (the closure of the
support of A) if γ = 0. The γ -level set of A is expressed as [A]γ = [a(γ ), a(γ )] (γ >

0) (see Dubios and Prade 1980).
In Carlsson and Fullér (2001), the following results about the possibilistic mean,

variance and covariance of fuzzy numbers can be obtained.

Definition 1 Let A be a fuzzy number with γ -level set [A]γ = [a(γ ), a(γ )]. Then,
the possibilistic mean of A is defined as

E(A) =
∫ 1

0
γ
(
a(γ ) + a(γ )

)
dγ = 1

2 (M−(A) + M+(A)), (1)

where M−(A) = ∫ 102γ a(γ )dγ and M+(A) = ∫ 102γ a(γ )dγ represent the lower and
upper possibilistic means of A.

Theorem 1 Let A, B ∈ F and let λ,μ ∈ R. Then

E(λA + μB) = λE(A) + μE(B). (2)

Definition 2 Let A, B be two fuzzy numbers with γ -level sets [A]γ = [a(γ ), a(γ )]
and [B]γ = [b(γ ), b(γ )]. Then, the possibilistic covariance between A and B can be
defined by

Cov(A, B)=
∫ 1

0
γ
[
(E(A) − a(γ ))

(
E(B) − b(γ )

)+ (E(A) − a(γ )
)
(E(B) − b(γ ))

]
dγ.

In particular, if A = B, then the possibilistic variance of A can be expressed by

V ar(A) =
∫ 1

0
γ
[
(E(A) − a(γ ))2 + (E(A) − a(γ )

)2] dγ. (3)

Theorem 2 Let A1, A2, . . . , An be n fuzzy numbers, and let λ1, λ2, . . . , λn be n pos-
itive numbers. Then, we have

V ar

(
n∑

i=1

λi Ai

)
=

n∑
i=1

λ2i V ar(Ai ) + 2
n∑

i< j=1

λiλ j Cov(Ai , A j ). (4)

Definition 3 (Saeidifar and Pasha 2009). Let A be a fuzzy number with γ -level set
[A]γ = [a(γ ), a(γ )]. Then, the possibilistic skewness and kurtosis of A are, respec-
tively, defined as
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S(A) = M3(A)(√
V ar(A)

)3 , (5)

K (A) = M4(A)(√
V ar(A)

)4 , (6)

where M3(A) = ∫ 1
0γ [(a(γ ) − E(A))3 + (a(γ ) − E(A))3]dγ and

M4(A) = ∫ 1
0γ [(a(γ ) − E(A))4 + (a(γ ) − E(A))4]dγ are the possibilistic third

and forth moments of fuzzy number A about E(A).

Notice that S(A) measures the asymmetry degree of the possibility distribution of
fuzzy number A. K (A) measures the peakedness of unimodal possibility distribution
of fuzzy number A. For reducing computational burden, S(A) and K (A) are usually
replaced by M3(A) and M4(A) in the practical application. In this paper, we denote
S(A) = M3(A) and K (A) = M4(A).

Definition 4 (Chen and Tan 2009). Let A, B be two fuzzy numbers with γ -level sets
[A]γ = [a(γ ), a(γ )] and [B]γ = [b(γ ), b(γ )]. Then, the possibilistic mean and
variance about the product of A and B (i.e., AB) are, respectively, defined as

E(AB) =
∫ 1

0

∫ 1

0
γAγB

[
a(γA)b(γB) + a(γA)b(γB) + a(γA)b(γB) + a(γA)b(γB)

]
dγAdγB ,

V ar(AB) =
∫ 1

0

∫ 1

0
γAγB

[
(E(AB) − a(γA)b(γB))2 + (a(γA)b(γB) − E(AB))2

+ (E(AB) − a(γA)b(γB))2 + (E(AB) − a(γA)b(γB))2
]
dγAdγB .

Similar to Definition 4, we define the possibilistic mean and variance about the
product of any given n fuzzy numbers as follows.

Definition 5 Let A1, A2, . . . , An be any given n fuzzy numbers with γ -level sets
[A1]γ = [a1(γ ), a1(γ )], [A2]γ = [a2(γ ), a2(γ )], . . . , [An]γ = [an(γ ), an(γ )].
Then, the possibilistic mean and variance about the product of the n fuzzy numbers
(i.e.,

∏n
i=1 Ai ) are, respectively, defined by

E

[
n∏

i=1

Ai

]
=
∫ 1

0
. . .

∫ 1

0
γ1 . . . γn

[
n∏

i=1

ai (γi )

+
n∑

k=1

ak(γk)

n∏
i=1
i �=k

ai (γi ) +
n∑

k=1
k< j

ak(γk)a j (γ j )

n∏
i=1
i �= j
i �=k

ai (γi )

+
n∑

k=1

ak(γk)

n∏
i=1
i �=k

ai (γi ) +
n∏

i=1

ai (γi )

⎤
⎥⎥⎦ dγ1 . . . dγn, (7)
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V ar

(
n∏

i=1

Ai

)
=
∫ 1

0
. . .

∫ 1

0
γ1 . . . γn

[(
n∏

i=1

E(Ai

)
−

n∏
i=1

ai (γi ))
2

+
n∑

k=1

⎛
⎜⎜⎝

n∏
i=1

E(Ai ) − ak(γk)

T∏
i=1
i �=k

ai (γi )

⎞
⎟⎟⎠

2

+
T∑

k=1
k< j

⎛
⎜⎜⎜⎜⎜⎝

n∏
i=1

E(Ai ) − ak(γk)a j (γ j )

T∏
i=1
i �= j
i �=k

ai (γi ) )
2 + · · ·

+
n∑

k=1

(
n∏

i=1

E(Ai ) − ak(γk)

n∏
i=1

ai (γi )
2

+
(

n∏
i=1

E(Ai ) −
n∏

i=1

ai (γi )

)2
⎤
⎦ dγ1 . . . dγn . (8)

Notice that the possibilsitic mean and variance about the product of n fuzzy numbers
in Eqs. (7) and (8) satisfy the following relations (see the “Appendix” for proofs).

Theorem 3 Let A1, A2, . . . , An be n fuzzy numbers. Then

(i) E

(
n∏

i=1
Ai

)
=

n∏
i=1

E(Ai ),

(ii) V ar

(
n∏

i=1
Ai

)
=

n∏
i=1

∫ 1

0
γi (ai (γi ))

2dγi +
n−2∑
r=1

n∑
k j =1

j ∈ {1, . . . , r}
r∏

j=1

∫ 1

0
γk j

(ak j (γk j ))
2dγk j ×

n∏
i=1
i �=k j

∫ 1

0
γi (ai (γi ))

2dγi+
n∏

i=1

∫ 1

0
γi (ai (γi ))

2dγi−
(

n∏
i=1

E(Ai )

)2

.

3 Possibilistic Moment Models for Multi-period Fuzzy Portfolio
Selection

In this section, we discuss a multi-period fuzzy portfolio selection problem based
on possibility theory. To reflect investors’ different investment intention, we propose
three multi-period fuzzy portfolio selection models.

3.1 Problem Description and Notations

Assume that there are n risky assets and a risk-free asset offering a fixed proceeds in
financial markets for trading. An investor takes initial wealth W0 into financial markets
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with the purpose of constructing T -period investment plan among the n+1 assets, and
he can adjust his wealth at the beginning of the following T − 1 consecutive periods.
Due to the high volatility of financial markets, the proceeds per unit capital invested
on any one of the n risky assets at each period is approximated by means of fuzzy
number. For convenience, we let

rt,i the proceeds per unit capital invested on risky asset i at period t , where
rt,i is a fuzzy number with the γ -level set [rt,i ]γ = [at,i (γ ), at,i (γ )];

rt,n+1 the proceeds per unit capital invested on the risk-free asset at period
t , where rt,n+1 is a constant;

xt,i the investment proportion of risky asset i at period t for i =
1, 2, . . . , n;

xt,n+1 the investment proportion of risk-free asset at period t ;
lt,i , ut,i the lower and upper bounds of xt,i for i = 1, 2, . . . , n + 1 and t =

1, 2, . . . , T ;
ct,i the transaction cost of risky asset i at period t ;
RP,t the proceeds per unit capital invested on the portfolio at period t ;
RN ,t the net proceeds per unit capital invested on the portfolio at period t ;
r(t) the preset minimum proceeds level about the portfolio at period t ;
δt the given maximum risk tolerance level about the portfolio at period

t ;
St the given minimum skewness level for the portfolio at period t ;
Kt the given maximum kurtosis level about the portfolio at period t ;
Wt the wealth obtained at the end of period t .

3.2 Possibilistic Moments for Fuzzy Portfolio Selection

Assume that the transaction cost at each period is a V-shape function in this paper.
Then, the transaction cost of the portfolio xt = (xt,1, xt,2, . . . , xt,n+1) at period t can
be expressed by

Ct =
n+1∑
i=1

ct,i |xt,i − xt−1,i |, t = 1, 2, . . . , T . (9)

The proceeds per unit capital invested on the portfolio at period t is

RP,t =
n+1∑
i=1

xt,i rt,i , t = 1, 2, . . . , T . (10)

After removing the transaction costs, the net proceeds per unit capital invested on the
portfolio at period t (t = 1, 2, . . . , T ) is

RN ,t =
n+1∑
i=1

(
xt,i rt,i − ct,i |xt,i − xt−1,i |

)
. (11)
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Thus, the wealth between the adjacent two periods satisfies the following relation

Wt = Wt−1RN ,t , t = 1, 2, . . . , T . (12)

It follows from Eq. (12) that

WT = W0

T∏
t=1

RN ,t . (13)

Since rt,1, rt,2, . . . , rt,n are fuzzy numbers for all t = 1, 2, . . . , T , by using the
fuzzy arithmetic operations in Zadeh (1965), we can find that RP,t , RN ,t and WT

are also fuzzy numbers. Then, the γ -level set of RN ,t can be denoted by [RN ,t ]γ =[∑n
i=1 xt,i at,i (γ ) + xt,n+1rt,n+1 − Ct ,

∑n
i=1 xt,i at,i (γ ) + xt,n+1rt,n+1 − Ct

]
. For

convenience, we denote at (γ ) = ∑n
i=1 xt,i at,i (γ ) + xt,n+1rt,n+1 − Ct and at (γ ) =∑n

i=1 xt,i at,i (γ ) + xt,n+1rt,n+1 − Ct in the following sections. Using Theorem 1 and
Eq. (11), the possibilistic mean of RN ,t can be computed by

E(RN ,t ) =
n+1∑
i=1

(
xt,i E(rt,i ) − ct,i |xt,i − xt−1,i |

)
, (14)

where E(rt,i ) = ∫ 1
0γ (a

t,i
(γ ) + at,i (γ ))dγ is the possibilistic mean of rt,i for i =

1, 2, . . . , n + 1. Especially, when i = n + 1, we have E(rt,n+1) = rt,n+1.
Using Theorem 2 and Eq. (10), the possibilistic variance of RP,t can be expressed

by

V ar(RP,t ) =
n∑

i=1

x2t,i V ar(rt,i ) + 2
n∑

i< j=1

xt,i xt, j Cov(rt,i , rt, j ). (15)

From Eqs. (7) and (14), the crisp form of terminal wealth WT can be calculated by

E(WT ) = W0

T∏
t=1

[
n+1∑
i=1

xt,i E(rt,i ) −
n+1∑
i=1

ct,i |xt,i − xt−1,i |
]

. (16)

Then, by Eqs. (8) and (11), the crisp form of terminal risk is

V ar(WT ) = W 2
0 V ar

(
T∏

t=1

RN ,t

)

= W 2
0

∫ 1

0
. . .

∫ 1

0
γ1 . . . γT

⎡
⎣
(

T∏
t=1

E(RN ,t ) −
T∏

t=1

ai (γi )

)2
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+
T∑

k=1

⎛
⎜⎜⎝

T∏
t=1

E(RN ,t ) − ak(γk)

T∏
i=1
i �=k

ai (γi )

⎞
⎟⎟⎠

2

+
T∑

k=1
k< j

⎛
⎜⎜⎜⎜⎜⎝

T∏
t=1

E(RN ,t ) − ak(γk)a j (γ j )

T∏
i=1
i �= j
i �=k

ai (γi )

⎞
⎟⎟⎟⎟⎟⎠

2

+ · · ·

+
T∑

k=1

⎛
⎜⎜⎝

T∏
t=1

E(RN ,t ) − ak(γk)

T∏
i=1
i �=k

ai (γi )

⎞
⎟⎟⎠

2

+
(

T∏
t=1

E(RN ,t ) −
T∏

t=1

at (γt )

)2⎤
⎦ dγ1 . . . dγT . (17)

By Definition 3 and Eq. (10), the possibilistic skewness and kurtosis of RP,t can be,
respectively, expressed as

S(RP,t ) =
∫ 1

0
γ
[(

at (γ ) − E(RP,t )
)3 + (at (γ ) − E(RP,t )

)3] dγ, (18)

K (RP,t ) =
∫ 1

0
γ
[(

at (γ ) − E(RP,t )
)4 + (at (γ ) − E(RP,t )

)4] dγ, (19)

where at (γ ) =∑n
i=1 xt,i at,i

(γ ) and at (γ ) =∑n
i=1 xt,i at,i (γ ) represent the left- and

right-hand endpoints of [RP,t ]γ .

3.3 Modelling

Based on the discussion above, we use the posssibilistic mean and variance as the
measures of return and risk, respectively. Then, we propose three possibilistic moment
models for multi-period fuzzy portfolio selection.

As afirst investment strategy,we assume that an investorwants to seek an investment
strategy with two objectives, that is, maximizing terminal wealth and minimizing
terminal risk. Then, we formulate the following posssibilistic mean–variance model
(P1):
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(P1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E(WT ) = W0

T∏
t=1

[
n+1∑
i=1

xt,i E(rt,i ) −
n∑

i=1
ct,i |xt,i − xt−1,i |

]

min V ar(WT ) = W 2
0 V ar

(
T∏

t=1
RN ,t

)

s.t .
n∑

i=1
xt,i E(rt,i ) + xt,n+1rt,n+1 −

n∑
i=1

ct,i |xt,i − xt−1,i | ≥ r(t), (a)

n∑
i=1

x2t,i V ar(rt,i ) + 2
n∑

i< j=1
xt,i xt, j Cov(rt,i , rt, j ) ≤ δt , (b)

n+1∑
i=1

xt,i = 1, xt,i ≥ 0, (c)

xt,i = zt,iυt,i , i = 1, 2, . . . , n, (d)
n+1∑
i=1

sign(xt,i ) ≤ K , (e)

lt,i ≤ xt,i ≤ ut,i , i = 1, 2, . . . , n + 1; t = 1, 2, . . . , T . ( f )

(20)
Here, Constraint (20)a indicates that the net proceeds per unit capital invested on
the portfolio at period t must be no less than the preset proceeds level r(t). Con-
straint (20)b means that the risk of the portfolio at period t must be not more than
the given maximum risk tolerance level δt . Constraint (20)c shows that the sum of
the investment proportion of the portfolio at period t must be unit. Constraint (20)d
is the round-lot constraint, in which υt,i is the smallest volume that can be pur-
chased on each risky asset and zt,i is the transaction lots of risky asset i at period
t . Constraint (20)e represents the cardinality constraint about the portfolio at period
t , which means that the maximum holding number of assets in the portfolio at
period t must be not more than K . Constraint (20)f is the bound constraint and it
means that xt,i must be restricted in [lt,i , ut,i ]. Denote the feasible region of (P1) as
x ∈ Ω1.

As a second investment strategy, we assume that the investor works with the two
competing goals in (P1). In addition, he also requires that the skewness of the portfolio
at period t must be no less than the preset skewness level St for all t = 1, 2, . . . , T .
Then, we construct the following possibilistic mean–variance–skewness model (P2):

(P2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max WT = W0

T∏
t=1

[
n+1∑
i=1

xt,i E(rt,i ) −
n∑

i=1
ct,i |xt,i − xt−1,i |

]

min V ar(WT ) = W 2
0 V ar

(
T∏

t=1
RN ,t

)

s.t . S

(
n∑

i=1
xt,i rt,i

)
≥ St ,

x ∈ Ω1.

For convenience, we denote the feasible region of (P2) as x ∈ Ω2.
As a third investment strategy, we assume that the investor considers all the invest-

ment constraints in the model (P2). Meanwhile, he requires that the kurtosis of the
portfolio at period t (t = 1, 2, . . . , T ) must be not more than the given maximum
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kurtosis level Kt as an additional constraint. Then, we formulate the following possi-
bilistic mean–variance–skewness–kurtosis model (P3):

(P3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E(WT ) = W0

T∏
t=1

[
n+1∑
i=1

xt,i E(rt,i ) −
n∑

i=1
ct,i |xt,i − xt−1,i |

]

min V ar(WT ) = W 2
0 V ar

(
T∏

t=1
RN ,t

)

s.t . K

(
n∑

i=1
xt,i rt,i

)
≤ Kt ,

x ∈ Ω2.

3.4 EstimationMethod for Fuzzy Return

To use the proposed models in previous subsection, it is necessary to estimate the
distributions on the return rates of risky assets. Traditional portfolio models are pro-
posed on the basis of the assumption that the probability distributions of the future
return rates on risky assets can be accurately predicted by historical data. However, it
is hard to keep this kind of assumption hold in the real ever-changing financial mar-
kets. Even though the probability distribution can be estimated, it is cannot guarantee
that the future return rates of risky assets truly obey it. In the real world, financial
markets are often affected by numerous subjective factors such as vagueness and
ambiguity. As mentioned by Gupta et al. (2008), decision makers are usually pro-
vided with linguistic information such as high risk, low profit, high interest rate, etc.
Thus, it is necessary to take the fuzzy nature of human subjective judgment on a
financial decision into account. It is well-known that fuzzy set theory in Zadeh (1965)
is a powerful tool for describing an uncertain environment with vagueness, ambi-
guity or some other type of fuzziness, which are always involved in not only the
imperfect knowledge of the return rates on risky assets but also the human judg-
ment for financial markets. By using fuzzy set theory, we need to determine the
possibility distributions of the return rates on risky assets. In contrast to proba-
bility distributions, to determine the possibility distributions of the return rates on
risky assets needs less information. What’s more, the unquantifiable factors such as
experts’ knowledge and investors’ subjective opinions can be easily reflected. Thus,
it is worthwhile to handle the uncertainty of financial markets by using fuzzy set
theory.

As we know, several researchers presented different methods to estimate the pos-
sibility distributions on fuzzy variables. For example, Devi and Sarma (1985) gave a
method to estimate the possibility distributions of fuzzy variables by using the his-
tograms of a finite number of historical data. Cheng (2004) developed a group decision
method for constructing triangular fuzzy numbers. Zhang et al. (2010a) proposed a
frequency estimation method of the return rates on risky assets with triangular possi-
bility distributions based on the frequency distributions of historical data. Triangular
possibilistic distribution is commonly used to represent the fuzzy uncertainty on the
return rate of a risky asset due to its simple to estimate and easy to generalize to the
LR-type form with center point (Zhang et al. 2010b; Ammar and Khalifa 2003). In
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this paper, we also use the above-mentioned method to estimate the possibility dis-
tribution of the proceeds of a risky asset by using the historical data and human’s
subjective judgement. To construct a triangular possibility distribution, we need to
estimate three parameters, that is, the mode that represents the most possible value
of the fuzzy number, the left and right spreads that denote the distance from the
left and right endpoints to the mode of the fuzzy number. Here, we take the estima-
tion of the possibility distribution of the proceeds per unit capital invested on risky
asset i at period t (i.e., rt,i ) as an example to introduce the application of the above-
mentioned method on multi-period portfolio selection. Let at,i , αt,i > 0 and βt,i > 0
be the mode, the left and right spreads of rt,i . It is well-known that, at the beginning
of period t , the real return rates of risky assets at period t − 1 are known. We use
the proceeds of risky asset i at the past period to calculate its proceeds at current
period. We select 5th percentile Pi (5) and the 95th percentile Pi (95) of its histor-
ical proceeds at period t − 1 as the left endpoint rmin and the right endpoint rmax
of its possibilistic return distribution at period t , respectively. Then, we determine
the intervals [dt−1,1, dt−1,2], [dt−1,2, dt−1,3], . . . , [dt−1,m−1, dt−1,m] that contain the
historical proceeds from Pi (5) to Pi (95) where dt−1,1 = rmin, dt−1,m = rmax, and
others dt−1, j s are determined from dt−1, j = Pi (5 + j × k) ( j = 1, 2, . . . , m) by
selecting a reasonable k (k > 0). Assume that nt−1, j is the frequency of the j th
interval [dt−1, j , dt−1, j+1] for j = 1, 2, . . . , m −1. Then, we approximately calculate
the mode of the proceeds per unit capital invested on risky asset i at period t by the
following formula:

Mt,i = dt−1,k + (nt−1,k − nt−1,k+1)(dt−1,k+1 − dt−1,k)

nt−1,k − nt−1,k+1 + nt−1,k − nt−1,k−1
,

where nt−1,k is the mode of nt−1,1, nt−1,2, . . . , nt−1,m . Here, we view Mt,i as at,i .
Then, we have at,i − αt,i = rmin and at,i + βt,i = rmax. The left and right spreads of
rt,i can be estimated by αt,i = Mt,i − rmin and βt,i = rmax − Mt,i . It follows from
at,i , αt,i and βt,i that we can construct the triangular possibility distribution of rt,i as
follows

μrt,i (x) =

⎧⎪⎨
⎪⎩
1 − at,i −x

αt,i
, if at,i − αt,i ≤ x ≤ at,i ,

1 − x−at,i
βt,i

, if at,i ≤ x ≤ at,i + βt,i ,

0, otherwise.

Then, the γ -level set of rt,i = (at,i , αt,i , βt,i ) can be expressed by

[rt,i ]γ = [at,i − (1 − γ )αt,i , at,i + (1 − γ )βt,i
]
. (21)

Repeat the procedure above, we can construct the triangular possibility distributions
of the n risky assets at each period.

123



Possibilistic Moment Models for Multi-period Portfolio Selection with Fuzzy Returns… 1669

3.5 Crisp Forms of the ProposedModels

By Eqs. (2) and (14), the possibilistic mean of RN ,t can be computed by

E(RN ,t ) =
n∑

i=1

xt,i

(
at,i + βt,i −αt,i

6

)
+ xt,n+1rt,n+1 −

n+1∑
i=1

ct,i |xt,i − xt−1,i |. (22)

By Theorem 3, Eqs. (16) and (22), the crisp form of terminal wealth WT is

E(WT )=W0

T∏
t=1

[
n∑

i=1

xt,i

(
at,i + βt,i −αt,i

6

)
+ xt,n+1rt,n+1 −

n+1∑
i=1

ct,i |xt,i − xt−1,i |
]

.

(23)

From Eqs. (15) and (22), the possibilistic variance of RN ,t can be calculated by

V ar(RN ,t ) = 1

18

⎡
⎣
(

n∑
i=1

xt,iβt,i

)2

+
(

n∑
i=1

xt,iαt,i

)2
⎤
⎦+ 1

18

(
n∑

i=1

xt,iαt,i

)(
n∑

i=1

xt,iβt,i

)
.

(24)

By Theorem 3 and Eq. (17), the crisp form of terminal risk can be represented as

V ar(WT ) = W 2
0

⎡
⎢⎢⎢⎣

T∏
i=1

(
1
2a2

i − 1
3ai αi + 1

12α2
i

)
+

T −2∑
r=1

T∑
k j =1

j∈{1,2,...,r}

r∏
j=1

(
1
2a2

k j
+ 1

3ak j βk j
+ 1

12β
2
k j

)

×
T∏

i=1
i �=k j

(
1
2a2

i − 1
3ai αi + 1

12α2
i

)
+

T∏
i=1

(
1
2a2

i + 1
3ai β i + 1

12β
2
i

)
−

T∏
i=1

(
ai + βi −αi

6

)2
⎤
⎥⎥⎦ , (25)

where at =∑n
i=1 xt,i at,i +xt,n+1rt,n+1−∑n+1

i=1 ct,i |xt,i −xt−1,i |, αt =∑n
i=1 xt,iαt,i

and β t =∑n
i=1 xt,iβt,i for all t = 1, 2, . . . , T .

According to Eqs. (18) and (19), the possibilistic skewness and kurtosis of RP,t can
be, respectively, expressed by

123



1670 Y.-J. Liu, W.-G. Zhang

S(RP,t ) = 19

1080

⎡
⎣
(

n∑
i=1

xt,iβt,i

)3

−
(

n∑
i=1

xt,iαt,i

)3
⎤
⎦+ 1

72

⎡
⎣
(

n∑
i=1

xt,iαt,i

)(
n∑

i=1

xt,iβt,i

)2

−
(

n∑
i=1

xt,iβt,i

)(
n∑

i=1

xt,iαt,i

)2
⎤
⎦ , (26)

K (RP,t ) = 1

72

(
n∑

i=1

xt,iαt,i

)2 ( n∑
i=1

xt,iβt,i

)2

+ 5

432

⎡
⎣
(

n∑
i=1

xt,iβt,i

)4

+
(

n∑
i=1

xt,iαt,i

)4
⎤
⎦

+ 2

135

(
n∑

i=1

xt,iαt,i

)(
n∑

i=1

xt,iβt,i

)⎡
⎣
(

n∑
i=1

xt,iβt,i

)2

+
(

n∑
i=1

xt,iαt,i

)2
⎤
⎦ . (27)

If we substitute Eqs. (22)–(25) into the model (P1), then we have

(P1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E(WT ) = W0

T∏
t=1

[
n∑

i=1
xt,i

(
at,i + βt,i −αt,i

6

)
+ xt,n+1rt,n+1 −

n+1∑
i=1

ct,i |xt,i − xt−1,i |
]

min V ar(WT ) = W 2
0

(
T∏

i=1

( 1
2a2

i − 1
3ai αi + 1

12α2
i

)

+
T −2∑
r=1

∑
k j =1

j ∈ {1, 2, . . . , r}T
r∏

j=1

(
1
2a2

k j
+ 1

3ak j βk j
+ 1

12β
2
k j

)

× ∏
i=1

i �= k j
T ( 1

2a2
i − 1

3ai αi + 1
12α2

i

)

+
T∏

i=1

(
1
2a2

i + 1
3ai β i + 1

12β
2
i

)
−

T∏
i=1

(
ai + βi −αi

6

)2 )

s.t .
n∑

i=1
xt,i

(
at,i + βt,i −αt,i

6

)
+ xt,n+1rt,n+1 −

n∑
i=1

ct,i |xt,i − xt−1,i | ≥ r(t),

1

18

⎡
⎣
(

n∑
i=1

xt,i βt,i

)2

+
(

n∑
i=1

xt,i αt,i

)2
⎤
⎦+ 1

18

(
n∑

i=1

xt,i αt,i

)(
n∑

i=1

xt,i βt,i

)
≤ δt ,

n+1∑
i=1

xt,i = 1, xt,i ≥ 0,

xt,i = zt,i υt,i , i = 1, 2, . . . , n,
n+1∑
i=1

sign(xt,i ) ≤ K ,

lt,i ≤ xt,i ≤ ut,i , if xt,i > 0, i = 1, 2, . . . , n + 1; t = 1, 2, . . . , T .

Similarly, if we substitute Eqs. (22)–(27) into (P2) and (P3), then the corresponding
crisp form models can be also obtained.

4 Solution Algorithm

In this section, we design a fuzzy programming approach-based differential evolution
algorithm to solve the proposed models. First, let us first introduce the fuzzy program-
ming approach in Zimmermann (1978) for a general multi-objective optimization
problem.
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4.1 Fuzzy Programming Approach for General Multi-objective Optimization
Problem

A general multi-objective optimization problem can be expressed as follows

(P)

⎧⎨
⎩
max Z(x) = [Z1(x), Z2(x), . . . , Zk(x)]
min f (x) = [ f1(x), f2(x), . . . , fm(x)]
s.t . x ∈ D,

where x ∈ D is the feasible region of the problem (P); Z1(x), Z2(x), . . . , Zk(x) are
the profit forms of objectives; f1(x), f2(x), . . . , fm(x) are the cost forms of objectives.

To solve the problem (P), Zimmermann (1978) presented a fuzzy programming
approach with the following procedures.

Step 1 View (P) as a single-objective programming problem and obtain the ideal and
anti-ideal solutions of each objective by solving the following problems

Z+
l = max

x∈D
Zl(x), Z−

l = min
x∈D

Zl(x), l = 1, 2, . . . , k;
f +

j = min
x∈D

f j (x), f −
j = max

x∈D
f j (x), j = 1, 2, . . . , m.

Step 2 Construct the membership function for each objective by using its ideal and
anti-ideal solutions as follows:

μl(Zl) = Z1(x)−Z−
l

Z+
l −Z−

l
, l = 1, 2, . . . , k, (28)

μ j ( f j ) = f −
j − f j (x)

f +
j − f −

j
, j = 1, 2, . . . , m. (29)

Step 3 Use the maximization principle in Bellman and Zadeh (1970) to define the
following function

λ = min{μ1(Z1), . . . , μk(Zk);μ1( f1), . . . , μm( fm)}. (30)

Step 4 Transform the problem (P) into the following single objective programming
problem by Eqs. (28), (29) and (30). Then, we have

(P
′
)

⎧⎪⎪⎨
⎪⎪⎩

max λ

s.t . μl(Zl) ≥ λ, l = 1, 2, . . . , k,

μ j ( f j ) ≥ λ, j = 1, 2, . . . , m,

x ∈ D.

Using the approach above, the idea and anti-ideal solutions of the two objective
functions in the model (P1) can be obtained by solving the following problems
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E(WT )+ = max
x∈X

E(WT ), E(WT )− = min
x∈X

E(WT );
V + = min

x∈X
V ar(WT ), V − = max

x∈X
V ar(WT ).

Here, x ∈ X represents the feasible region of the model (P1).
According to Step 2, the membership functions of the two objectives in the model

(P
′
1) can be expressed asμE (x) = E(WT )−E(WT )−

E(WT )+−E(WT )− andμV (x) = V −−V ar(WT )
V +−V − . Then,

the model (P1) can be transformed into the following single-objective programming
problem (P

′
1)

(P
′
1)

⎧⎪⎪⎨
⎪⎪⎩

max λ

s.t . μE (x) ≥ λ,

μV (x) ≥ λ,

x ∈ X .

4.2 Differential Algorithm

Differential evolution algorithm (DE) is a simple yet powerful evolutionary algorithm
(EA) for global optimization, which was originally introduced by Storn and Price
(1995). DE is viewed as a reliable, efficient, robust and fast solution method. In DE,
the suitable values of the control parameters affect its performance. Choosing suitable
parameter values is often a problem dependent task and requires previous experience
of the user. In this paper, we design an improved self-adaptive differential evolution
(ISDE) algorithm to solve our proposed models. The designed ISDE algorithm is
developed on the basis of the MDE algorithm in Mohamed and Sabry (2012) by
introducing two novel control parameters. Without loss of generality, we take the
model (P1) as an example to introduce the designed algorithm. Now, let us introduce
its parameter setting, initialization operation, evaluation function, mutation, crossover
and selection operations.

4.2.1 Initialization Operation

Randomly generate a solution x = (x1,1, x1,2, . . . , x1,n+1; . . . ; xT ,1, xT ,2, . . . ,

xT ,n+1) of the model (P
′
1) and represent it as a candidate individual of DE, where

xt,i ∈ [0, ut,i ] for all i = 1, 2, . . . , n + 1 and t = 1, 2, . . . , T . To satisfy Eq. (20)(c),
we perform the following normalization technique

x
′
t,i = xt,i

xt,1 + xt,2 + . . . + xt,n+1
.

Then, we check the feasibility of the individual. If it satisfies the constraints
of the model (P1), it will be accepted as an individual of the population. Oth-
erwise, we perform the following repair mechanisms to guarantee it to satisfy
the constraints of the model (P1). For the sake of description, we rewrite x =
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(x1,1, x1,2, . . . , x1,n+1; . . . ; xT ,1, xT ,2, . . . , xT ,n+1) into x = (x1, x2, . . . , xD) with
D = (n + 1)T .

4.2.2 Handling the Constraints

To meet Eq. (20)a and c, we calculate the violation values of all chromosomes and
keep the ones with violation values equal to zero. To satisfy Eq. (20)e, we select the K -
largest values of xt,1, xt,2, . . . , xt,n+1 and set all other n +1− K elements as zero. To
meet Eq. (20)d, similar to Liu and Zhang (2013), we round xt,i to the next transaction-
lot level, x

′
t,i = xt,i − (xt,i mod υt,i ), after cardinality repair and normalization

are applied. The remainder of the rounding process, (xt,imodυt,i ), is expended in
quantities of υt,i for those xt,i that had the largest values for xt,i mod υt,i until all
of the remainder is disbursed. Then, we set an integer pop−si ze as the number of
chromosomes.Repeating the above-mentioned process pop−si ze times,we can obtain
pop−si ze initialized feasible chromosomes.Denote themas ch1, ch2, . . . , ch pop−si ze.

4.2.3 Evaluation Function

In this study, the evaluation function is defined as

f (x) = min{μE (x), μV (x)}. (31)

4.2.4 Mutation Operation

For target vector xG
i , a mutant vector vG+1

i is generated by

vG+1
i =

{
xG

r + Fl(G)(xG
b − xG

w ), if rand[0, 1] ≤ 0.5,
xG

r1 + Fg(G)(xG
r2 − xG

r3 ), otherwise.
(32)

Here, r1, r2, r3 ∈ {1, 2, . . . , pop−si ze} are randomly chosen indices with r1 �= r2 �=
r3 �= i ; xG

r is a randomly chosen vector at iteration G; xG
b and xG

w represent the best
and the worst individuals in the current population. Fl(G) is a dynamic adaptive scale
factor with the following form (see Wu and Wang 2007)

Fl(G) = Fmin

1 +
(

Fmin
Fmax

− 1
)

e−κG
, (33)

where κ ∈ [0,+∞) is the initial decay rate, Fmin and Fmax are the minimum and
maximum values of the scale factor Fl . In Eq. (33), if the value of κ is dynamically
adjusted, the decay rate will decrease with the increasing of iteration number G. When
Fl decreases to Fmin, the decrease in the value of Fl will stop. In other words, κ = 0.
To maintain the balance between the diversity and the convergence, the value of Fl is
often restricted in [0.5,1]. Here, the values of κ , Fmin and Fmax are set as 100, 0.5 and
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1, respectively. In Eq. (32), Fg(G) is a fitness-based adaptation scale factor as follows
(see Ghosh et al. 2011)

Fg(G) =max

{
Fg,max| f

(
xG

i

)− f
(
xG

b

) |
1.1 × | f

(
xG

i

)− f
(
xG

b

) | + 10−14
, Fg,max ×

(
1 − e−| f

(
xG

i

)− f
(
xG

b

)|)
}

,

where Fg,max is the maximum value of Fg . Generally, Fg,max is set as 0.8.

4.2.5 Crossover operation

The target vector xG
i is mixed with the mutated vector vG

i to generate a trial vector
uG+1

i = (uG+1
1i , uG+1

2i , . . . , uG+1
Di ) as follows

uG+1
j i =

{
xG+1

j i , rand( j) ≤ C R or j = randn(i),
vG

ji , rand( j) > C R and j �= randn(i),
(34)

where j = 1, 2, . . . , D; rand( j) ∈ [0, 1] is the j th evaluation of a uniform random
generator number. randn(i) ∈ {1, 2, . . . , D} is a randomly chosen indexwhich ensures
that uG+1

i gets at least one element from vG+1
i . Similar toMohamed and Sabry (2012),

C R is a dynamic non-linear increased crossover probability with the following form

C R = C Rmax + (C Rmin − C Rmax)(1 − G
Gmax

)k,

where C Rmax and C Rmin represent the maximum and the minimum values of C R;
Gmax is the maximum number of iterations and k is a positive number. In this study,
we set C Rmax = 0.95, C Rmin = 0.5 and k = 4.

4.2.6 Selection operation

In this algorithm, we adapt a greedy selection strategy to perform selection operation.
If and only if the trial vector uG+1

i yields a better fitness function value than xG
i , then

uG+1
i is set as xG+1

i . Otherwise, the old value xG
i is retained. The selection scheme is

summarized as follows

xG+1
i =

{
uG+1

i , f (uG+1
i ) > f (xG

i ),

xG
i , f (uG+1

i ) ≤ f (xG
i ).

(35)

The concrete procedures of the designed algorithm are summarized as follows.

Step 1 Initial parameters: Population size pop−si ze, maximum crossover probability
C Rmax,minimumcrossover probabilityC Rmin andmaximum iteration number
Gmax;

Step 2 Randomly generate pop−si ze candidate solutions and convert them into fea-
sible ones;

Step 3 Perform mutation and crossover operations by Eqs. (32) and (34);
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Step 4 Calculate the evaluation function value of each individual;
Step 5 Perform selection operation by Eq. (35);
Step 6 Check the stopping criterion. If the stopping criterion (maximum number of

iterations Gmax) is satisfied, then terminate the iterative operation and report
the optimal solution. Otherwise, return to Steps 3.

4.2.7 Time complexity

Based on the discussion above, we can find that each individual of the designed
algorithm has (n + 1)T elements. The population size and the maximum iteration
number of our algorithm are pop−si ze and Gmax, respectively. The required time
complexity of the ISDE algorithm φ(n) is calculated by

φ(n) = O((n + 1)T ∗ pop−si ze) + O(Gmax ∗ pop−si ze)

=
{

O((n + 1)T ∗ pop−si ze), if (n + 1)T > Gmax,

O(Gmax ∗ pop−si ze), otherwise.

4.2.8 Space complexity

Notice that the designed ISDE algorithm generates pop−si ze individuals at each
generation and each individual has (n + 1)T elements. Thus, the space for storing the
elements of the population at each generation of the ISDE algorithm is O((n + 1)T
∗ pop−si ze).

5 Numerical Example

Assume that there are 15 stocks from the Shanghai Stock Exchange and a risk-free
asset (RFA) in a financial market for trading. The source data of the aforementioned
15 stocks are downloaded from choice east money “http://choice.eastmoney.com”. An
investor with initial wealth 10,000 RMB intends to construct three consecutive periods
investment among the 16 assets. The historical data of the 15 stocks are collected
by their weekly closed prices from Jan. 2010 to Jan. 2013. We set each year as an
observation period to handle these historical data. Suppose that the proceeds per unit
capital invested on the 15 stocks at each period are triangular fuzzy numbers, i.e.,
rt,i = (at,i , αt,i , βt,i ) (t = 1, 2, 3; i = 1, 2, . . . , 15). Here, at,i , αt,i and βt,i are
assumed to be the mode, 5th percentile and 95th percentile of the historical proceeds
data on Stock i at period t . Table 1 shows the possibility distributions of the 15 stocks
and the proceeds per unit capital invested on the RFA at each period.

In this example, the maximum holding number of assets in the portfolio at each
period is set as 10. The smallest volume that can be purchased on Stock i at period t is
set as 0.0001, i.e., υt,i = 0.0001 (t = 1, 2, 3; i = 1, 2, . . . , 15). The proceeds demand
levels of portfolios at the three periods are set as 1.090, 1.070 and 1.050, respectively.
The risk tolerance levels of portfolios in the three periods are set as 0.0090, 0.0080
and 0.0070, respectively. The investment proportion of any asset at each period is
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Table 1 The possibility distributions of the 15 stocks and the proceeds per unit capital invested on the RFA
at each period.

St. i t = 1 t = 2 t = 3

St. 1 (1.0813,0.1898,0.3112) (1.0438,0.1386,0.3220) (1.0483,0.1785,0.2146)

St. 2 (1.0590,0.1076,0.2883) (1.0645,0.1819,0.4439) (1.0456,0.1604,0.2529)

St. 3 (1.0457,0.1014,0.2277) (1.0457,0.1598,0.3437) (1.0355,0.1224,0.1614)

St. 4 (1.0665,0.1328,0.2722) (1.0377,0.1111,0.2462) (1.0516,0.2488,0.4397)

St. 5 (1.0850,0.1933,0.2370) (1.0406,0.1284,0.2142) (1.0284,0.1104,0.1375)

St. 6 (1.0597,0.1036,0.3375) (1.0193,0.0668,0.4535) (1.0406,0.1351,0.1601)

St. 7 (1.0872,0.1852,0.3932) (1.0416,0.1312,0.2941) (1.0501,0.2362,0.3831)

St. 8 (1.0615,0.1122,0.3192) (1.0386,0.1231,0.2593) (1.0465,0.1756,0.1993)

St. 9 (1.0707,0.1365,0.3745) (1.0425,0.1344,0.2074) (1.0365,0.1289,0.1893)

St. 10 (1.0587,0.1002,0.3387) (1.0539,0.1731,0.3605) (1.0447,0.1628,0.2927)

St. 11 (1.0607,0.1487,0.2482) (1.0441,0.1415,0.3319) (1.0420,0.1512,0.2484)

St. 12 (1.0511,0.1171,0.2500) (1.0302,0.0871,0.2155) (1.0436,0.2005,0.3681)

St. 13 (1.0749,0.1485,0.3873) (1.0406,0.1242,0.2295) (1.0565,0.2453,0.4771)

St. 14 (1.0624,0.1537,0.2042) (1.0401,0.1257,0.2624) (1.0409,0.1574,0.2218)

St. 15 (1.0647,0.1184,0.2966) (1.0452,0.1584,0.3556) (1.0406,0.1780,0.3337)

RFA 1.060 1.060 1.060

restricted in the range of [0, 0.5], that is, xt,i ∈ [0, 0.5] (t = 1, 2, 3; i = 1, 2, . . . , 16);
The values of ut,i and lt,i (t = 1, 2, 3; i = 1, 2, . . . , 16) are set as 0.01 and 0.5,
respectively. The given minimum skewness level of the portfolio at each period is set
as 0.0002. The given minimum kurtosis level of the portfolio at each period is set as
0.00016. The parameters of the designed algorithm are set as follows. The population
size is set as 100 and the maximum iteration number is set as 2000. After running the
designed algorithm 2000 times on each one of the proposedmodels, the corresponding
investment strategies can be obtained as shown in Table 2.

From Table 2, we can find that the higher moments do affect portfolio selection
in fuzzy environment. If using the model (P1), the investor should allocate his initial
wealth among Stocks 2, 5, 6, 7, 9, 13 and the RFA at the beginning of period 1 by
the proportions of 0.0660, 0.0166, 0.0389, 0.4905, 0.0127, 0.0998 and 0.2755. At the
beginning of period 2, the investor should reallocate his wealth among Stocks 1, 2, 5,
6, 8, 11, 13 and the RFA by the proportions of 0.0172, 0.3876, 0.0113, 0.0147, 0.0350,
0.0173, 0.0395 and0.4774, respectively. Then, at the beginning of period 3, the investor
needs to reallocate his wealth. After adjustment, the investor will hold Stocks 2, 3, 5, 7,
12, 13, 15 and the RFA by the proportions of 0.0619, 0.0207, 0.0204, 0.0257, 0.0270,
0.2753, 0.0709 and 0.4981, respectively. In this decision case, at the end of period 3,
the investor’s terminal wealth is 126,153.26RMB. If using themodel (P2), the investor
should follow the investment strategies listed in lines 9–16 of Table 2 to adjust his
wealth at the beginning of each period. In this case, the investor’s terminal wealth is
126,827.63 RMB. If using the model (P3), the investor should follow the investment
strategies listed in lines 17–24 of Table 2 to adjust his wealth at the beginning of each
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Table 3 Comparative results about investment metrics under different models.

Model (Pi ) t Annualized return Volatility Sharpe ratio Maximum
drawdown (%)

Model (P1) t = 1 1.0982 0.0068 0.4643 11.2655

t = 2 1.0760 0.0038 0.2598 8.6740

t = 3 1.0676 0.0039 0.1204 9.0124

Average value 1.0806 0.0048 0.2815 9.6506

Model (P2) t = 1 1.0977 0.0070 0.4510 11.4103

t = 2 1.0783 0.0047 0.2663 9.6298

t = 3 1.0715 0.0051 0.1614 10.1285

Average value 1.0825 0.0056 0.2929 10.3895

Model (P3) t = 1 1.0979 0.0074 0.4397 19.8655

t = 2 1.0752 0.0045 0.2268 9.4487

t = 3 1.0710 0.0051 0.1530 10.1898

Average value 1.0814 0.0057 0.2732 13.1680

period. In this case, the investor’s terminal wealth is 126,428.60 RMB. Note that, in
the sense of terminal wealth, the models with higher moments (i.e., (P2) and (P3))
perform better than the model (P1) with no higher moments.

To illustrate the application of the proposed models, the numerical experiments
about their investment metrics including annualized return, volatility, sharpe ratio and
maximum drawdown of the portfolio at each period, which are obtained by solving
different portfolio selectionmodels, are performed on this example. The corresponding
comparative results are shown in Table 3. In Table 3, the values of annualized return
and volatility are, respectively, calculated by the possibilistic mean and variance of
the fuzzy return of the portfolio at each period. The value of sharpe ratio is computed
by the possibilistic return earned in excess of the risk-free generated by per unit of
volatility. The value of maximum drawdown of the portfolio return at each period
is calculated by (its upper possibilistic mean- its lower possibilistic mean)/its upper
possibilistic mean×100%. It can be seen from Table 3 that the values of the maximum
drawdown with the portfolio returns in the three investment periods generated by the
model (P1) are 11.2655%, 8.6740% and 9.0124%, respectively. From the comparative
results in Table 3, we can find that higher risk accompanies an investment yielding a
high return. Judged from the average sharpe ratio, we can conclude that the models
(P2) and (P3) perform better than the model (P1).

In the following,we take themodel (P1) as an example tomake a sensitivity analysis
about the results under different model parameters. We investigate the impact of the
model parameters including the holding number of assets in each period portfolio K ,
return level r(t) and risk tolerance level δt at period t . The computational results under
different cases are demonstrated in Table 4. It can be seen from the computational
results listed in Table 4 that the model parameters pay important role in portfolio
decision. For example, Lines 3–6 of Table 4 show the results of the model (P1) by
varying the value of K from 8 to 14 under the case that the other model parameter
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Table 5 Comparative results about statistical tests of the objective values obtained by different solution
algorithms.

Model (Pi ) MDE ISDE

M SD RE (%) M SD RE (%)

Model (P1) 0.65815865 0.01608313 6.8957 0.66902859 0.01305423 1.4669

Model (P2) 0.77827718 0.03839863 5.2901 0.79116840 0.03594797 0.3385

Model (P3) 0.83841857 0.03325771 7.1509 0.84829464 0.04364140 6.4164

M, SD and RE represent the mean, standard deviation, and relative error about the obtained objective values,
respectively

values are unchanged. It can be seen that, in the sense of terminal wealth, the optimal
holding number of assets in the portfolio at each period is 10.

For comparison, we respectively perform thirty consecutive times running on the
designed ISDE algorithm and the MDE algorithm in Mohamed and Sabry (2012) to
highlight the performance of the designed ISDE algorithm. The corresponding com-
parative results about statistical tests of the objective values including mean, standard
deviation and relative error obtained by the aforementioned two algorithms are listed
in Table 5. In Table 5, we use the relative error index, which is calculated by (the
best objective value- the real objective value)/the best objective value ×100%. Here,
the best objective value is the maximum value of all the objective values obtained by
the thirty consecutive times running, and the real objective value is computed by the
objective value after running 2000 iterations.

From comparative results in Table 5, we can find out that the objective values
obtained by the designed ISDE algorithm with higher mean and less relative error
than the ones obtained by the MDE algorithm. Thus, we can conclude that our ISDE
algorithm is more effective than the MDE algorithm for solving the proposed models.

6 Conclusions

In this paper, we discuss a multi-period portfolio selection problem in fuzzy envi-
ronment, where the returns of risky assets at each period are represented by fuzzy
numbers. We define the possibilistic mean and variance of the multiplication of mul-
tiple fuzzy numbers. Based on these definitions, we propose three multi-period fuzzy
portfolio selection models by taking into account some realistic constraints including
higher moment, budget, round-lot, cardinality and bound constraints. To solve the
proposed models, we develop a fuzzy programming approach-based differential evo-
lution algorithm. Besides, we use a numerical example to illustrate the application of
the proposed models and demonstrate the effectiveness of the designed algorithm. The
comparative results show that the higher moments associated with the fuzzy returns
of risky assets do affect portfolio selection and the designed algorithm is suitable for
complex portfolio selection models.
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Appendix

Proof (i) ByDefinition 1,we have M−(Ai ) = ∫ 10γ ai (γ )dγ , M+(Ai ) = ∫ 10γ ai (γ )dγ
and E(Ai ) = 1

2 (M−(Ai ) + M+(Ai )). Then, by Eq. (7), we have

E

[
n∏

i=1

Ai

]
=
∫ 1

0
. . .

∫ 1

0
γ1 . . . γn
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(ii) According to Eq. (8), we have
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Notice that the r th item in Eq. (36) can be represented by
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It follows that Eq. (37) can be rewritten as the following form
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i=1

Ai

)
= 1

2n

(
n∏

i=1

E(Ai )

)2

− 1

2n−1

n∏
i=1

E(Ai )

n∏
i=1

M−(Ai ) +
n∏

i=1

∫ 1

0
γi (ai (γi ))

2dγi

+ 2n−2 × 1

2n

(
n∏

i=1

E(Ai )

)2

− 1

2n−1

n∏
i=1

E(Ai )

n−2∑
r=1

n∑
k j =1

j∈{1,2,...,r}

r∏
j=1

M+(Ak j )

n∏
i=1
i �=k j

M−(Ai )

+
n−2∑
r=1

n∑
k j =1

j∈{1,2,...,r}

r∏
j=1

∫ 1

0
γk j (ak j (γk j ))

2dγk j

n∏
i=1
i �=k j

∫ 1

0
γi (ai (γi ))

2dγi + 1
2n (

n∏
i=1

E(Ai ))
2

− 1

2n−1

n∏
i=1

E(Ai )

n∏
i=1

M+(Ai ) +
n∏

i=1

∫ 1

0
γi (ai (γi ))

2dγi

=
(

n∏
i=1

E(Ai )

)2

− 1

2n−1

n∏
i=1

E(Ai )

⎡
⎢⎢⎢⎣

n∏
i=1

M−(Ai ) +
n−2∑
r=1

n∑
k j =1

j∈{1,2,...,r}

r∏
j=1

M+(Ak j )

n∏
i=1
i �=k j

M−(Ai )

+
n∏

i=1

M+(Ai )

]
+

n∏
i=1

∫ 1

0
γi (ai (γi ))

2dγi +
n−2∑
r=1

n∑
k j =1

j∈{1,2,...,r}

r∏
j=1

∫ 1

0
γk j (ak j (γk j ))

2dγk j
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×
n∏

i=1
i �=k j

∫ 1

0
γi (ai (γi ))

2dγi +
n∏

i=1

∫ 1

0
γi (ai (γi ))

2dγi .

Notice that 1
2n−1

n∏
i=1

E(Ai )[
n∏

i=1
M−(Ai )+

n−2∑
r=1

∑
k j =1

j∈{1,2,...,r}

n
r∏

j=1
M+(Ak j )

∏
i=1
i �=k j

n M−(Ai )

+
n∏

i=1
M+(Ai )] = 2(

n∏
i=1

E(Ai ))
2. Then, we have

V ar

(
n∏

i=1

Ai

)
=

n∏
i=1

∫ 1

0
γi (ai (γi ))

2dγi +
n−2∑
r=1

n∑
k j =1

j∈{1,2,...,r}

r∏
j=1

∫ 1

0
γk j (ak j (γk j ))

2dγk j

×
n∏

i=1
i �=k j

∫ 1

0
γi (ai (γi ))

2dγi +
n∏

i=1

∫ 1

0
γi (ai (γi ))

2dγi −
(

n∏
i=1

E(Ai )

)2

.

The theorem is proved. 
�
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