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Abstract We introduce the mathematical modeling of American put option under the
fractional Black–Scholesmodel, which leads to a free boundary problem. Then the free
boundary (optimal exercise boundary) that is unknown, is foundby the quasi-stationary
method that cause American put option problem to be solvable. In continuation we
use a finite difference method for derivatives with respect to stock price, Grünwal
Letnikov approximation for derivatives with respect to time and reach a fractional
finite difference problem. We show that the set up fractional finite difference problem
is stable and convergent. We also show that the numerical results satisfy the physical
conditions of American put option pricing under the FBS model.

Keywords Fractional differential equation · American option pricing ·
Quasi-stationary · Finite difference method · Newton interpolation method

1 Introduction

The development ofmodern option pricing beganwith the publication of the BS option
pricing formula in 1973,whichwas used in computing the value of theEuropean option
pricing (Black and Scholes 1973; Merton 1973). The BS formula computes the value
of European option pricing based on the underlying asset, exercise price, volatility of
the asset, and the expiration time of option pricing (Hull 1997; Wilmott et al. 1993).
The European option pricing has the ability of exercising only at expiring date, while
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an American option is its early exercise privilege, that is, the holder can exercise the
option prior to the expiration date. Since the additional right should not be worthless,
we expect an American option to be worth more than its European counterpart. The
extra premium is called the early exercise premium (Kwok 1998; Wilmott 1998).
Therefore, analytical solutions of BS models for American option pricing problems
are seldom available and so a numerical technique should be used. During the last
decades various numerical techniques have been investigated for solving these types
of problems. We refer the interested readers to Amin and Khanna (1994), Barraquand
and Pudet (1994), Broadie andDetemple (1996), Kalanatri et al. (2015), Kwok (2009),
Ross (1999), San-Lin (2000), Meng et al. (2014).

A fractional differential equation provides an interesting instrument for defining
memory and hereditary properties of various materials and processes. This is the main
advantage of fractional derivatives in comparison with classical integer-order models,
in which such effects are in fact neglected. The advantages of fractional derivatives
becomes apparent in physics, chemistry, engineering, finance, and other sciences that
have been developed in the last decades (Podlubny 1999).

In this paper we use a fractional stochastic dynamics of stock exchange to obtain
the FBS model. Since American option pricing under the FBS has a free boundary
(optimal exercise boundary) that is unknown, by using the quasi-stationary method
we find S(t) and obtain Fractional partial differential equation (FPDE) with known
boundary. Then, we introduce a stable and convergent finite difference method for
solving the new problem.

The remainder of the paper is organized as follows: In Sect. 2, the FBS model for
American put option pricing is introduced. To remove the free boundary, we use the
quasi-stationary method in Sect. 3. In Sect. 4, we investigate stability and convergence
of finite difference method for FBSmodel. In Sect. 5, the Newton interpolation is used
to evaluate option pricing at some intermediate points. Finally, a brief conclusion is
given in Sect. 6.

2 FBS Model for American Put Option Pricing

The stochastic differential equation of stock exchange dynamics is used in the form

dS = r Sdt + σ Sb(t, α)

= r Sdt + σ Sω(t)(dt)
α
2 (1)

where ω(t) is a normalized Gaussian white noise, i.e., with zero mean and the unit
variance. In addition,wedenote by r the interest rate,whilst P(S, t) is theAmericanput
option pricing. The details of obtaining FBS model from (1) are explained in Jumarie
(2008), so that American put option pricing under the FBS model is presented as

∂αP

∂tα
=

(
r P−r S

∂P

∂S

)
t1−α

(1−α)! −
α!
2

σ 2S2
∂2P

∂S2
, S> S(t), 0≤ t<T, (2)

P(S, T ) = max(E − S, 0), S ≥ 0, (3)
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∂P

∂S
(S, t) = −1, (4)

P(S(t), t) = E − S(t), (5)

lim
S→∞ P(S, t) = 0, (6)

S(T ) = E, (7)

P(S, t) = E − S, 0 ≤ S < S(t), (8)

where S(t) denotes the free boundary. The parameters σ , r and E denote the volatility
of the underlying asset, the interest rate and the exercise price of the option, respec-
tively.

Remark 1 The fractional Black–Scholes model of American option pricing is based
on some consideration for real market, because of the following advantages:

(1) the fractional derivative is a generalization of the ordinary derivative,
(2) the fractional derivative is a non-local operator while the ordinary derivatives is a

local operator (Baleanu et al. 2012),
(3) the FBS model based on the fractional Brownian motion is more accurate than

the ordinary Brownian motion, i.e., substituting b(t, α) for b(t) as in (1), Jumarie
(2008).

3 Quasi-Stationary Method for Determining S(t)

Taking ∂α P
∂tα = 0 in (2), leads to a second order ordinary differential

(
r P − r S

∂P

∂S

)
t1−α

(1 − α)! − α!
2

σ 2S2
∂2P

∂S2
= 0 (9)

with general solution

P(S, t) = C1S + C2S
− 2r t1−α

(1−α)!α!σ2 . (10)

According to (6) we should set C1 = 0, then

P(S, t) = C2S
− 2r t1−α

(1−α)!α!σ2 (11)

and we use (4) to get

∂P

∂S
(S(t), t) = −C2

2r t1−α

(1 − α)!α!σ 2 S(t)
− 2r t1−α

(1−α)!α!σ2 −1 = −1, (12)

which is solved for S(t) as

S(t) =
(

(1 − α)!α!σ 2

2C2r t1−α

)(
(1−α)!α!σ2

−2r t1−α−(1−α)!α!σ2
)

. (13)
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Substituting from (12) and (13) in (5), the exercise price E takes the form

E = G
1

−2r t1−α−(1−α)!α!σ2
(
C2G

−2r t1−α + G(1−α)!α!σ 2
)

(14)

with

G = (1 − α)!α!σ 2

2C2r t1−α
. (15)

Put

K := 2rT 1−α + (1 − α)!α!σ 2, O := H

J
, (16)

H := (1 − α)!α!σ 2, J := 2rT 1−α, (17)

then

G = O

C2

and it follows from (5), (11), (13) and (14) that

(
C2

O

) 1
K

((
HC2

OJ

) (
C2

O

)J

+
(
O

C2

)H
)

−
(
C2

O

)(
H
K

)
= 0, (18)

which can be solved for C2 by using a suitable iterative method. Thus, the FBS model
is formulated as the boundary value problem

∂αP

∂tα
=

(
r P − r S

∂P

∂S

)
t1−α

(1 − α)! − α!
2

σ 2S2
∂2P

∂S2
,

S >

(
H

2C2r t1−α

)(
H

−2r t1−α−H

)
, 0 ≤ t < T, (19)

P(S, T ) = max(E − S, 0), S ≥ 0, (20)

P(S, t) = E − S, 0 ≤ S <

(
H

2C2r t1−α

)(
H

−2r t1−α−H

)
. (21)

4 Stability and Convergence of Finite Difference Method for FBS Model

This section is related with conditions that must be satisfied if the solution of the
finite-difference equations to be reasonably accurate approximation to corresponding
solution of FBS model of American option pricing. The conditions are associated
with two different but interrelated problems. The first concerns the stability of exact
solution of finite difference equations; the second concerns the convergence of the
finite difference equations to the solution of the FBS model.
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Now we use a finite difference scheme for the derivatives on the right side and
Grünwald Letnikov approximation for fractional derivative on the left side of (19) and
get

(�t)−α
k+1∑
i=0

gα
i P

k+1−i
j

=
(
r Pk

j − r S j
Pk
j − Pk

j−1

�S

)
t1−α

(1 − α)! − α!
2

σ 2S2j
Pk
j−1 − 2Pk

j + Pk
j+1

�S2

S j >

(
H

2C2r t
1−α
k

)(
H

−2r t1−α
k −H

)

, 0 ≤ tk < T, (22)

P(S j , T ) = max(E − S j , 0), (23)

P(S j , tk) = E − S j , 0 ≤ S j ≤
(

H

2C2r t
1−α
k

)(
H

−2r t1−α
k −H

)

, (24)

where

gα
i =

(
1 − 1 + α

i

)
gα
i−1, k = 1, 2, 3, . . . , gα

0 = 1. (25)

Let tk = k�t, k = 0, 1, 2 . . . , n − 1, S j = j�S, j = 1, 2, . . . ,m − 1, where for
0 ≤ t ≤ T , �t = T

n , and �S = Smax
m , are time and stock price steps respectively.

Therefore, Eq. (22) provides the recursive formula

Pk
j+1 =

(
2�S(r�S − r S j )t

1−α
k

H S2j
+ 2

)
Pk
j

−2(�t)−α�S2

α!σ 2S2j

k+1∑
i=0

gα
i P

k+1−i
j +

(
2r�St1−α

k

H S j
− 1

)
Pk
j−1. (26)

for Pk
j , j = 1, 2, . . . ,m − 1.

It also follows from (24) for j = 0 and all time values that P0 = E ( since S0 = 0)
and if

S1 = �S ≤
(

H

2C2r t
1−α
k

)(
H

−2r t1−α
k −H

)

,

then from Eq. (21) we have P(S1, t) = E − S1 and so

CP j+1 = AP j + BP j−1,

P0 = E, P1 = E − S1, (27)
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where P j = [P0
j , P

1
j , P

2
j , . . . , P

n
j ]T and the (n + 1) × (n + 1) matrices A = (ai j ),

B = (bi j ) and C = (ci j ) are given by

ai j =
⎧⎨
⎩
Wgα

i , i = j �=n
0, i �= j
Wgα

i + V, i = j =n
, bi j =

⎧⎨
⎩
0, i= j �=n
0, i �= j
D, i= j =n

, ci j =
⎧⎨
⎩
0, i = j �=n
0, i �= j
1, i = j =n

(28)

with

W = −2(�t)−α�S2

α!σ 2S2j
, D = 2r�St1−α

k

H S j
− 1, V = 2�S(r�S − r S j )t

1−α
k

H S2j
+ 2.

Let P̃k
j ( k = 0, 1, . . . , n ; j = 0, 1, . . . ,m) be approximations to Pk

j , then the errors

εkj = P̃k
j − Pk

j ( k = 0, 1, . . . , n , j = 0, 1, . . . ,m) satisfy the recurrence relation

εkj+1 =
(
2�S(r�S − r S j )t

1−α
k

H S2j
+ 2

)
εkj

−2(�t)−α�S2

α!σ 2S2j

k+1∑
i=0

gα
i εk+1−i

j +
(
2r�St1−α

k

H S j
− 1

)
εkj−1 (29)

or equivalently

CE j+1 = AE j + BE j−1

E0, E1, given, (30)

for E j = [ε0j , ε1j , . . . , εnj ]T and ‖ E j+1 ‖∞= max
1≤k≤n−1

| εkj+1 |.

Definition 1 (see Smith 1985; Yu and Tan 2003) If for any arbitrary initial rounding
errors E0 and E1 given, there exists a positive constant K , independent of �S and �t ,
such that

‖ Ek ‖≤ K max{‖ E0 ‖, ‖ E1 ‖} or ‖ Ak ‖≤ K , (31)

then the difference approximation (27) is stable.

Lemma 1 (see Zhuang et al. 2009) The coefficients gα
i for i = 0, 1, 2, . . ., that were

defined in (25) satisfy

(1) gα
0 = 1, gα

1 = −α and gα
i > 0, i > 1.

(2)
∑∞

i=0 g
α
i = 0 and

∑l
i=0 g

α
i < 0 for l = 1, 2, . . ..
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Remark 2

Theorem 1 (Stability) If

�S ≤
(

H

2C2r t
1−α
k

)(
H

−2r t1−α
k −H

)

,

then the finite difference scheme (27) is stable and we have

‖ E j+1 ‖∞≤ K max{‖ E0 ‖∞, ‖ E1 ‖∞}, j = 1, 2, . . . ,m,−1

where K is a positive constant independent of �t , �S and j .

Proof For k = 0, 1, . . . , n − 1 , j = 1, 2, . . . ,m − 1 by using (29) we achieve

| εkj+1 | ≤
(
2�Sr(S j − �S)t1−α

k

H S2j
+ 2

)
| εkj |

+ 2(�t)−α�S2

α!σ 2S2j

k+1∑
i=0,i �=1

gα
i | εk+1−i

j | + | 1 − 2�Srt1−α
k

H S j
| | εkj−1 |

<

(
2�Sr(S j − �S)t1−α

k

H S2j
+ 2

)
‖ E j ‖∞

+ 2(�t)−α�S2

α!σ 2S2j

k+1∑
i=0

gα
i ‖ E j ‖∞ +

(
1 + 2�Srt1−α

k

H S j

)
‖ E j−1 ‖∞ .

Since
∑k+1

i=0 gα
i < 0, then

| εkj+1 |<
(

�S
2r(S j − �S)t1−α

k

H S2j
+ 2

)
‖ E j ‖∞ +

(
�S

2r t1−α
k

H S j
+ 1

)
‖ E j−1 ‖∞ .

If we set

L1 = max
j

{
2r(S j − �S)t1−α

k

H S2j
+ 1

�S

}
, L2 = max

j

{
2r t1−α

k

H S j

}
,
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then

| εkj+1 |< (�SL1 + 1) ‖ E j ‖∞ + (�SL2 + 1) ‖ E j−1 ‖∞

≤
(

�S(L1 + L2 + 1

�S
) + 1

) j

max{‖ E0 ‖∞, ‖ E1 ‖∞}

≤ e(L1+L2+ 1
�S )Smax max{‖ E0 ‖∞, ‖ E1 ‖∞}

= K max{‖ E0 ‖∞, ‖ E1 ‖∞}, j = 1, 2, . . . ,m − 1,

where, we used the inequality

((L1 + L2 + 1

�S
) + 1) j ≤ e(L1+L2+ 1

�S ) j�S

= e(L1+L2+ 1
�S )S j ≤ e(L1+L2+ 1

�S )Smax . (32)

Thus

‖ E j+1 ‖∞= max
j

{| εkj+1 |} ≤ K max{‖ E0 ‖∞, ‖ E1 ‖∞},

by definition 1; this proves the stability of (27). �	

To prove convergence of the scheme (27), let P(S j , tk) (k = 0, 1, 2, . . . , n − 1;
j = 1, 2, . . . ,m − 1) be the exact solution of (19)–(21) at the mesh point (S j , tk).
Define

εkj = P(S j , tk) − Pk
j , j = 1, 2, . . . ,m − 1; k = 0, 1, . . . , n − 1

and

F j = (ε0j , ε
1
j , . . . , ε

n
j )

T .

Using F0 = F1 = 0 and substituting Pk
j = P(S j , tk) − εkj into (26), we have

εkj+1 =
(
2�S(r�S − r S j )t

1−α
k

H S2j
+ 2

)
εkj

− 2(�t)−α�S2

α!σ 2S2j

k+1∑
i=0

gα
i εk+1−i

j +
(
2r�St1−α

k

H S j
− 1

)
εkj−1, (33)

where k = 0, 1, 2 . . . , n − 1; j = 1, 2, . . . ,m − 1. Now, we prove the following
convergence.
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Theorem 2 (Convergence) Let (22) has the smooth solution P(S, t) ∈ C2,α
S,t (	). Let

Pk
j be the numerical solution computed by use of (27). Then Pk

j converges to P(S j , tk),
if

�S ≤
(

H

2C2r t
1−α
k

)(
H

−2r t1−α
k −H

)

.

Proof We have from (29)

| εkj+1 | ≤
(
2�Sr(S j − �S)t1−α

k

H S2j
+ 2

)
| εkj |

+ 2(�t)−α�S2

α!σ 2S2j

k+1∑
i=0,i �=1

gα
i | εk+1−i

j | + | 2�Srt1−α
k

H S j
− 1 | | εkj−1 |

<

(
2�Sr(S j − �S)t1−α

k

H S2j
+ 2

)
‖ F j ‖∞

+ 2(�t)−α�S2

α!σ 2S2j

k+1∑
i=0

gα
i ‖ F j ‖∞ +

(
2�Srt1−α

k

H S j
+ 1

)
‖ F j−1 ‖∞ .

Since
∑k+1

i=0 gα
i < 0, then

| εkj+1 |<
(

�S
2r(S j − �S)t1−α

k

H S2j
+ 2

)
‖ F j ‖∞

+
(

�S
2r t1−α

k

H S j
+ 1

)
‖ F j−1 ‖∞ .

Now, we set

L1 = max
j

{
2r(S j�S)t1−α

k

H S2j
+ 1

�S

}
, L2 = max

j

{
2r t1−α

k

H S j

}

and use (32) to get

| εkj+1 |< (�SL1 + 1) ‖ F j ‖∞ + (�SL2 + 1) ‖ F j−1 ‖∞

≤
(

�S(L1 + L2 + 1

�S
) + 1

) j

max{‖ F0 ‖∞, ‖ F1 ‖∞}

≤ e(L1+L2+ 1
�S )S j max{‖ F0 ‖∞, ‖ F1 ‖∞}
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≤ e(L1+L2+ 1
�S )Smax max{‖ F0 ‖∞, ‖ F1 ‖∞}

= K max{‖ F0 ‖∞, ‖ F1 ‖∞}, j = 1, 2, . . . ,m − 1.

Since F0 = F1 = 0, this proves that Pk
j converges to P(S j , tk). �	

5 Solving FBS Model for American Put Option Pricing

Now we solve (22)–(24). Since the American put option pricing is only known at
the end point (exercise time), then in order to use a higher order Grünwald Letnikov
approximation, we need some other points of American put option pricing. To get
this intermediate values, we use Newton’s interpolation method, that is, for the points
P0
j = P(S j , 0) and PT

j = P(S j , T ), we get

P(1)
j (τ ) = P0

j + PT
j − P0

j

T − 0
(τ − 0), (34)

which yields

P(1)
j

(
T

2

)
= PT

j + P0
j

2
:= P

T
2
j (35)

and for the points P0
j , P

T
2
j and PT

j ,

P(2)
j (τ ) = P(1)

j (τ ) + −4P
T
2
j + 2PT

j + 2P0
j

T 2 (τ − 0)(τ − T )

and

P(2)
j (τ ) = P(1)

j (τ ) = Pτ
j .

Then it follows from (34)

P
T
4
j = PT

j + 3P0
j

4
(36)

and

P
3T
4
j = 3PT

j + P0
j

4
. (37)
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Proposition 1 For n = 4, the discrete form of the FBS model is in the form

UP = WF, (38)

where

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
c2 a2 b2

c3 a3 b3
. . .

. . .
. . .

c8 a8 b8
c9 a9 b9

c10 a10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′
1 b′

1
c′
2 a′

2 b′
2

c′
3 a′

3 b′
3

. . .
. . .

. . .

c′
8 a′

8 b′
8

c′
9 a′

9 b′
9

c′
10 a′

10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0
1

P0
2

P0
3
...

P0
8

P0
9

P0
10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
e2
e3
...

e8
e9
e10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

c j = 1

4

(
r S j

�S

( 3T4 )1−α

(1 − α)! − α!
2

σ 2S2j
(�S)2

)
, b j = −α!

8

σ 2S2j
(�S)2

,

a j = α(
T

4
)−α

(
1

4
+ (1 − α)

4
+ 3(1 − α)(2 − α)

4! + (1 − α)(2 − α)(3 − α)

4!
)

+ 1

4

(
(r − r S j

�S
)
( 3T4 )1−α

(1 − α)! + α!σ 2S2j
(�S)2

)
,

c′
j = −3

4

(
r S j

�S

( 3T4 )1−α

(1 − α)! − α!
2

σ 2S2j
(�S)2

)
, b′

j = 3α!
8

σ 2S2j
(�S)2

,
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a′
j =

(
T

4

)−α (
1 − 3α

4
− α(1 − α)

4
− α(1 − α)(2 − α)

4!
)

− 3

4

(
(r − r S j

�S
)
( 3T4 )1−α

(1 − α)! + α!σ 2S2j
(�S)2

)
,

e j = max(E − S j , 0),

for j = 1, 2, . . . , 10.

Proof We return to the Eq. (22) and obtain for n = 4,

(
T

4
)−αPT

j − α(1 − α)

2
(
T

4
)−α(

PT
j + P0

j

2
)

−α(1 − α)(2 − α)

3! (
T

4
)−α(

PT
j + 3P0

j

4
)

− α(1 − α)(2 − α)(3 − α)

4! (
T

4
)−αP0

j

=
(

(r − r S j

�S
)
( 3T4 )1−α

(1 − α)! + α!σ 2S2j
(�S)2

+ α(
T

4
)−α

)
(
3PT

j + P0
j

4
)

+
(
r S j

�S

( 3T4 )1−α

(1 − α)! − α!
2

σ 2S2j
(�S)2

)
(
3PT

j−1 + P0
j−1

4
)

− α!
2

σ 2S2j
(�S)2

(
3PT

j+1 + P0
j+1

4
),

or, equivalently

−3

4

(
r S j

�S

( 3T4 )1−α

(1 − α)! − α!
2

σ 2S2j
(�S)2

)
PT
j−1

[(
T

4

)−α (
1 − 3α

4
− α(1 − α)

4
− α(1 − α)(2 − α)

4!
)

− 3

4

(
(r − r S j

�S
)
( 3T4 )1−α

(1 − α)! + α!σ 2S2j
(�S)2

)]
PT
j + 3α!

8

σ 2S2j
(�S)2

PT
j+1

=
[
α

(
T

4

)−α (
1

4
+ (1 − α)

4
+ 3(1 − α)(2 − α)

4! + (1 − α)(2 − α)(3 − α)

4!
)

+ 1

4

(
(r − r S j

�S
)
( 3T4 )1−α

(1 − α)! + α!σ 2S2j
(�S)2

)]
P0
j

+1

4

(
r S j

�S

( 3T4 )1−α

(1 − α)! − α!
2

σ 2S2j
(�S)2

)
P0
j−1 − α!

8

σ 2S2j
(�S)2

P0
j+1,
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Fig. 1 a T = 0.5, σ = 0.5, r = 0.05 and α = 8
9 , b T = 0.5, σ = 0.4, r = 0.05 and α = 8

9 , c T = 0.25,

σ = 0.4, r = 0.05 and α = 9
11 , d T = 0.75, σ = 0.32, r = 0.07 and α = 5

9 , e T = 1, σ = 0.4, r = 0.01

and α = 8
9 , f T = 1, σ = 0.6, r = 0.02 and α = 1

2 , g T = 0.5, σ = 0.4, r = 0.1 and α = 2
3
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which can be rearranged as (38). �	

The algorithm of the proposed method can be formalized as follows.

Algorithm

The input data: r , σ , �S, �t , α, m, n, T .
compute H , C2, E from (17), (18) and (14).
for j = 0, · · · · · · ,m do

for i = 0, · · · · · · , n do

if S j ≥
(

H
2C2r t

1−α
i

)(
H

−2r t1−α
i −H

)

, then

compute U, W, F as in proposition 1 and set P = U−1 ∗ W ∗ F

else if 0 ≤ S j <

(
H

2C2r t
1−α
i

)(
H

−2r t1−α
i −H

)

, then

P = F
end if ;

end do ;
end do .

For some special values of the parameters T , σ , r , α and Smax = 2, the results
plotted in Fig.1a–g.

Remark 3 For a call (put) option, either European or American, when the current asset
price is higher, it has a strictly higher (lower) chance to be exercised and when it is
exercised induces higher (lower) cash inflow. Therefore, the call (put) option price
function is increasing (decreasing) of the asset price, that is,

C(S2, t0) ≥ C(S1, t0), S2 > S1,

or
P(S2, t0) ≤ P(S1, t0), S2 > S1. (39)

It is shown in Fig. 1a–g, that our results are true for t0 = 0, according to remark 3.

6 Conclusion

We introduced FBS model that was obtained from fractional stochastic differential
equation. Then we investigated the stability and convergency of a finite difference
scheme and showed that it is stable and convergent. So we solved American put
option problem by using Newton interpolation. In continuation we showed numerical
results in some figures that satisfied the physical condition of American put option
pricing.

123



A Stable and Convergence Finite Difference Method… 205

References

Amin, k, & Khanna, A. (1994). Convergence of American option values from discrete to continuous-time
financial models. Mathematical Finance, 4, 289–304.

Baleanu, D., Diethelm, K., Scalar, E., & Trujillo, J. J. (2012). Fractionak caculus, model and numerical
methods (Vol. 3). Singapore: World Scientific.

Barraquand, J., & Pudet, T. (1994). Pricing of American path-dependent contingent claims. Paris: Digital
Research Laboratory.

Black, F., & Scholes, M. S. (1973). The pricing of options and corporate liabilities. Journal of Political
Economy, 81, 637654.

Broadie, M., & Detemple, J. (1996). American option valuation: New bounds, approximations, and a
comparison of existing methods. Review of Financial Studies, 9(4), 121–150.

Hull, J. C. (1997). Options futures and other derivatives. Upper Saddle River: Prentice Hall.
Jumarie, G. (2008). Stock exchange fractional dynamics defined as fractional exponential growth driven

by (usual) Gaussian white noise application to fractional Black–Scholes equations. Insurance Math-
ematics and Economics, 42, 271–287.

Kalanatri, R., & Shahmorad, S.,& Ahmadian, D. , (2015). The stability analysis of predictor-corrector
method in solving American option pricing model. Computer Econonics. doi:10.1007/s10614-015-
9483-x.

Kwok, Y. K. (1998).Mathematical models of financial derivatives. Heidelberg: Springer.
Kwok, Y. K. (2009).Mathematical models of financial derivatives (Vol. 2). Berlin: Springer.
Meng, Wu, Nanjing, H., & Huiqiang, M. (2014). American option pricing with time-varying parameters.

Computer Economics, 241, 439–450.
Merton, R. C. (1973). The theory of rational option pricing. The Bell Journal of Economics andManagement

of Science, 4, 141–183.
Podlubny, I. (1999). Fractional differential equations. Cambridge: Academic press.
Ross, S. H. (1999). An Introduction to mathematical finance. Cambridge: Cambridge University Press.
San-Lin, C. (2000). American option valuation under stochastic interest rates. Computer Economics, 3,

283–307.
Smith, G. D. (1985).Numerical solution of partial differential equations: Finite differencemethods. Oxford:

Clarendon Press.
Wilmott, P. (1998). The theory and practice of financial engineering. New York: Wiley.
Wilmott, P., Dewynne, J., & Howison, S. (1993). Option pricing, mathematical models and computation.

Oxford: Oxford Financial Press.
Yu, D., & Tan, H. (2003). Numerical methods of differential equations. Beijing: Science Publisher.
Zhuang, P., Liu, F., Anh, V., & Turner, I. (2009). Numerical methods for the variable-order fractional

advection–diffusion equation with a nonlinear source term. SIAM Jouranl of Numerical Analysis, 47,
1760–1781.

123

http://dx.doi.org/10.1007/s10614-015-9483-x
http://dx.doi.org/10.1007/s10614-015-9483-x

	A Stable and Convergent Finite Difference Method  for Fractional Black–Scholes Model of American Put Option Pricing
	Abstract
	1 Introduction
	2 FBS Model for American Put Option Pricing
	3 Quasi-Stationary Method for Determining overlineS(t)
	4 Stability and Convergence of Finite Difference Method for FBS Model
	5 Solving FBS Model for American Put Option Pricing
	6 Conclusion
	References




