
Comput Econ (2019) 54:455–476
https://doi.org/10.1007/s10614-018-9794-9

Forecasting Inflation Uncertainty in the United States
and Euro Area

Zied Ftiti1,2 · Fredj Jawadi3

Accepted: 5 January 2018 / Published online: 16 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract This study forecasts a particular type of economic uncertainty (infla-
tion uncertainty) in the United States and Euro Area over 1997–2017. By using
monthly data, we compute inflation uncertainty based on three models: symmetric
and asymmetric generalized autoregressive conditional heteroscedasticity models and
a stochastic volatility model. While the first two provide symmetric and asymmetric
measures of inflation uncertainty, respectively, the third measure offers greater flex-
ibility when measuring uncertainty. The analysis of the out-of-sample forecasts for
inflation uncertainty shows the superiority of the stochastic volatility model for fore-
casting the dynamics of inflation uncertainty in both the short (1year) and medium
(4years) terms. This finding is particularly interesting, as it allows researchers to better
estimate the main inflation cost, namely inflation uncertainty, as well as its effect on
the real economy.
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1 Introduction

Uncertainty is a situation of doubt, unpredictabilityand riskiness, which varies with
regard to the market state and exogenous shocks. For example, geopolitical uncer-
tainty becomes more volatile with the level of geopolitical tensions (e.g. in Eastern
Europe and after the Arab Spring), terrorist threats, and war. In economics, uncertainty
is a particularly important issue as it significantly affects different macroeconomic
variables (Bloom et al. 2007; Bachmann et al. 2013; Jurado et al. 2015; Rossi and
Sekhposyan 2015). Indeed, economic uncertainty constitutes a type of economic
post-traumatic stress disorder for householders, investors, and the entire market.
Economic uncertainty is also a source of financial instability and economic inequal-
ity. It affects consumers, investors, and householders, pushing them to question the
underlying mechanisms of economic growth, unemployment, economic policy, and
inflation.1

Interestingly, economic uncertainty has recently increased because of the fragility of
the financial system, increase in public and private debt, decrease in economic growth,
and the renewal of secular stagnation combined with a global liquidity trap since the
aftermath of the global financial crisis (2008–2009). In particular, economic policy
uncertainty has been remarkable given the absence of a clear policy and institutional
structure. In such a context, further doubt about the effectiveness of central banks’
tools, clarity of their policy, and transparency of their action and communicationmight
yield inflation uncertainty (IU; Holland 1993). IU is related to uncertainty about future
inflation and therefore to the action of the central bank. According to Holland (1993),
IU might also arise when the policy effect takes time to work. It can reduce economic
well-being via decisions on business investment and consumer saving (Holland 1993)
andmight imply uncertainty about other variables such as the interest rate and therefore
about the real value of future payments (Golub 1994).

Different approaches have been used to estimate IU. On the one hand, IU can be
estimated through surveys distributed to consumers and economists asking them to
provide an acceptable range of inflation. Such surveys (e.g. Lahiri and Lui 2006),
compared with the true level of inflation, can facilitate the measurement of IU. On the
other hand, forecasting strategies are employed to predict inflation with large forecast
errors suggesting further evidence of IU. Moreover, in the related literature, several
approaches have been used tomodel and forecast IU. Early studies considered the stan-
dard deviation of inflation to be a proxy of IU. However, conditional variance quickly
became the most popular proxy to measure IU based on the ARCH (autoregressive
conditional heteroscedasticity) and GARCH (generalized ARCH) models of Engle
(1982) and Bollerslev (1986), respectively to take into account further persistence in
the data (Holland 1993; Ben Nasr et al. 2015).

Over the past decade, the stochastic volatility model has also been applied to
model IU. For example, Berument et al. (2009) employed the stochastic volatil-

1 Further, economic uncertainty, which is always unobserved (Charles et al. 2018), has always been
challenging to measure and several proxies have been used: the VIX (Bloom et al. 2012), conditional
variance models (Scotti 2012; Rossi and Sekhposyan 2017), the economic policy index (Baker et al. 2015),
and perceived uncertainty from consumer surveys (Leduc and Sill 2013).
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ity in mean model in line with Koopman and Hol Uspensky (2002) and Chan
(2017) extended the model of Koopman and Hol Uspensky (2002) to allow for
time-varying parameters of IU. Bårdsen et al. (2002) theoretically and empirically
evaluated the advantages of three theoretical models and highlighted the use of stan-
dard Phillips curves for modelling IU compared with the newKeynesian Phillips curve
and incomplete competition models. More recently, Bauer and Neuenkirch (2017)
employed a standard new Keynesian model to forecast inflation and economic growth
uncertainty.

In this study, we follow this second approach to measure IU through symmetric and
asymmetric conditional variance models as well as stochastic volatility models (Poon
and Granger 2003). The use of these three models offers a suitably flexible framework
to account for further asymmetry as well as outliers in IU dynamics. In addition, we
focus on two major regions, namely the United States and the Euro Area, in which
inflation has experienced different episodes over recent decades, suggesting further
evidence of IU. For example, since the subprime mortgage crisis, the US inflation
rate has been volatile, falling from about 4.08% in 2007 to 0.09% in 2008, pushing
policymakers to adopt unconventional monetary policy rules. As a result, US inflation
increased in 2009 to 2.96%, and it has showwn several increases and decreases.2 In the
Euro Area, the inflation rate has shown similar behaviour. In 2007, inflation reached
3.11%, while it has remained below its target rate (2%) since 2013.3 Our findings
show the superiority of the stochastic volatility model for forecasting the dynamics
of IU over the short (1year) and medium (4years) terms. This finding is particularly
interesting to better estimate the main inflation cost, namely IU, and its effect on the
real economy. To our knowledge, it is the first essay to propose forecast of inflation
uncertainty with the stochastic volatility model.

The remainder of this paper is structured into three sections. Section 2 presents the
econometric methodology. Section 3 describes the main empirical results and the last
section concludes.

2 Econometric Methodology

2.1 Measuring IU

We measure IU using three proxies: First, the GARCH model (Bollerslev 1986), to
provide a symmetric and linear measure of uncertainty; second, the GJR-GARCH
model (Glosten et al. 1993), to provide a measure robust to further asymmetry in the
data; third, the stochastic volatility, to allow for more flexibility than the GARCH
model when measuring uncertainty.

2 It reached 1.5 and 2.96% in 2010 and 2011, respectively. It then changed to about 1.74% in 2012, 1.5%
in 2013, 0.76% in 2014, 0.73% in 2015, and 2.07% in 2016.
3 It decreased to 1.64 and 0.92% in 2008 and 2009, respectively before reaching 2.23, 2.75, and 2.22% in
2010, 2011, and 2012.
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2.1.1 Linear GARCH Measure of IU

This measure relies on the ARCH and GARCH models introduced by Engle (1982)
and Bollerslev (1986), respectively for which conditional volatility mainly depends
on its previous tendencies. This measure is appropriate for financial data to account
for the further ARCH effect and persistence; it also supplants statistical uncertainty
measures based on the standard deviation.

Formally, we represent the dynamics of the inflation rate (πt ) by the following
ARMA (p,q) model. We define the mean equation as4

πt = α0 +
P∑

i=1

αiπt−i +
q∑

j=1

β jεt− j + εt (1)

where α0, αi and β j are the parameters of the autoregressive and moving average
variables ∀i = 1, . . . , p, and j = 1, . . . , q.εt denotes the error term and εt |F t−1
∼ N (0, ht ).

Here, ht denotes the conditional variance reproduced by the followingGARCH(1,1)
model5

ht = γ0 + γ1ε
2
t−1 + γ2h

2
t−1 (2)

where γ0 > 0, γ1 ≥ 0, and γ2 ≥ 0.
The above ARMA-GARCH(1,1) model can be used to generate a symmetric mea-

sure of IU. However, this measure might be restrictive as it stipulates that for two
shocks with the same amplitude but a contradictory sign, IU reacts symmetrically. It is
thus more realistic to expect the reaction function to vary with the shock sign, which
becomes possible by extending the GARCH model to an asymmetric framework.

2.1.2 Asymmetric Measure of IU

To account for the further asymmetry in the data, we model volatility by using the
GJR-GARCH(1,1) model developed by Glosten et al. (1993). Accordingly, the new
variance equation becomes

h2t = α0 + α1ε
2
t−i + γ1Iεt−i<0ε

2
t−i + β1h

2
t−1 i f εt = zt

√
ht (3)

where zt is a standard Gaussian, and Iεt−i<0 is a dummy variable modelling asymmetry,
as Iεt−i<0 = 1 if εt−i < 0 and Iεt−i<0 = 0 otherwise.

Finally, for a more flexible measure of IU that can account for further innovations
related to inflation andmonetary policy conduct, we alsomeasure uncertainty by using
a stochastic volatility measure.

4 p and q denote the lag order of the autoregressive and moving average parts, respectively. They are
specified by using the information criteria and autocorrelation functions.
5 The lags for a GARCH model might be specified by using information criteria, too. However, a
GARCH(1,1) provides a suitable specification with which to capture the main volatility properties.
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2.1.3 Measure of IU with Stochastic Volatility

In line with Chan (2013), we propose a stochastic volatility specification with an
autoregressive term between innovations to take the persistence and correlation
between the innovative terms into account. In particular, we apply the stochastic
volatility model that uses moving average student’s t errors.6 Formally we model
the dynamics of inflation as follows:

πt = μ + τt (4)

τt = εt + ψεt−1 (5)

where εt ∼ N (0, exp (ht )) t = 1, . . . , T .
Further, we suppose that volatility dynamics might be captured while specifying

the variance equation (that serves to compute IU) as:

ht = μh + φh (ht−1 − μh) + ζt (6)

where ζt ∼ N
(
0, σ 2

h

)
t = 1, . . . , T . ζt and εt are independent for all leads and lags.

|φh | < 1 is a required condition to ensure the stationarity of this process of (ht ) . The

states are initialized with h1 ∼ N

(
μh,

σ 2
h

1−φ2
h

)
.

According to Chan (2013), this specification requires the following assumptions
on independent prior distributions for μh , φh , and σ 2

h :μh ∼ N
(
μh0 , Vμh

)
; φh ∼

N
(
φh0 , Vφh

)
I (|φh | < 1); and σ 2

h ∼ IG (vh, Sh), where I [∗] is an indicator function
and IG is the inverse gamma distribution.

2.2 Forecasting Strategy

To forecast IU, we employ a rolling out-of-sample strategy that forecasts IU for var-
ious horizons (h). In particular, we adopt two forecasting horizons, namely 1year
(short-term horizon) and 4years (medium-term horizon), motivated by the fact that
the inflation stability objective usually spans 1–4years. The h-step forecasts are cal-
culated for t = ki , . . . , Ti , where ki is the start date of forecasting for country i and Ti
is the end date of the studied series for country i , where i refers to the United States
and Euro Area.

To evaluate forecasting performance, we compare the forecasts of the three above
uncertainty models with those of a benchmark model given by an AR(1) model. This
benchmark model has the advantage of being able to reproduce volatility features such
as persistence. In particular, two loss functions are used, namely mean absolute error
(MAE) and mean squared error (MSE), to compare the forecasts of each model with
the benchmark model. Further, as our ahead forecast horizons are higher than 1, we
employ the modified version of the Diebold and Mariano tests (1995) proposed by

6 Other methods of modelling stochastic volatility include Gaussian error models and heavy tails and serial
dependence; however, the t-distribution is more appropriate (Chan 2013).

123



460 Z. Ftiti, F. Jawadi

Harvey et al. (1997), termedMDM hereafter. Indeed, the Diebold andMariano (1995)
test (DM) suffers from a correlation bias for h > 1 and supposes that the statistical
test follows a standard normal distribution.

We consider two competing models: a candidate model (CMJ ) (noted model 1)
and the benchmark model (noted model 2). The two competing forecast models of

IU are defined as IU
CMj
t+h|t and IU AR(1)

t+h|t for models 1 and 2, respectively. The forecast

errors are defined as ε
CMj
t+h|t = IUt+h − IU

CMj
t+h|t and ε

AR(1)
t+h|t = IUt+h − IU AR(1)

t+h|t ,
respectively. Forecasting performance is then compared based on a loss function (the
squared error or absolute error) defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

L
(
IUt+h, IU

CMj
t+h|t

)

i
= L

(
ε
CMj
t+h|t

)

i
; for the CMj

L
(
IUt+h, IU

AR(1)
t+h|t

)

i
= L

(
ε
AR(1)
t+h|t

)

i
; for the AR(1) model (7)

The null hypothesis of the DM test consists of checking whether the differential (dt ) of
the loss functions of the two competingmodels is statistically equal to zero as follows:

H0 : E
[
dit

]
= 0, where dit = L

(
ε
AR(1)
t+h|t

)

i
− L

(
ε
CMj
t+h|t

)

i
(8)

The statistics of the DM test (supposed to be normally distributed) correspond to

Si = di
(

̂LRV√
nd̄

)1/2
i

(9)

where d̄i = 1
n

∑Ti
t=ki

dit ;
(

̂LRV√
nd̄

)

i
denotes the consistent estimates of the asymp-

totic long-run variance of
√
nd̄, given by

(
̂LRV√

nd̄

)

i
= γ0 + 2

∑h−1
j=1 γ j , where

γ j = cov
(
dt , dt− j

)
, and i denotes the United States and Euro Area. n is the number

of observations for each region.
As the loss differential functions might be serially correlated for h > 1, Harvey

et al.’s (1997) MDM test uses an approximately unbiased estimator of
(

̂LRV√
T d̄

)
.

The exact variance is defined by
(
LRV√

T d̄

)

i
= γ0 + 2

Ti

∑h−1
j=1 (Ti − j) γ j and the

estimator used by the DM test is presented as

(
̂LRV√

T d̄

)

i
= γ̂ ∗

0 + 2

Ti

h−1∑

j=1

(Ti − j) γ̂ ∗
j (10)

where γ̂ ∗
j is the expected value of the sample autocovariance.7 Ti denotes the number

of observations in country i .

7 For more details on the MDM statistic, see Harvey et al. (1997).
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From Harvey et al. (1997), dt has a zero mean, implying the following modified
statistics for their test (SMi ):

(SMi ) =
[
Ti + 1 − 2h + T−1

i h (h − 1)
] 1
2 ∗ Si (11)

with SMi � T (ni − 1).

3 Empirical Analysis

3.1 Preliminary Analysis

Our data include monthly consumer price index data for the United States and Euro
Area from January 1996 to January 2017 collected fromDataStream. The annual infla-
tion rate is computed as the logarithm difference of the seasonally adjusted consumer
price index, where adjusted seasonality is realized based on the CENSUSmethodX13.

The selection of the United States and Euro Area and the above period sample
has several advantages. First, over the sample period, the Fed adopted different con-
ventional monetary policy regimes as well as unconventional monetary policy since
the aftermath of the global financial crisis (2008–2009), which could have affected
inflation and therefore IU. Second, monetary policy in the Euro Area is implicitly
inflation targeting; however, recently, this region has adopted unconventional mone-
tary policy, which therefore allows us to compare the effects of the actions of the Fed
and the European Central Bank. Third, the sample period not only covers different
inflation episodes but also includes calm and crisis periods for which IU is likely to
be time-varying and therefore interesting to forecast. Further, regarding the Euro Area
the inclusion of the euro implies obvious uncertainty about this common European
currency that is interesting to evaluate it.

First, we check the stationarity of the US and Euro Area inflation rates by using
four unit root tests: the augmented Dickey–Fuller (ADF) test, Phillips–Perron (PP)
test, Ng–Perron (NgP) test, and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test.
The three first tests check the null hypothesis of non-stationarity against the alternative
hypothesis of stationarity. While the PP test is robust to further heteroscedasticity and
autocorrelation problems in the data, the NgP test is an effective modified PP test and
its application enables us to check the results of the two former unit root tests. The
KPSS test is non-parametric and a test of stationarity. Table 1 shows that the inflation
rate series for the United States and Euro Area is I(0). Stationarity is also confirmed
by Figs. 1 and 2, which also show strong correction and even periods of deflation in
the aftermath of the global financial crisis, particularly for the United States.

Second, we compute the main descriptive statistics of the inflation rates The results
in Table 2 show that on average the inflation rate is higher and more volatile in the
United States than in the Euro Area with a maximum of 5.35% (4.08%) in the United
States (in the Euro Area) and a minimum of − 1.93% (− 0.56%). Further, the kurtosis
values exceed 3 for the United States, providing further evidence of leptokurtic excess
in the data distribution against a platykurtic distribution for the Euro Area. Moreover,
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Table 1 Results of the Unit root tests

Test ADF PP KPSS NgP

US inflation − 2.053 − 3.490*** 0.428** − 4.480***

Lags or bandwidth 12 1 11 12

Model C C C C

Euro Area inflation − 2.267 − 2.6370* 0.467* − 17.102**

Lags 12 7 11 12

Model C C C C

This table presents the results of the Unit root tests. ***, **, and * indicate significance levels of 1, 5, and
10%, respectively. Lags denotes the number of lags included for each test. C denotes the model with a
constant only

Fig. 1 Dynamics of the US inflation rate

the US and Euro Area inflation rates are skewed to the left. This result is in line with
Jarque–Bera test, rejecting the normal distribution for both inflation rate series.

3.2 Estimating IU

First, we propose a symmetric measure of IU. To do so, we estimate ARMA(5,5) and
ARMA(1,12) models to specify the mean equation of the US and Euro Area inflation
rates, respectively, while the variance equation is estimated for both regions by using
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Fig. 2 Dynamics of the Euro Area inflation rate

Table 2 Descriptive statistics of the inflation rate

Mean Min Max SD Kurtosis Skewness p value of the
Jarque–Bera test

United States 2.1283 − 1.9354 5.3519 1.2117 3.6038 − 0.3318 0.0000

Euro Area 1.7009 − 0.5687 4.0893 0.9932 2.7575 − 0.3711 0.0467

This table presents the main descriptive statistics. SD denotes standard deviation

a GARCH(1,1) model.8 This approach seems to reproduce the conditional variance
for both regions correctly, as the results show no pattern for either the residuals or the
squared residuals.9

Figures 3 and 4 report the dynamics of the estimated symmetric IU measures for
the United States and Euro Area, respectively. First, IU in the United States peaks in
2009 after increasing since the end of the 1980s, while IU shows no clear trend for the
Euro Area. Second, IU exhibits more short-term changes than does IU in the United
States. Third, even despite the volatile IU at the end of the period, it is still lower than
IU in the United States, which has risen significantly since the aftermath of the global
financial crisis.

8 The GARCH model is estimated by using the quasi-maximum likelihood technique of Bollerslev and
Wooldridge (1992).
9 To save space, we do not report the estimation results of the GARCH and GJR-GARCH specifications,
but they are available upon request.
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Fig. 3 US symmetric IU. Note This figure reports the graphic of the symmetric measure of inflation
uncertainty

Fig. 4 Euro Area symmetric IU. Note This figure reports the graphic of the symmetric measure of inflation
uncertainty

To better compare these series, we compute the main descriptive statistics of the
uncertainty series for the United States and Euro Area. Table 3 shows that on average
IU in the United States is more than five times higher than that in the Euro Area. It
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Table 3 Descriptive statistics of symmetric IU

Mean Min Max SD Kurtosis Skewness p value of the
Jarque–Bera test

United States 0.1261 0.0072 0.3297 0.0628 3.821 0.9140 0.0000

Euro Area 0.0250 0.0130 0.1012 0.0130 11.755 2.5953 0.0000

This table presents the main descriptive statistics of the symmetric measure of IU

Fig. 5 US asymmetric IU. Note This figure reports the graphic of the asymmetric measure of inflation
uncertainty

also shows the highest volatility, suggesting that economic agents’ fears about Fed
policy are higher than those on the European Central Bank’s action. Further, for both
uncertainty series, the normality hypothesis is rejected: the distribution seems to be
skewed to the right and with a leptokurtic excess.

Second, Figs. 5 and 6 report the main results of estimating IU by using the GJR-
GARCH(1,1) model for both regions. We find strong similarities with the symmetric
GARCH estimated earlier.

Table 4 presents the descriptive statistics of asymmetric IU in the United States and
Euro Area. From these results, we can draw the same conclusions: asymmetric IU is
higher and more volatile in the United States than in the Euro Area.

Finally, Figs. 7 and 8 present the IU results for the United States and Euro Area,
respectively, using the stochastic volatility model. This new estimate confirms the
robustness of our uncertainty estimates by capturing a similar profile for uncertainty.
It increases during the Internet bubble and global financial crisis periods; however, it
does show less volatility for both regions.
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Fig. 6 Euro Area asymmetric IU. Note This figure reports the graphic of the asymmetric measure of
inflation uncertainty

Table 4 Descriptive statistics of asymmetric IU

Mean Min Max SD Kurtosis Skewness p value of the
Jarque–Bera test

United States 0.1153 0.0079 0.3283 0.0617 3.621 0.9514 0.0000

Euro Area 0.0250 0.0128 0.0965 0.0129 10.420 2.4161 0.0000

This Table presents the main descriptive statistics of the asymmetric measure of IU

Finally, Table 5 reports the main descriptive statistics of the uncertainty measure
with stochastic volatility to better analyse its statistical properties. The United States
still appears to show the highest IU on average, while the uncertainty measure has
become more volatile for the Euro Area. In addition, the symmetry and normality
hypotheses are rejected for both regions.

Overall, the estimates of IU using the three methodologies (symmetric GARCH,
asymmetric GARCH, stochastic volatility) capture some of the important properties of
uncertainty data and provide comparable results. However, to identify the model that
best fits the data, we next present the results of our comparative forecasting analysis.

3.3 Forecasting Analysis of IU

We again compute the forecasts for our three models and compare them with those of
the benchmark model to understand the further persistence in IU dynamics. Figures 9
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Fig. 7 US stochastic IU. Note This table reports the graphic of the stochastic measure of IU

Fig. 8 Euro Area stochastic IU. Note This table reports the graphic of the Stochastic measure of IU
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Table 5 Descriptive statistics of stochastic IU

Mean Min Max SD Kurtosis Skewness p value of the
Jarque–Bera test

United States 0.6083 0.3228 1.2204 0.2179 3.7057 1.045 0.0000

Euro Area 0.4589 0.1763 1.0340 0.2656 2.4921 0.927 0.0000

This Table presents the main descriptive statistics of the stochastic measure of IU

and 10 present the results for medium-term (i.e. 4years)10 out-of-sample IU for our
three candidates’ models for the United States and Euro Area, respectively. Figures a
andbdisplay the forecasting dynamics basedon symmetric and asymmetric IU, respec-
tively. In Figs. 9a, b, 10a, and b, the benchmark (blue line) only captures the linear
trend of the uncertainty dynamics. However, the forecasts of symmetric and asym-
metric IU (black lines) enable us to understand short-term fluctuations and tendency
changes. Nevertheless, overall, the estimated models do not appear to be sufficiently
suitable to forecast IU dynamics accurately. In general, the stochastic volatility model
seems to supplant the benchmark model and provide better performance forecasts,
particularly for the United States.

To better compare these forecasts, Tables 6 and 7 present the forecasting evaluation
indicators (MAE, MSE) as well as the results of the Harvey et al. (1997) test for
the medium-term horizon. The results confirm the graphical analysis. The benchmark
model typically outperforms the symmetric and asymmetric models. However, the
stochastic volatility model always supplants the benchmark model for the medium
term.This finding suggests that the greater flexibility offered by the stochastic volatility
model raises forecast uncertainty while taking into account further innovations in the
data, again suggesting its superiority over the GARCH model.

Figures 11 and 12 present the dynamics of the short-term forecasts of the three
models.11 In line with the medium-term analysis, there is no clear difference between
the symmetric and asymmetric GARCHmodels compared with the benchmarkmodel.
However, Figs. 11c and 12c show the better short-term forecasting accuracy of the
stochastic volatility model compared with the other two models.

We also compare these forecasts in Tables 8 and 9 and report the estimated values
of the statistics for the short-term forecast horizon. Our findings show that while the
benchmark model better fits the data compared with the symmetric GARCH model
for the United States, the latter provides a better forecasting result for the Euro Area.
However, in the medium term, the stochastic volatility model appears again to be the
best fitted model to forecast the dynamics of IU in the short term.

10 For the medium term forecasting, the period of models estimation is from June 1997 to January 2013
for the case of US and from February 1997 to January 2013. The forecasting period is from February 2013
to January 2017.
11 For the short-term forecast, the period of the model estimation runs from June 1997 to January 2016
for the United States and from February 1997 to January 2016 for the Euro Area. The forecasting period is
therefore from February 2016 to January 2017.
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Fig. 9 US IU forecast in the medium term. a IU forecast with the symmetric GARCHmodel. b IU forecast
with the asymmetric GARCHmodel. c IU forecast with the stochastic volatility model. Note H (black line)
denotes the forecast of the candidate model for IU. Forecast series (blue line) denotes the forecast of the
benchmark model. The green chart refers to the realized observed IU series computed differently through
the three approaches (symmetric GARCH, asymmetric GARCH, stochastic volatility model)
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Fig. 10 Euro Area IU forecast in the medium term. a IU forecast with the symmetric GARCH model.
b IU forecast with the asymmetric GARCH model. c IU forecast with the stochastic volatility model.
Note H (black line) denotes the forecast of the candidate model for IU. Forecast series (blue line) denotes
the forecast of the benchmark model. The green chart refers to the realized observed IU series computed
differently through the three approaches (symmetric GARCH, asymmetric GARCH, stochastic volatility
model)

123



Forecasting Inflation Uncertainty in the United States... 471

Table 6 Forecasting evaluation for IU in the United States for the medium term horizon

Forecast test/
Candidate models

Symmetric GARCH model Asymmetric GARCH model Stochastic volatility model

Benchmark ARMA-
GARCH

Benchmark ARMA-GJR-
GARCH

Benchmark Stochastic

MAE 0.0140 0.0340 0.0249 0.0178 0.0947 0.0874

MSE 0.0002 0.0018 0.0008 0.0008 0.0185 0.0108

Test 2.5986** 0.0805 − 3.2930***

Most accurate
model

Benchmark Indifferent Stochastic

This table presents the results of the forecasting evaluation for IU for the US at the medium term horizon.
*** Denotes the 1% significance level

Table 7 Forecasting evaluation for IU in the Euro Area for the medium term horizon

Forecast test/
Candidate models

Symmetric GARCH model Asymmetric GARCH model Stochastic volatility model

Benchmark ARMA-
GARCH

Benchmark ARMA-
GJR-
GARCH

Benchmark Stochastic

MAE 0.0082 0.0083 0.00812 0.01601 0.46380 0.43935

MSE 0.0001 0.0001 0.00013 0.00041 0.27406 0.24916

Test 1.2 3.058*** − 12.1984***

Most accurate
model

Indifferent Benchmark Stochastic

This table presents the results of the forecasting evaluation for IU for the Euro Area at the medium term
horizon. *** Denotes the 1% significance level

Overall, the analysis of our results shows that IU has evolved in tandem with
the phases of the business cycle over time. In particular, periods of crises and eco-
nomic downturns have been characterized by high IU. The analysis of our uncertainty
forecasts shows the superiority of the stochastic volatility model for modelling and
forecasting IU in the short and medium terms for both the United States and the Euro
Area.

4 Conclusion

This study models and forecasts IU in the United States and Euro Area over 1997–
2017, using threemethodologies: the symmetricGARCHmodel, asymmetricGARCH
model, and stochastic volatility model.While the two first methods provide symmetric
and asymmetric measures of IU, respectively, the third measure has the advantage of
offering greater flexibility in measuring uncertainty. Our out-of-sample IU forecast
shows the superiority of the stochastic volatility model when forecasting IU dynamics
in both the short (1year) and the medium (4years) terms. This finding recommends
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Fig. 11 US IU forecast in the short term. a IU forecast with the symmetric GARCH model. b IU forecast
with the asymmetric GARCH model. c IU forecast with the stochastic volatility model
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Fig. 12 Euro Area IU forecast in the short term. a IU forecast with the symmetric GARCH model. b IU
forecast with the asymmetric GARCH model. c IU forecast with the stochastic volatility model
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Table 8 Forecasting evaluation for IU in the United States for the short-term horizon

Forecast test/
Candidate model

Symmetric GARCH model Asymmetric GARCH model Stochastic volatility model

Benchmark ARMA-
GARCH

Benchmark ARMA-GJR-
GARCH

Benchmark Stochastic

MAE 0.0188 0.0341 0.0133 0.0176 0.1225 0.01715

MSE 0.0004 0.0017 0.0002 0.0006 0.0182 0.0005

Test 1.683** 1.006 − 5.132***

Most accurate
model

Benchmark Indifferent Stochastic

This table presents the results of the forecasting evaluation for IU for the US at the short-term horizon. **
and *** Denote significance levels of 5 and 1%, respectively

Table 9 Forecasting evaluation for IU in the Euro Area for the short-term horizon

Forecast test/
Candidate
model

Symmetric GARCH model Asymmetric GARCH model Stochastic volatility model

Horizon for
the ahead
forecast

Benchmark ARMA-
GARCH

Benchmark ARMA-GJR-
GARCH

Benchmark Stochastic

MAE 0.00848 0.00565 0.00865 0.014615 0.15130 0.05351

MSE 0.00010 0.00004 0.00009 0.00029 0.03376 0.00456

Test − 2.027** 2.915*** − 3.536***

Most accurate
model

ARMA-GARCH Benchmark Stochastic

This table presents the results of the forecasting evaluation for IU for the Euro Area at the short-term
horizon. ** and *** denote significance levels of 5 and 1%, respectively

the use of the stochastic volatility model to estimate the inflation cost (IU) accurately
and evaluate its effect on the real economy. Nevertheless, our conclusion might be
improved by taking into account new indicators related to central banking as well as
indicators used in recent unconventional monetary policy. Further, it is worth to recall
that when comparing the Fed and the ECB, there are at least three main differences.
First, the Fed and the ECB do not have the same mandate even if for both the fight
against inflation is a priority. Second, the degree of independency is also different
for the two central banks. Third, the two central banks have not adopted the conduct
of the unconventional monetary policy in the same time. For all these reasons, it might
appear a priori appear more relevant to focus on the modeling of inflation uncertainty
in a univariate framework as we what we have done in this paper. However,it is also to
expect that some common factors (e.g. the recent use of unconventional monetary rules
as the Quantitative Easing, Qualitative Easing, etc.) might imply further uncertainty
for inflation for both regions (Europe and theUSA) and thus requires the application of
a multivariate model such as VAR-GARCHmodel to better asses for the interaction of
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inflation uncertainty between these two regions. This issuemight be a natural extension
of the current work.
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