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Abstract We develop and simulate an interaction-based model of continuous opinion
formation under bounded confidence to identify conditions and understand circum-
stances that lead a society into either a consensus, multiple opinion classes or perpetual
opinion dynamics. The society is modeled as a social network and random meetings
are presumed. When only regular agents are present, we have shown that the small
world networks may bring the society very close to consensus for even small threshold
levels, but require higher tolerance than the complete network to reach consensus. We
have identified the conditions under which the process with stubborn agents generates
long-run consensus, permanent disagreement or permanent fluctuation in opinions.
There cannot be a persistent fluctuation in opinions in the environment of regular
agents nor in the presence of a single group of stubborn agents. In the runs with a
single group of stubborn extremists, we have identified the Popper paradox despite
the existence of a tolerance span in which the proportion of extremism decreases as
the tolerance level increases. Further, in a highly tolerant society with two competing
extremist groups, they have no supporters among the regular agentswhose opinions are
oscillating around the center of the opinion space. The influence of inconsistent agents
is persistent and induces a perpetual opinion dynamics. The model is non-equilibrium
and emerging, while consensus, if attainable, can be reached in a finite time.
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1 Introduction

In the present paper, we examine the question of opinion formation in an integrated
society of heterogeneous and interacting individuals. The importance of the topic
stems from the fact that what people think determines the choices that they make in
their everyday life. This may refer either to economics, finance, game theory, buying
decisions,marketing and product recommendations, politics and voting, urban growth,
norms. In a decentralized society which does not have a social planner to direct oth-
ers’ behaviors, opinions are generated spontaneously by repeated local interactions
between the large number of participants, we call them agents, and the feedback influ-
ences from the macrostructure onto the agents’ behaviors. It has been shown that the
interacting society can produce very diverse outcomes. Even extreme and marginal
views can prevail in certain conditions, including the outcomes that are considered
undesired and condemned (Glaeser et al. 1996; Schelling 1971).

Economists have been for a long interested in how the interaction influences the indi-
viduals’ opinions and how this transforms into the opinion dynamicswithin the society.
It has been found that the interacting society leads to the adoption of widespread opin-
ions, directing the society towards consensus. In fact, the ability of autonomous and
interacting individuals with different priors to reach consensus is remarkable and
has been thoroughly studied (Bala and Goyal 1998; Banerjee and Fudenberg 2004;
Baronchelli et al. 2008; DeGroot 1974; Gale andKariv 2003; Golub and Jackson 2010;
Hegselmann and Krause 2005; Motsch and Tadmor 2014; Olfati-Saber and Murray
2004; Vicsek et al. 1995). Over the years, the question of consensus has become a
central concern within the research community.

However, the complex and dynamic large-scale societies exhibitmuch richer behav-
ioral structures. In fact, the notion of consensus contrasts with empirical facts and can
be considered an idealization of the reality and a theoretical construct, while disagree-
ment is a norm in practice.1 For instance, individuals regularly disagree on political
agendas, movies, the cast, prefer some restaurants and places to others, have oppos-
ing views to the superstars, etc. One might mistakenly believe that disagreement is
caused by the asymmetric and incomplete information alone, because it is present
when individuals are exposed to the same data or news (Hirshleifer 2001). Some
disagreement may be induced by the people’s attitude towards the opposing views,
because some may have more firm beliefs than others. Anyway, disagreement in a
society can be expressed either in the form of multiple opinion clusters or as a per-
petual opinion dynamics. Recent research has demonstrated that stable diversity of
opinions can be attained when bounded confidence or stubborn agents with fixed
opinions are introduced (Deffuant et al. 2000, 2002; Weisbuch et al. 2002). Though
very intuitive, these attempts cannot properly describe behavioral patterns on both, the
individual and the aggregate level, that are induced by the joint influences of agents’

1 Not only are individuals’ opinions different, in some instances they are even contrasting (Hayek 1945).
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specifics and the interrelationships between the microscopic processes which both
are complex. One aspect that has not received any attention yet is the agents’ sin-
cerity in information-sharing, which is always relevant when agents refer to human
beings. Relatedly, when agents update their opinions upon the opinions of others, they
may contact an insincere counterpart and then make a decision upon the insincere
opinion. In the large-scale societies with random meetings, insincere agents would
be very hardly identified and then avoided. The interacting agents could thus not
know whether the opinion they received was agents’ genuine or not. If it is not,
the insincere opinion may be incorporated into their updated opinions and through
interaction subsequently transferred further onto their counterparts, who then pass it
over to their counterparts and so on across the society. Similar is the case with the
stubborn agents who do not change their priors. Furthermore, it is well known from
the theory of complex systems that even a slight modification of a single parameter
may shape the process, inducing the macroscopic shifts. Multi-agent simulation based
methods are used to examine the models of opinion dynamics principally because
they allow for the mutual and causal influences of the micro-elements on the develop-
ment of the complex system, which develops in a nonlinear way (Tesfatsion and Judd
2006).

To explain the very diverse opinion structures within the interacting and inter-
connected society, we extend the bounded confidence model of continuous opinion
formation. In particular, our goal is to improve our understanding of how the
process of opinion formation goes through the phase transitions as the circum-
stances and the network structures are modified. More specifically, we would
like to identify the conditions that lead a complex society into either a con-
sensus, multiple opinion clusters or a perpetual opinion dynamics, and exam-
ine the evolutionary dynamics. The model is based on the principal assump-
tion that there is no true opinion towards which agents would like to con-
verge.2

The society is modeled as a social network that consists of a large number of
single agents who are represented as nodes and connected with one another with
a set of links through which the opinions are regularly exchanged. Since recipro-
cal person-to-person communication is presumed, we use undirected links. A direct
implication is that all of the interacting individuals can potentially affect one another.
More specifically, the updating rule is conducted upon the difference in the two opin-
ions and the adoption rate. The principle of bounded confidence implies that an
agent will change his opinion if the opinion of a selected counterpart differs from
his by less than his threshold level. The threshold level can be interpreted as the
individuals’ tolerance to the opposing opinion and along with the adoption rate rep-
resents the crucial parameter in an agent’s choice function. Analogously, tolerance
is interpreted as the agent’s willingness to consider the counterpart’s opinion. The
adoption rate determines how much of the opponent’s opinion an agent will integrate

2 This assumption is grounded on the premise that opinions are not true or false in the way the logical
statements are but are essentially subjective and agents’ private information. Therefore, no such objective
metric exists, which would allow an agent to check the correctness of his opinion. Hence, everyone is right
(or wrong) in his own way.
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into his priors. By using the continuous opinions, an agent can take only a slight
portion of the counterpart’s opinion and the communication can end in an opinion
which has not been present before. This would not be possible if we used discrete
opinions which presume a fixed number of predetermined states. We compare the
results on several different network topologies: the complete network, which con-
siders the society an integrated entity in which everyone can meet and share his
opinion with anyone, small world network (Watts and Strogatz 1998) which pre-
sume local clustering, and the scale free network in the sense of Barabási and Albert
(1999).

We begin with a very general setting with only regular agents and show that a
widespread consensus can be reached in even a moderately tolerant society, while
there cannot be a persistent opinion dynamics if regular agents have homogeneous
threshold levels. A less tolerant society will end up in several opinion classes. This
also holds true in the small world network and the scale-free network. Here we
show that the network topology plays an important role for the process of opin-
ion formation. In particular, the small world networks have proved to be the most
effective in bringing the society to very high degree of consensus, while higher
threshold levels than in the complete network are required to reach consensus. Sub-
sequently, we extend the model by introducing a subset of stubborn agents3 with
extreme opinions and show the susceptibility of even a moderately tolerant soci-
ety to extremism. Here, we have identified such a tolerance span where the higher
tolerance is offset with less extremism in society. When another group of stub-
born agents is added on the opposing extreme, the group of regular agents can
end either in consensus, multiple opinion clusters or even in the perpetual opinion
dynamics. In the latter case, no regular agent is the extremist. In the last part of
the paper, we examine the cases with a subset of inconsistent agents, who report
a random opinion to the selected counterparts and show that their influence is per-
sistent.4 Important for the behavior of the model is the assumption that stubborn
and insincere agents cannot be identified and avoided and that the regular agents’
threshold levels and opinions are also not observable to the counterparts. Our most
important contribution is to show the phase transitions that are network-based and
related to different tolerance levels and the social structure. We also show that the
model is non-equilibrium and that consensus, if attainable, can be reached in a finite
time.

The remainder of this paper is organized as follows. Section 2 discusses related
literature. The model is described in Sect. 3. In Sect. 4, we examine the model with
regular agents and conduct several simulations on different network topologies. In
Sect. 5, themodel includes a portion of stubborn counterpartswith the extremeopinion.
In Sect. 6, we add additional group of the stubborn agents located on the other extreme.
Section 7 examines the model with inconsistent agents. The last section concludes.

3 Stubborn agents cannot be persuaded but can persuade others (Katz and Lazarsfeld 1955).
4 Stubborn agents may be seen as opinion leaders, while insincere agents could also be referred to as
misbehaving or faulty agents.
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2 Related Literature

There is a rich and still growing literature on the opinion formation that tries to find
the explanations for agents’ very diverse behaviors.5 Following the pioneering work
of DeGroot (1974), the early studies elucidated how the environment of autonomous
and interacting individuals leads to consensus. Specifically, DeGroot shows that con-
sensus is reached when agents constantly update their opinions upon the weighted
average of neighbors’ opinions. The subsequent research has shown that the existence
of consensus and its dynamics depend on how individuals receive, process and respond
to information and what are the interaction patterns (Altafini 2013; Boccaletti et al.
2014; Motsch and Tadmor 2014).

Principally, our model is related to the models of bounded confidence, in which
agents can influence each others’ opinions if and only if the two opinions were already
sufficiently close (Acemoglu et al. 2013;Ben-Naim2005;Blondel et al. 2009;Deffuant
et al. 2000, 2002; Hegselmann and Krause 2002, 2005; Jadbabaie et al. 2003, 2012).
The decision criterion behind the bounded confidence is the level of disagreement
and this has proved to be very efficient in explaining the behavioral diversity. Lorenz
(2010) examines the model in which agents have two different bounds and finds that
consensus can be reached evenwhen both bounds of confidence are significantly below
the critical bound of confidence of a homogeneous society. Several other methods have
also been conducted: the voter model (Krapivsky and Redner 2003; Sood and Redner
2005), the Ising model (Galam 2008). Some other models include forceful agents
(Acemoglu et al. 2010), influential agents (Golub and Jackson 2010; Watts and Dodds
2007). Sznajd-Weron and Sznajd (2000) develop a discrete opinion model in which
two agents unite their opinions first and then try to impose this common opinion
onto their nearest neighbors. Glaeser et al. (1996) propose a model of crime rates, in
which agents’ decisions are jointly affected by a combination of the behavior of their
immediate neighbors and the average behavior within a society. This is a variant of the
threshold model (Granovetter 1978) in which a certain number of counterparts must
make one decision (hold a certain opinion in our case) before it is adopted by the agent.
Galam (2004) examines the model with contrarian agents who deliberately oppose the
prevailing choice. Decision-making upon the quorum was proposed by Ward et al.
(2008). Our paper is also related to the models of dishonest behavior (Dutta and Sen
2012; Eliaz 2002). The common assumption postulates that agents honestly share
their opinions with others, which may not be always satisfied.6 Most models presume
direct agent-to-agent communication. Some models include media (DeMarzo et al.

5 Network-based models of opinion formation have largely developed within two broad categories. In the
discrete opinion models, an individual has to choose from a given number of alternatives (voter model,
Ising model, etc.). In continuous opinion models, the opinion is represented by a real number for which
communication can bring some unique opinions which were non-existent before. This is not possible in
discrete models. See Galam (2008), Castellano et al. (2009), Acemoglu and Ozdaglar (2011) and Young
and Zamir (2015) for an overview of the recent models. We are concerned with continuous opinions.
6 Even though the models of opinion dynamics usually presume an honest individual, this sort of uncer-
tainty, i.e. misbehaving parts and component failures, has been regularly used in explaining the behavior of
distributed systems in some other disciplines (Fischer et al. 1985; Lamport et al. 1982; LeBlanc et al. 2012;
Marti et al. 2000; Pasqualetti et al. 2012; Ren and Beard 2005).
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2003; Gentzkow and Shapiro 2011) or social media (Gruhl et al. 2004; Kempe et al.
2003; Kwak et al. 2010).

Methodologically, the model of opinion formation embodies a diffusion process on
a social network. These models provide a useful framework for studying the behavior
of multi-agent systems from different disciplines (Albert et al. 2000; Axelrod 1997;
Blume 1993; Boccaletti et al. 2006; Burnside et al. 2011; Granovetter 1995; Kauffman
1993; Leskovec et al. 2007; Newman 2002; Nowak and May 1992; Pastor-Satorras
and Vespignani 2001; Szabó and Fath 2007; Valente 1995).

3 The Model

We provide a network-based model of discrete and finite time, defined over t =
0, 1, 2, . . . , T , with t = 0 indicating initial states and, if not stated differently, T =
50,000. Let G = {V, E} be a graph that consists of a finite set of agents i ∈ V =
{1, 2, . . . , n} who are defined as nodes on a network and linked with one another with
a finite set of links E .7 Each agent is characterized by the triple: opinion, threshold
level and a set of connections, hence i = {xi,t , εi ,Ni }. At each point in time t , agent i
has opinion xi,t ∈ X (0, 1). If not stated differently, at t = 0, each agent is assigned an
initial opinion xi,0 ∼ U (0, 1), independent and identically distributed (i.i.d.) random
variable, expressed by a real number. By the assumption, no “true” opinion exists
and no payoff or utility is attached to agents’ opinions. Furthermore, agents have no
knowledge about the counterpart’s opinion until it is revealed and do not know the
type of a selected counterpart nor his threshold level nor the neighborhoods of their
counterparts.

Links between the agents indicate the communication channels through which
opinions are exchanged and the influence is imposed. Communication requires a direct
link between the agents (i, j) ∈ E . We use undirected links in which the two agents are
either connected or not. Formally, if (i, j) denotes a link from agent i to j , then we say
that the link is undirected if and only if (i, j) ∈ E ⇔ ( j, i) ∈ E . That is, when agent i
communicates his opinion to agent j , there is also a reciprocal transfer of opinion from
j to i . This condition is very practical since information-sharing is usually both-sided,
for which each of the two interacting agents can potentially influence the other.

In each period t , agent i selects a random counterpart j from his neighborhood
Ni and the two share their opinions xi,t and x j,t , respectively.8 The neighborhood
of a node i is the set of nodes that i is linked to: Ni = { j ∈ V|( j, i) ∈ E}. Since
(i j) ⇔ ( j i) it follows that j ∈ Ni ⇔ i ∈ N j . Neighborhoods of the agents are
determined by the network structure. We consider the behavior of the model on three
different network structures: the complete network, small world network and scale
free network. There is only one neighborhood in a complete network since all agents
are connected with each other. There are several different neighborhoods in the small

7 The network is a mathematical representation of a society. For a thorough overview of the social network
concepts, we refer the reader to Wasserman and Faust (1994) and Jackson (2010).
8 This excludes the cases in which John would intentionally call for Peter, asking him for the advice, as
well as the cases in which he would want to avoid certain counterparts with adverse opinions or undesired
characteristics Gentzkow and Shapiro (2011).
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world network and the scale free network. More precisely, in the small world network
the average neighborhood is equal across the nodes, while the scale free network
displays a large degree of heterogeneity. Moreover, in these networks different agents
are members of different neighborhoods. If i /∈ N j and j /∈ Ni , then k ∈ Ni ∩ N j

represents the bridge between the two neighborhoods. Bridges transmit information
between the neighborhoods and thus improve the network connectivity.

Agents meet in a sequential fashion. When the counterpart is chosen and the opin-
ions are exchanged, agents establish the attitude towards the opinion they hear. If x Ri,t
is the opinion that agent i reports to the selected counterpart, then x Ri,t �= xi,t in the

case of insincere agents; for honest agents x Ri,t = xi,t . Subsequently, each of the two
agents autonomously and simultaneously updates his opinion without knowing what
the counterpart has selected. The process then repeates for agent 2, and so on until the
last agent. The process then proceeds to the next period and repeats until t = T .

Agents adjust their opinion upon the principle of bounded confidence. If xi,t is the
opinion of agent i in t and x Rj,t is the opinion that has been reported to him by agent
j in t , then an agent with bounded confidence is willing to adjust his opinion if and
only if |xi,t − x Rj,t | < εi , with εi representing the threshold level of agent i , otherwise

xi,t+1 = xi,t .9 Distance between the two opinions xi,t and x j,t in t , denoted di j,t , is
measured as l1-norm

di j,t = |xi,t − x Rj,t |. (1)

Distance in (1) signifies the level of temporarydisagreement between the twoagents.
The maximum distance at which an agent will take a portion of the counterpart’s
opinion is determined by the agent’s threshold level εi . Hence, one could also think
of the threshold level as the agent’s tolerance for the distance or simply his tolerance.
In a way, the threshold level determines the agent’s vulnerability to the opponents’
opinions. An agent with εi = 1 is absolutely vulnerable and will always take a portion
μ of the counterpart’s opinion. An agent with 1 > εi > 0 is relatively vulnerable
and approaches the counterpart’s opinion when di j,t < εi . Most individuals from the
reality would fall under this category. Threshold levels are assigned to each agent at
t = 0, with εi ∈ [0, 1]. Because we assume that threshold levels are equal across the
population of regular agents (ε1 = ε2 = · · · = εn), we will simplify the notation
and write εi = ε. The group of stubborn agents have εs = 0 since the stubborn
agents always keep their initial opinion. Thresholds are considered agents’ private
information and are unknown to the counterparts.

We close the model by introducing the adoption rate μ ∈ [0, 1], representing the
proportion of counterpart’s opinion an agent integrates into his prior. If μ = 0 we
have a trivial case of a stubborn agent, because such agent evaluates the counterpart’s
opinion but never approaches to it. These cases are not of interest for us.

Definition 1 A non-stubborn agent i has parameter values of εi > 0 and μ > 0.

Definition 2 A stubborn agent i has parameter values of εi = 0 and/or μ = 0.

9 The idea of bounded confidence suggests that people ignore individuals with whom they largely disagree.
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This yields the principal equation of the model which drives the agent’s opinion
dynamics and is considered a linear combination of the agent’s opinion xi,t and the
counterpart’s reported opinion x Rj,t

xi,t+1 =
{
xi,t + μ(x Rj,t − xi,t ) if di j,t < εi

xi,t if di j,t ≥ εi
(2)

In (2), xi,t+1 is the opinion of agent i at t + 1. Notice that x Rj,t = x j,t for honest
agents. Because the information flows in both directions, agent j approaches to the
opinion of agent i by the factor ofμ if and only if di j,t < ε j . Analogically, the opinion
dynamics for agent j is provided as x j,t+1 = x j,t + μ(x Ri,t − x j,t ). Now, x Ri,t refers to
the reported opinion by agent i to j .

Since εi = ε for the regular agents, this implies that di j,t = d ji,t . If di j,t < ε, each of
the two agents approaches to the counterpart by theμ portion of the disagreement di j,t ,
which reduces the distance between the two by the size of 2μdi j,t , else, both agents
remain at their prior opinions. There is a special case when di j,t < ε and μ = 0.5,
when xi,t+1 = x j,t+1 = (xi,t + x j,t )/2, and the two agents end the discussion with the
same opinion, which is the average opinion of the two. If agents have heterogeneous
thresholds, for which εi �= ε j for i �= j , only an agent with a higher threshold may
modify his opinion and approach to the counterpart. We will meet this sort of cases in
the runs with the stubborn agents who are characterized by the zero tolerance (εs = 0).

The process of continuous opinion sharing between the agents promotes conver-
gence. The process converges at tc ∈ t , if and only if xi,tc+l = xi,tc for all i and l > 0,
which means that no agent changes his opinion from this period on. The process
which does not converge, exhibits a perpetual opinion dynamics. Convergence does
not postulate consensus.

Definition 3 An opinion class C = c1, c2, . . . , cm is a partition of the set of agents
V . ci ∩ c j = ∅ for i �= j and ∪n

i=1ci = P .

Consensus is reached when there is only one opinion class and C = 1. This means
that the difference in the opinions between any two agents is zero and limt→∞(x j,t −
xi,t ) = 0 for all i and j . The consensual opinion is denoted x∗. Society is polarized
if two different opinions are present (C = 2) and is pluralistic when C > 2.10 Such
a description of the opinion classes and consensus is very strict and is prone to the
existence of single isolated agents with unique opinions. For instance, if 199 of 200
agents belong to the class c1 and a single agent to c2, the notion of the polarized
society would inadequately describe the opinion space. The society would actually be
polarized when each of the two classes are sufficiently large. As a supplement, we also
apply a weaker form of consensus and also report the size of the largest three opinion
classes c1, c2 and c3.

10 The maximum number of opinion classes corresponds to the number of agents. Initially, we presume a
pluralistic society.
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Fig. 1 Time evolution of the opinion dynamics in two selected runs. (left plot): μ = 0.05, ε = 0.35, (right
plot): μ = 0.3, ε = 0.2. First 50 iterations are displayed

4 Opinion Formation with Regular Agents

We start with the simplest case, in which only regular agents are present. Each agent
is assigned an initial opinion xi,0 ∼ U (0, 1), all agents have the same threshold level
εi = ε and adoption rate μ and x Ri,t = xi,t for every i .

The plots in Fig. 1 demonstrate that the process of opinion formation within the
integrated society tends to self-organization and that the outcomes depend upon the
threshold levels. The most fundamental feature in the process of harmonization of
opinions is the contraction feature, therefore, we introduce the following proposition.

Proposition 1 Let xi,t �= x Rj,t , μ ∈ (0, 1), di j,t > 0 and ε > di j,t in (2) holds. Then
the process of opinion formation exhibits a contraction feature.

Proof Let us assume that there are two agents i and j at time t with opinions xi,t
and x j,t , respectively, and that they interact with each other. Under these conditions,
the upper part of (2) applies. It may be provided as a linear combination of the two
opinions: xi,t+1 = (1−μ)xi,t +μx Rj,t . If xi,t > x Rj,t , then (xi,t > xi,t+1 > x Rj,t ) for all

μ > 0, and, since εi = ε j = ε, (x j,t < x j,t+1 < x Ri,t ), for all μ > 0. Analogically, we
can provide the opinion change for agent j , which goes towards the opinion of agent i .
Because x j,t+1 > x j,t and xi,t+1 < xi,t , it follows that (x j,t+1−xi,t+1) < (x j,t −xi,t ),
which means that the distance between the priors of the two agents has decreased. 
�

If conditions from the proposition are not met and ε < di j,t , then xi,t+1 = xi,t
and x j,t+1 = x j,t . The contraction principle bounds the agents’ opinions in t + 1 by
their opinions in time t , for which di j,t+1 ≤ di j,t . This means that conversation cannot
increase the level of disagreement between the two interacting agents. We introduce
the following lemmas to show that the contraction principle prevents the expansion of
disagreement over time on the aggregate level.

Lemma 1 No such pair of agents (k, l) exists in t + 1 with a distance that is larger
than the distance between the pair (i, j) who were in time t the farthest apart; i.e.
max(di j,t ) ≥ max(dkl,t+1).
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Proof Since the set of agents is fixed, the process of opinion dynamics is determined
by Eq. (2) which is strictly bounded. If min(si j,0) > ε for all i �= j , xi,t = xi,0 for all
i , which implies max(dkl,t+1) = max(di j,t ). 
�

Analogically, if max(dkl,t+1) ≤ max(di j,t ), then max(dkl,t ) ≤ max(di j,t−1). Solv-
ing this recursively, with t → 0, this gives max(dkl,1) ≤ max(di j,0). So, we can derive
the supplementary lemma.

Lemma 2 No such pair of agents (k, l) exists with a distance that is larger than the
distance between the pair (i, j)who were initially the farthest apart; i.e.max(dkl,t ) ≤
max(di j,0).

Lemmas and the proposition state that the opinions of the two interacting agents
can only converge to one another. Hence, direct implication is the following lemma.

Lemma 3 The interacting society of regular agents with εi = ε converges.

Proof Assume that ε > 0 and μ > 0. Then, if si j,t < ε, xi,t+1 = xi,t +μ(x j,t − xi,t ),
else xi,t+1 = xi,t , and analogically for j . Each agent approaches to the counterpart by
the factor ofμdi j,t . If k was the closest to i at t in the opposite direction of the i’s move,
then the contraction between i and j increases the i’s distance to k by the amount of i’s
move towards j : dik,t+1 = dik,t + μsi j,t . Agents move across the opinion scale until
0 < |xi,t − x j,t | < d for every i and j . This implies that at least the closest counterpart
has to be located within the agent’s threshold level. Convergence is achieved when
xi,tc+1 = xi,tc for every i . 
�

On the aggregate level convergence occurs in the finite time tc ∈ t such that
limt→tc(di j,t+1 − di j,t ) = 0 for all i . Convergence is the state of no further changes
and does not postulate consensus. Consensus is based on the following premises. The
most fundamental premise is the existence of the appropriate counterpart j with the
opinion x j,t so that di j,t < d. The second premise is accessibility, which presumes
that (i, j) ∈ E and hence j ∈ Ni . Yet, accessibility does not postulate contraction,
since accessible agent should be chosen; this represents the well-known coordina-
tion problem (premise 3). Agents pick a random counterpart from the neighborhood
with probability p = 1

|Ni | withNi representing the agent’s neighborhood. Clearly, the
probability of being selected decreases with the increase ofNi . In a complete network,
the probability that a certain agent is selected is close to zero.

Let premise 1 be satisfied, then the network topology is crucial for the process of
opinion dynamics as it affects premises 2 and 3. In a complete network, j ∈ Ni for
all j and i . Hence, the contraction principle leads to consensus (x∗) if and only if in
any period t there exists such neighbor j with x j,t �= xi,t where |x j,t − xi,t | < ε, for
every i . If x j,t �= xi,t and min(di j,t ) > ε, agent i could not be affected by the opinion
of any counterpart, since the closest neighbor to agent i with a distinct opinion is too
distant and C > 1 with probability one. In a complete network, premise 1 postulates
premise 2. Yet, the probability that a certain agent is selected is very small, which
would impede the transition towards consensus when the number of appropriate and
accessible counterparts is small.
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The contraction feature brings two interacting agents closer to each other. If
xi,t , x j,t > x∗,11 then the agent who is closer to x∗ is by definition moving away
from x∗, which increases his t +1 distance to the closest neighbor on the way towards
x∗. If k was the i’s closest counterpart towards x∗ and did not move in t , while i has
moved towards j , then the distance between i and k increased to |xi,t − xk,t | +μdi j,t ,
thus imposing the additional burden on the required threshold level for harmonization
in subsequent periods.

The results of the simulation-based experiments show some interesting differences
in the opinion dynamics across the network topologies. Figure 2 shows that in a
complete network some harmonization occurs even when ε = 0.01. For ε = 0.15
concentration in opinions is substantial in all network topologies. A global consensus
is reached when ε = 0.5. Since initial opinions across the agents are the same in all
experiments, the differences are due to the premises 2 and 3.

Corollary 1 Assume a connected society of n > 2 regular agents with xi,0 ∼ U (0, 1)
and εi = ε. Further assume that they randomly meet with one another. Then such
a threshold level εc1 > 0 exists, which assigns the outcome C = 1 some positive
probability.

Corollary 2 Assume a connected society of n > 2 regular agents with xi,0 ∼ U (0, 1)
and εi = ε. Further assume that they randomly meet with one another. Then such
threshold level εc2 < 1 exists, which implies C = 1 almost surely.

To get an idea of how the threshold level and consensus are related, we provide
the following sketch of the proof. Assume a society of n = 4 agents with initial
opinions x1,0 = 0, x2,0 = 0.33, x3,0 = 0.67 and x4,0 = 1 and μ = 0.5. Due to the
path-dependent nature of the opinion formation process, the required ε∗ for consensus
depends upon the interaction pairs. Case 1: If x1 interacts with x3 and x2 with x4, then
they settle for x1,1 = x3,1 = 0.34 and x2,1 = x4,1 = 0.67, which makes ε∗ = 0.67.
Case 2: If x1 interacts with x2 and x3 with x4, then they settle for x1,1 = x2,1 = 0.17
and x3,1 = x4,1 = 0.83, but need ε = 0.66 to settle, which makes ε∗ = 0.66. Case 3:
If x1 interacts with x4 and x2 with x3, then ε∗ = 0.5. At t = 1 the first pair does not
settle and the second settles at x2,1 = x3,1 = 0.5. This makes ε∗ = 0.5. Therefore,
min(ε∗) = 0.5 and max(ε∗) = 0.67.

The corollaries imply that there is aminimum threshold level εc1 atwhich consensus
may be reached and the minimum threshold level εc2 from where on consensus is
always reached.

Lemma 4 Let xt = 1
n

∑n
i=1 xi,t be the average opinion of n agents in t and x0 the

average initial opinion. Assume that μi = μ j and εi = ε j for each i, j . Further
assume that agents change their opinions according to Eq. (2). Then, xt = x0 for
every t , μ and ε.

Proof x0 is the average of the initial opinions. From the updating rule it follows that
if two interacting agents i and j change their opinions, then xi,t + μ(x Rj,t − xi,t ) and

11 The same is true if xi,t , x j,t < x∗.
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Fig. 2 Opinion dynamics within a complete network and small world network for selected threshold levels:
ε = 0.0 (top), ε = 0.01 (line 2), ε = 0.15 (line 3), ε = 0.5 (bottom). Plots in the left column refer to the
complete network and in the right column to the small world network
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Fig. 3 The average proportion
of agents within the leading
three opinion classes c1, c2 and
c3 as a function of ε in a
complete network after 50
repetitions

x j,t + μ(x Ri,t − x j,t ). For regular agents x Rt = xt . The cummulative change of the
two agents equals to μ(x j,t − xi,t ) + μ(xi,t − x j,t ) = 0. If di j,t > ε ⇒ xi,t+1 =
xi,t , x j,t+1 = x j,t . 
�

The lemma says that the average opinion within the society of regular agents with
εi = ε andμ is kept constant over time and equals to x0. This alsomeans that consensus
x∗ can only be reached in x0. Since E[|X |] < ∞, xi,0 ∼ U (0, 1) and n = 10,000, we
have by the law of large numbers that 1

n

∑n
i=1 xi,0 → E[X ] = 0.5 almost surely.12

This implies that the threshold level ε∗ = 0.5 brings the society into consensus almost
surely since it can extract every agent from the most extreme points.

We simulate the model for 50 times for each threshold level on 0 ≤ ε ≤ 1 with an
increment of Δε = 0.01 and find that εc2 = 0.5, which is the theoretical condition for
consensus. However, simulations show that εc1 = 0.28 which means that consensus
may be attained for much smaller values of ε (Fig. 3). Moreover, c1 = 0.99 when
ε = 0.28.13 Hence, the values would suggest that even a moderately tolerant society
actually reaches a consensus, while a larger threshold span is required that all outliers
are captured and brought to consensus. The results also show that max(c2) = 0.482
when ε = 0.24 and max(c3) = 0.317 when ε = 0.14. Threshold level of ε = 0.28
represents a strict bifurcation point, increasing c1 from 0.523 (ε = 0.27) to 0.999 (ε =
0.28). The society could be considered polarized when ε = 0.18 (c1 = 0.512, c2 =
0.422, c3 = 0.065).

Proposition 2 A society of n interacting regular agents with xi,t ∼ U (0, 1) and
ε > 0 exhibits either a consensus or persistent disagreement but not also a persistent
fluctuation in opinions.

Proof Lemma 3 claims that interacting society of regular agents with ε > 0 converges.
Convergence denies the existence of a perpetual dynamics, which implies that there

12 Uniform distribution of initial opinions was confirmed with the Kolmogorov–Smirnov test (p
value = 0.1108); x0 = 0.5.
13 We should note that unique opinions in single repetitions do not mean that these opinions are always the
same.
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cannot be a persistent fluctuation in opinions. We continue with the proof from the
Lemma and have to show that the threshold level determines the number of opinion
classes. Let there be agents i , j and k with opinions xi,t > x j,t > xk,t , respectively.
Assume that si j,t = ε and d jk,t < ε, then dik,t > ε. If agent j picks agent k, then
x j,t+1 = x j,t +μ(xk,t − x j,t ) ⇒ si j,t+1 > ε. Since di j,t = ε, any move of j increases
the distance between the agents beyond ε, preventing i to become a member of the
opinion class of agents j and k, and C > 1. 
�

The complexity of the process on the small world network and particularly the scale
free network is determined by the fact that Ni � n for all i and Ni �= N j .14 In these

networks, only a small proportion of |Ni |
n counterparts can directly affect the opinion

of agent i . As a consequence, the validity of premise 1 does not postulate the validity
of premise 2 since agent j /∈ Ni cannot directly affect the opinion of agent i even
though |x j,t − xi,t | < ε. In a connected network there exists a connection between
any pair of agents i and j through the sequence of links between the connected pairs
(ii , i1), (i1, i2), . . . , (i j−1, i j ), for which the opinion could be recursively transferred
along the path. However, the sequential execution of influences along the path bounds
the feasibility of the implementation since agent j would need to change the opinion
of agent j − 1, who would need to change the opinion of j − 2 and so on until agent
i , while the condition |x j,t − xi,t | < ε would need to be satisfied for each pair along
the path. The feasibility of this plan is constrained by the fact that agents on the path
may change their opinions over time and become too distant for the opinion change
when needed. For these reasons, these networks require more tolerant society (higher
threshold levels) or larger neighborhoods (Fig. 4) to reach consensus.

Bifurcation diagrams plot the average proportions of agents with a given opinion
at t = 50,000 across ε. The color-palette shows proportions of agents with a given
opinion. The top left plot refers to the complete network and demonstrates a large
level of regularity and simmetry around x0. The shape of the most outern surface of
the diagram indicates stable convergence sections at the frontier. Transitions across
the opinion classes are clearly seen. For instance, in the neighborhood of ε = 0.15,
the network exhibits three major opinion classes; x1 ≈ 0.2, x2 ≈ 0.5, x3 ≈ 0.8.

The scale-free topography (BA), exhibited in the top right section, shows much less
organization and symmetry than a complete network. Yet, the network is still capable
of producing some leading opinion classes, even though the larger threshold levels are
required for a contraction.

The figure reveals that the opinion dynamics on a small world network is very
susceptible to the nodedegree k.15 Our experiments show that the smallworld networks
efficiently bring the society very close to consensus for even small threshold levels,

14 The small world network can be described as the set of small and connected communities with high
local clustering in which agents have equal average topological features. Degree distribution in the scale
free network exhibits a power law, which means that there are a few agents with many more links than
others (Barabási and Albert 1999).
15 Node degree determines the average size of the neighborhood (premise 2). We examine the cases with
k = 10, 20, 30, 50. Names of the networks: SW10, SW20, SW30 and SW50 denote the average node degree
of the corresponding small world network. In all small world networks, each link is randomly rewired with
probability of 5%.
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Fig. 4 Bifurcation diagrams across the threshold levels and the network topologies; top left: complete
network; top right: scale free network; middle left: SW, k = 10; middle right: SW, k = 20; bottom left: SW,
k = 30, bottom right: SW, k = 50. Results refer to t = 50,000

but fail to capture the outliers when connectivity is small. In the small world networks,
consensus thus requires larger threshold levels. Moreover, bifurcation diagrams show
that the SW10 network behaves very chaotically for the smallest values of ε.

Further, we also examine the size of the largest opinion class c1 within the runs
and across the threshold levels (Fig. 5). In the left plot, the lowest value of c1 across
the runs for a given threshold level and the network topology is reported, denoted
min(c1). The right plot reports the highest value of c1 across the runs and the network
structures as a function of ε, denoted max(c1).
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Fig. 5 Proportions of agents with the lowest [min(c1), left plot] and the highest [max(c1), right plot]
value of c1 in a single run across the repetitions as a function of ε in a given network topology. Number of
repetitions: 50. BA—scale free network; FC—complete network; SW10, 20, 30, 50—small world networks

Comparing the plots, we notice very high variability across the runs in SW10,
particularly for small threshold levels, indicating that the degree of consensus in a
single run can also be very small, ceteris paribus. For instance, when ε = 0.12 in
SW10, max(c1) = 5484,min(c1) = 181, making the difference of 5303 agents.
This is also the biggest difference between max(c1) and min(c1) values across the
simulations. The intuition is the following. On average, each agent i within the SW10
network only has 10 links, for which the probability that opinions within Ni are
dense and evenly dispersed across the opinion scale is smaller than in any bigger
community. Moreover, the process is path-dependent and is subject to the contraction
principle. Hence, the opinion dynamics within the SW10 network is very susceptible
to which counterpart from the neighborhood an agent picks. The smallest maximum
difference of 2019 is observed in the complete network, denoted FC, when ε = 0.18
(min(c1) = 4066,max(c1) = 6085). A complete network also exhibits the smallest
variability across the runs, which means that the outcomes in this network are the
most predictable. However, within the range 0.13 ≥ ε ≥ 0.27, the complete network
exhibits the lowest min–min values, which means that within this range the network
is the least capable of reaching the desired level of consensus. For instance, when
ε = 0.27, min(c1) = 5076 in a complete network, while min(c1) > 9500 in other
networks thatweuse.Generally, opinions exhibit the largest variabilitywhen ε = 0.12.
The largest variability at the single threshold level was observed in the scale free
network when ε = 0.26, because the outcomes of c1 fluctuated between 0.95 and 0.5.

Interesting results are observed within the small world networks. The figures show
that a small and initially inhomogeneous group requires more tolerant members to
reach consensus since agents may be located too far apart from each other. With
the increase of the average node degree and hence the agents’ neighborhoods, the
structure of the small world network becones similar to the structure of the complete
network. On the one side, initial opinions are likely to be more evenly distributed
and closer to one another. Yet, the enlarged neighborhoods increase the problem of a
selection, as postulated by premise 3. We can thus confirm our previous expectations
that the complete network faces the problem of selection (premise 3), while the small
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world networks face the problem of accessibility (premise 2). Those who would prefer
sufficient degree of consensus would choose a SW10 network, while the preference
towards consensus would prefer complete or SW50 network.

5 Opinion Formation with Regular and Stubborn Agents

Cases in which all agents are regular are rare. Assume now that the set of agents V
is divided into two distinct groups, V R ⊂ V representing the subset of regular agents
and V S ⊂ V representing the subset of stubborn agents, with V S ∪ V R = V and
V S ∩ V R = ∅.
Definition 4 Agent i is denoted a stubborn agent if at least one of the two parameter
values (εi , μ) is zero.

Stubborn agents may be described as highly persuaded individuals or extremely
conservative individuals who do not change their initial opinion.16 According toWatts
and Dodds (2007), they may be considered the opinion leaders in a sense that they
have the ability to exert their extreme opinion onto others but are not willing to change
theirs.

Let there be |V S| = 1000 and |V R | = 10,000. Stubborn agents are assigned the
same initial opinion x S . For simplicity, we put the stubborn agents on the bottom
extreme x S = 0. Since x St = x S0 , we omit the time index for the opinions of stubborn
agents. We introduce the following two additional assumptions. First, stubborn agents
cannot be distinguished from other regular agents and are members of the regular
agents’ neighborhoods. Since regular agents cannot identify and avoid them, stubborn
agents regularly interact with the neighbors. Second, stubborn agents do not know the
threshold levels nor the opinions of their counterparts.

Using the result of Lemma 3, we show that the environment of regular and a single
group of stubborn agents may either reach consensus or permanent disagreement and
cannot end in a perpetual opinion dynamics.

Lemma 5 The interacting society of regular agents with εi = ε and a group of
stubborn agents with x S converges.

The proof follows the explanation of Lemma 3. However, the presence of the stub-
born agents changes the conditions of Lemma 4, since εi �= εS , except when εi = 0.
Principally, the opinion of the stubborn agents exhibits a relative dominance because
if dis,t < ε, then x St+1 = x St and xi,t+1 = xi,t + μ(x St − xi,t ). Since only regular
agents tend to modify their opinions, the updating rule is not symmetric anymore.
Hence, the average opinion in a society is not constant over time but, for sufficiently
large threshold levels, tends to x S . Because regular agents change their opinion on the

16 Stubborn agents should not be confused with extremists, per se. Stubbornness relate to the willingness
to change the opinion, while the extremism relates to the (extreme) position of an opinion on the opinion
scale. Extremists are agents with opinions close to zero or one, while stubborn agents are those with ε = 0.
However, we have hinted that extremists may also be more convinced individuals, reflecting the behavior
of the stubborn agents.
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Fig. 6 Opinion dynamics in a society of regular agents and a group of stubborn agents with x S = 0. Left
plot: ε = 0.6, μ = 0.2. First 120 iterations are displayed. Right plot: proportion of regular agents with x S

as a funcion of ε

proximity basis, the question of interest is how is the opinion process affected by the
regular agents’ threshold levels. We start with the conditions for consensus, because
any deviation means a permanent disagreement.

Corollary 3 If V R is a subset of regular agents with xi,0 ∼ U (0, 1) and εi = ε and
V S is a subset of stubborn agents with x S = 0 and εS = 0, then with probability 1
such a minimal threshold level εs < 1 exists in the complete network where xi,t = x S

for all i , almost surely.

Proof Following the updating rule, consensus can only occur at x S . By assumption
x S = 0, which implies max s(x S, xi,0) = 1. Since the stubborn agents can reach every
agent with ε = 1, this would require that regular agents themselves bring the extreme
counterparts from the extreme.We can use the result of Lemma 3 and the Corollaries 1
and 2 to show that the system of perpetual interaction converges towards the center of
the opinion space when ε � 1. Since xi,0 ∼ U (0, 1) andNi = n, agent with x j,0 = 1
will be chosen by the non-extreme agent with probability 1, almost surely. Once the
regular agent with x j,0 = 1 is extracted from the extreme, |x j,1 − x S| < 1. 
�

For example, as shown on the left plot of Fig. 6, ε = 0.6 ⇒ x∗ = x S . Figure on the
right displays the average proportions of regular agents with the extreme opinion as a
function of ε. It shows that society leads to extremism under the influence of minority
of stubborn extremists when ε ≥ 0.42.

Notice that the proportion of regular agents who adopt the extreme opinion of the
stubborn agents is not monotonically increasing in ε, as one would expect. The results
show that there is a tolerance span in which the proportion of extremism among
regular agents decreases as the tolerance level increases. One can observe several
phase transitions across ε. At the beginning, the proportion of extremism increases
with the agents’ tolerance until ε < 0.2, reaching 58% of regular agents. Agents who
are grasped are those who would in an all-regular setting form a separate opinion class
in the bottom half of the opinion space within the reach of the stubborn extremists.
A decay occurs at ε = 0.21 and is followed by a sharp decay at ε = 0.31. Within
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the span 0.32 < ε < 0.42, none regular agent adopts the extreme opinion. This is a
striking result.

To explain the apparent inconsistency, we go back to the setting with only regular
agents, where the strict tendency towards consensus x∗ = 0.5 was identified from
ε ≥ 0.28. Stubborn extremists can directly influence the regular agents in the prox-
imity until xi,t ≤ ε and bring them towards the bottom. In addition, regular agents
themselves may keep themselves in the vicinity of the stubborn extremists. However,
since |V S| � n, the intensity of contacts between regular and stubborn agents is
strictly limited. Because opinions are agents’ private information until revealed, stub-
born agents cannot identify vulnerable and accessible agents but pick them randomly.
Hence, the number of actual contacts between the stubborn and accessible agents
is strictly smaller from the number of potential contacts. The increased threshold
level increases the proportion of regular agents from the above who could bring their
counterparts out of the extremists’ reach. As long as the agents’ tolerance is below the
distance to the stubborn agents, regular agents will tend to move away from the bottom
extreme. As the number of regular agents that move upwards increases, the probability
that agents from the bottom will meet an agent with the opinion that would be close
to the bottom extreme decreases, while the probability that they will interact with a
counterpart with the opinion from the upper side and whose opinion would be within
his tolerance level increases. Even though some regular agents could be grabbed by
the extreme stubborn agents, there is a sufficient number of other regular agents who
may not be reached by the stubborn extremists but could and would attract the agents
with the opinions close to the extreme, thus directing them towards the center of the
opinion space. As a consequence, only a few of the regular agents would have adopted
the extreme opinion of the stubborn agents.

As the threshold level still increases, the extreme stubborn agents can also reach
more distant counterparts. Moreover, regular agents from the upper part of the opinion
scale also tend to go towards the center because they are more easily influenced by
their counterparts when the threshold is larger. This brings them closer to the stubborn
extremists who can impose a direct influence when xi,t ≤ ε.

There is a a sharp reversal towards extremism at ε = 0.42, indicating the presence of
the Paradox of tolerance, described by Popper (1945). The paradox says that the ability
of a highly tolerant society to be tolerant will be seized by the intolerant members.
Simulations have shown that the minimum threshold level at which at least one run
converged into x∗ = x S = 0 is reached when ε = 0.44. Consensus is always reached
when ε ≥ 0.58.Wenotice that both levels arewell above the corresponding levels from
the environment of only regular agents. This is because higher tolerance is needed to
bring the agents from the upper extreme to the bottom, while in the setting of regular
agents consensus was reached in the proximity of 0.5.

We may find several examples of this kind. The most representative may be the rise
to power of several dictators and autocrats, such as inGermany in the 1930s, the Iranian
revolution in the 1970s, which was much less escorted by the use of force than it grew
from the influence of initially small group of ideological leaders. In the pop-culture,
the sudden rise and fall of unknown artists also seems to follow this pattern.
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6 Opinion Formation with Two Groups of Stubborn Agents

In the previous section there was only one group of stubborn extremists along the
regular agents. In real life, one would often find the stubborn agents also on the
opposing extreme. To consider for this, we extend the previous setting by introducing
another group of stubborn agents with the extreme opinion. We thus have x S0 = 0 and
x S1 = 1.We assume that the groups of stubborn agents are equally sized, consisting of
500 stubborn agents each. Again, xi,0 ∼ U (0, 1). Let us put a very general proposition.

Proposition 3 Let there be a set of regular agents with xi,0 ∼ U (0, 1) and ε > 0
and μ > 0 and two sets of stubborn agents V S0 and V S1 with opinions xS0 = 0 and
xS1 = 1, respectively. Then such a threshold level ε > 0 exists which exhibits:

1. consensus,
2. polarization,
3. pluralism or
4. perpetual opinion dynamics.

Before proceeding with the exposition of Proposition 3, we present some intuition
and insights about these different states. Depending upon the regular agents’ tolerance
level, the influence of the extremists can be local, they may attract a part of the
population, the entire population or none. Under the proposition, the consensus means
that all regular agents end up in the same opinion class after some finite time tc ∈ t
and C = 1. Polarization means that regular agents are split into two extremes after
some finite time tc ∈ t and C = 2. Pluralism means that regular agents are divided
within the two extremes after some finite time tc ∈ t and C > 2 such that a portion of
them forms additional opinion classes. Perpetual opinion dynamics means that regular
agents continuously change their opinions.

We test the proposition through a series of simulation-based experiments on a
complete network. We do 50 repetitions for each threshold level ε. Figure 7 presents
the entire developments of selected runs. Figure 8 displays the average number of final
opinion classes in T = 50,000 across ε.

Both figures reveal that in the presence of two opposing stubborn groups the process
of opinion dynamics is highly sensitive to ε, exhibiting very rich and complex structure
and some sharp phase transitions. A great part of this diversity is caused because the
opinions of stubborn agents create a bandwidth in which the opinions of regular agents
may be caught and influenced by both groups.

In a weakly tolerant society in which the value of ε is small, the group of regular
agents exhibits a plurality of opinions, which is represented by a persistent disagree-
ment in society but not also a persistent fluctuation in opinions. The level of extremism
in a society is small and split between the two groups, since each extreme group grasps
the agents in its proximity. The remainder of regular agents form a fixed number of
intermediate opinion classes. As the threshold levels increase, the fraction of regular
agents who are within reach of the extreme stubborn agents increases. Hence, the
smaller is the number of these intermediate classes and the larger are the extremist
groups. At a sufficiently large ε, the majority of regular agents concentrate at both
extremes and about a third move to the center of the opinion space, where the distance
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Fig. 7 Opinion dynamics with regular agents and two groups of stubborn agents. Selected single runs for
the given parameter values are displayed. The values for stubborn agents in the first four plots are the same
and equal to: x S0 = 0, x S1 = 1. Regular agents: (top left) ε = 0.28; (top right) ε = 0.6; (bottom left)
ε = 0.55; (bottom right) ε = 0.47

Fig. 8 Left: opinions of regular agents as the function of ε. Right plot: proportion of regular agents with
the extreme opinions across ε

between the average opinion of the regular cluster and both extremes is the largest.
After a slight increase of ε from this tipping point equilibrium at ε ≈ 0.18, the power
of extremist agents collapses and two stable, but intermediate, opinion centers prevail
at about half the distance between extreme poles and the middle of the opinion space.
Up to this point, a homogenisation of the opinion space is observed with a manifold
of opinion clusters without changes in the cluster membership after some time t .
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Further increases of the threshold level in the society cause the reduction in the
size of both non-extreme classes up to another tipping point at ε ≈ 0.28, where the
extremismprevails and the society ends in a complete polarisation of the opinion space.
This is demonstrated on the top-left diagram on Fig. 7 and both diagrams on Fig. 8.
The polarisation phase in our simulation experiments is stable in all 50 repetitions and
it seems that it appears only within a narrow threshold span.

Further increases of ε from the polarisation phase cause another sharp bifurcation
of stable equilibrium opinion in which the regular agents all concentrate in the center,
forming a large single opinion class. The bottom-right diagram on Fig. 7, the bifur-
cation diagram on Fig. 8 and the extremist-share diagram on the Fig. 8 confirm the
existence of the phase transition from a complete polarisation to a complete consensus
among the regular agents at around the middle of the opinion spectrum at moderate
levels of 0.3 < ε < 0.5. Consensus can also be represented through the emergence of
the totalitarianism, which occurs for ε ≈ 0.5. This is represented by the bottom left
diagram on Fig. 7 and by both diagrams from Fig. 8.

Finally, there is a threshold level beyond which the society enters the perpetual
opinion dynamics not only a long run disagreement. This occurs when opinions of
highly tolerant regular agents are trapped between the opinions of stubborn agents
and are regularly affected by members of both these groups, and also by the opinions
of other regular agents. Each extreme pole pushes the opinion in the society towards
itself, but jointly they stabilize in the middle of the opinion space. This result points us
to the state in a highly tolerant society ε ≥ 0.6 in which the two competing extremist
groups have no supporters among the regular agents whose opinions are oscillating
around the center of the opinion space. Recall that in the model of a single extreme
group, tolerance and the level of extremism were positively correlated. This is not the
case here. This is very powerful conclusion with some meaningful policy implications
as it says that extremism can be neutralized by introducing a competing extreme group
with the opposing attitude. We denote this state the Paradox of extremism.

7 Opinion Formation with Inconsistent Agents

One of the model’s fundamental principles is that agents establish the attitude towards
the opinion they hear. In the previous sections we have (implicitly) postulated sincere
agents with x Ri,t = xi,t . This is also the assumption that one finds in other models of
opinion formation. In this part, we slightly retract from this assumption and assume that
the society includes a portion of insincere counterparts.17 Let us define the inconsistent
agent first.

Definition 5 Let xi,t be the opinion of agent i in period t and x Ri,t the reported opinion

to the counterpart in t . An agent is said to be inconsistent if x Ri,t ∼ U (0, 1).

With the inclusion of the inconsistent agents, the society V can be split onto a set
regular agents V R ⊂ V with xi,0 ∼ U (0, 1) and x Ri,t = xi,t , and a finite subset VF ⊂ V

17 The assumption of sincere agents is certainly valid for some individuals but, generally, it does not match
the conclusions from behavioral science which provides plenty of evidence that real-world agents are all
but perfect [see Hirshleifer (2001) for an overview].
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Fig. 9 Left plot: opinion dynamics with a set of 10,000 regular agents and F = 1000 inconsistent agents;
ε = 0.4, μ = 0.2. Right plot: bifurcation as a function of ε

of insincere agents with x Fi,0 ∼ U (0, 1) and x Ri,t �= xi,t , with F � n andV R∪VF = V .
We assume |VF | = 1000.

Inconsistency is modeled as the agent’s inability to honestly report his opinion to
the selected counterpart. For simplicity, we assume that an inconsistent agent reports
a random opinion to the selected counterpart. Because x Ri,t ∼ U (0, 1), the assumption
that insincere agents do not know the threshold levels of regular agents has no practical
importance for the behavior of inconsistent agents and is thus irrelevant, although still
kept. On the other side, regular agents are assumed to lack the ability to identify
insincere agents, for which they cannot avoid them. Therefore, the inconsistent agents
persistently affect the opinion dynamics of regular agents.

Proposition 4 The environment of a subset of regular agents with xi,0 ∼ U (0, 1)
and a subset of inconsistent agents with x Ri,t ∼ U (0, 1) induces a perpetual opinion
dynamics for any ε > 0 and μ > 0.

Proposition is the implication of the following lemma claiming that such an envi-
ronment does not converge.

Lemma 6 The interacting society of regular agents with ε > 0 and μ > 0 and a
group of inconsistent agents with x Ri,t ∼ U (0, 1) does not converge.

Proof An inconsistent agent can affect the opinion of a regular agent if and only
if he is contacted and |x Ri,t − xi,t | < ε. Assumptions that agents meet randomly
and that inconsistent agents cannot be identified and avoided induce that there is
always a non-zero probability p = F

(n−1) that an inconsistent agent is selected, with
0 < F < n representing the number of inconsistent agents in society. The assumption
that x Ri,t ∼ U (0, 1) for an inconsistent agent assures that for any ε > 0, there is almost

surely an opinion of an inconsistent agent x Ri,t which would imply |x Ri,t − xi,t | < ε.

�

Since there is no convergence, the process exhibits a perpetual opinion dynam-
ics.
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In the left plot of Fig. 9, we display the opinion dynamics in a selected run with
xi,0 ∼ U (0, 1), ε = 0.4 and a set of F = 1000 inconsistent agents. The plot on the
right side of the figure displays the average proportions of regular agents per opinion
as a function of threshold level d. The figures show that inconsistent agents induce a
permanent influence onto the opinion formation process, leading to a perpetual opinion
dynamics. The influences of the inconsistent agents are not only direct. The second-
order influences are induced through interaction between the agents, reflecting the
idea of epidemic models and the spread of viruses (Newman 2002; Pastor-Satorras
andVespignani 2001). Thismay explain very unique shapes of the bifurcation diagram.

8 Conclusions

We have constructed and simulated a discrete-time continuous-opinion model under
bounded confidence with random meetings to examine the role of different circum-
stances on the process of opinion formation. The model was simulated on a complete
network, small world network and the scale free network. Our findings can be sum-
marized as follows.

The society of regular agents with homogeneous threshold levels always con-
verges to the fixed number of opinion classes, while the number of classes is
determined by the agents’ threshold levels. At least moderate threshold levels are
required for consensus to emerge. We have shown that the network topology is
important for the opinion formation process. The runs with a single group of stub-
born agents have shown that extremism is not epidemic but conditional upon the
regular agents’ threshold levels. Here we show that even a moderately tolerant
society can become fully extreme. Extremism can be avoided when the additional
group of stubborn agents exists on the opposite extreme, because tolerant individu-
als will traverse between the two groups and will never become extreme. Moreover,
the runs with two groups of stubborn agents exhibit a very rich and complex
structure, ranging from consensus, multiple opinion clusters to the perpetual opin-
ion dynamics. We also identified some sharp phase-transitions between different
opinion states. Introduction of insincere agents substantially affect the opinion dynam-
ics within the integrated community, particularly when they refer to inconsistent
agents.

We have shown that even simple models of opinion formation are subject to non-
linearities in that the process of opinion dynamics constantly changes with the agents’
current opinions and that our analysis can help us understand these peculiarities and
the circumstances that lead a society into either a consensus, multiple opinion clusters
or a perpetual opinion dynamics.
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