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Abstract Replicated data with measurement errors are frequently presented in eco-
nomical, environmental, chemical, medical and other fields. In this paper, we discuss
a replicated measurement error model under the class of scale mixtures of skew-
normal distributions, which extends symmetric heavy and light tailed distributions
to asymmetric cases. We also consider equation error in the model for displaying the
matching degree between the true covariate and response. Explicit iterative expressions
of maximum likelihood estimates are provided via the expectation–maximization type
algorithm. Empirical Bayes estimates are conducted for predicting the true covariate
and response. We study the effectiveness as well as the robustness of the maximum
likelihood estimations through two simulation studies. The method is applied to ana-
lyze a continuing survey data of food intakes by individuals on diet habits.

Keywords EM algorithm · Equation error · Food intakes by individuals ·
Replicated measurement · Robustness · Scale mixtures of skew-normal distributions

1 Introduction

With the development of social economy and the improvement of living standard,
people’s dietary patterns have been greatly changed. Chronic diseases, such as hyper-
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tension, dyslipidemia, cardiovascular disease, diabetes mellitus, dietary obesity, have
often appeared amongdifferent ages in the past decades. The food-consumption behav-
ior and the nutrition arrangement have become hot issues in economical or medical
researches (Gori and Sodini 2011; le Coutre et al. 2013, among others). Continuing
Survey of Food Intakes by Individuals (CSFII), conducted annually by the US Depart-
ment of Agriculture (USDA), gathers regular food-consumption information through
24-h individual recalls in 48 conterminous United States. These survey data primar-
ily aim at assessing food consumption behavior and nutritional content of diets for
policy implications with respect to food production and marketing, food safety, food
assistance and nutrition education (Jacobs et al. 1998). For each CSFII survey, data
collection starts in April of the given year and is finished in March of the following
year. Harnack et al. (1999) analyzed CSFII data using a logistic regression model,
while Carroll et al. (2006) used a similar data set, the National Health and Nutrition
Examination Survey data (NHANES) (Jones et al. 1987), to model measurement error
directly. In addition, Sun and Empie (2007) carried out a primary statistical analysis
using population dietary survey databases of USDA CSFII combined with NHANES
1999–2002.

It is noted that during the process of data collection, measurement error (ME)would
inevitably occur in observations of covariates as well as response variables. It may
be caused by using different measurement methods and instruments or by human or
other external factors. Just like the CSFII data, the ME appears in 24-h individual
recalls due to randomness and unidentifiable systematic bias. Ignoring such errors
would bring a certain degree of deviations to statistical inferences. As a special tool
for handling ME, measurement error models (MEMs) have been comprehensively
studied and discussed in literature, see for example, Fuller (1987), Cheng and Ness
(1999) and Carroll et al. (2006). According to Reiersol (1950), there exists a non-
identifiability problem in normal MEMs, and we have to make some assumptions
on error variances in advance, while such assumptions are usually not easy to jus-
tify. Fortunately, this problem can be solved if we have replicated data, since the
error variance can be estimated either separately or together with other parameters. In
CSFII data, the long-term daily intake is measured by daily diets, which is collected
repeatedly for several days. An abundant literature discussed the maximum likelihood
estimation (MLE) for structural replicated measurement error model (RMEM) (Chan
and Mak 1979; Isogawa 1985; Lin et al. 2004; Giménez and Patat 2005; Wimmer
and Witkovský 2007; Bartlett et al. 2009, among others). But these studies were all
under the normal distribution assumption. However, the normality assumption can be
doubtful and the related model lacks robustness against departure from the normal
distribution or outlying observations, which may result in misleading conclusions in
practice. Recently, Lin and Cao (2013) took advantage of scale mixtures of normal
(SMN) distributions for the accommodation of extreme and outlying observations in
RMEM(SMN-RMEM)andderived an iterative formulas ofMLE through expectation-
maximization (EM) algorithm (Dempster et al. 1977;McLachlan and Krishnan 1997).
SMN distributions, as a very flexible extension of normal distribution, was devel-
oped by Andrews and Mallows (1974), and contains Student t , slash, contaminated
normal and other symmetric distributions (Fang et al. 1990; Lange and Sinsheimer
1993). A comprehensive list of applications on SMN distributions in MEMs can be
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found, for instance, in Osorio et al. (2009), Lachos et al. (2011) and Zeller et al.
(2012). Cao et al. (2015) showed appealing robustness compared to normal ones for
the multivariate RMEM. However, the SMN distributions may be violated when a
data set contains asymmetric outcomes. Currently, a new class of robust distributions,
called scale mixtures of skew-normal (SMSN) distributions, has been developed by
Branco and Dey (2001) and becomes very attractive since it can model skewness and
heavy tails simultaneously. It includes the whole symmetric family of SMN distribu-
tions and its skew version. More details about SMSN distributions can be found in
Genton (2004). SMSN distributions have been applied into many models in recent
years, for example, linear mixed models (Arellano-Valle et al. 2005; Jara et al. 2008;
Lachos et al. 2010a), nonlinear regression models (Xie et al. 2008; Cancho et al. 2008;
Cao et al. 2014), MEMs (Lachos et al. 2010b; Montenegro et al. 2010; Zeller et al.
2014).

In this paper, we will develop the RMEM under SMSN distributions (SMSN-
RMEM). In particularly, the equation error is considered to cope with the random
relationship between true covariates and response. In practice, the non-equation error
model is often used in natural science, for instance, physics and chemistry, while the
equation error model is frequently used in econometrics and the medical sciences
(Cheng and Riu 2006). The presence of equation error could significantly affect the
estimation results, as what we will discuss later in this paper. Using EM algorithm,
we will calculate MLEs of SMSN-RMEMs with or without equation error. The pro-
posed model shows its effectiveness and robustness of MLEs, which is confirmed by
simulation studies and the application.

The rest of this paper is organized as follows. Section 2 gives a brief description of
the SMSN distributions. Section 3 proposes the SMSN-RMEM and presents iterative
formulas using EM algorithm. The observed information matrix as well as empirical
Bayes estimations and predictions are also reported. In Sect. 4, the performance of
the model and the importance of equation error are examined via simulation studies.
Section 5 applies the model to analyze the inner relationship between saturated fat and
caloric intake in CSFII data. Some conclusions are given in Sect. 6.

2 The Scale Mixtures of Skew-Normal Distributions

In this section, we give a brief description of the definition and properties of SMSN
distributions. The details can been found in Branco and Dey (2001), Genton (2004)
and Basso et al. (2010). An m-dimensional random vector Y has a skew-normal (SN)
distribution, denoted by Y ∼ SNm(μ,�,λ), if its probability density function (pdf)
is given by

f ( y) = 2φm( y|μ,�)�(A), (1)

whereμ is anm-dimensional location vector,� is a covariance matrix, λ is a skewness
parameter vector and A = λ��−1/2( y − μ); φm is the probability density function
(pdf) of m-dimensional normal distribution while � is the cumulative distribution
function (cdf) of the standard normal distribution. The SMSN random vector Y can
be expressed as
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Y = μ + κ1/2(U )Z,

where Z ∼ SNm(0,�,λ), κ(·) is a strictly positiveweight function, andU is a positive
random variable with cdf H(·; ν) and pdf h(·; ν), independent of Z. Here ν is a scalar
or vector indexing the distribution of U .

We now use the notation Y ∼ SMSNm(μ,�,λ;H) to stand for scale mixtures
of skew-normal distributions. Given U = u, the conditional distribution of Y is a
multi-SN distribution, i.e.,Y |U = u ∼ SNm(μ, κ(u)�,λ). When λ = 0, SMSN
distributions are deteriorated to SMN distributions SMNm(μ,�;H).

Note that when κ(u) ≡ 1, SMSN is a SN distribution. Another special case is the
one with κ(u) = 1/u, i.e., the skew-normal/independent distribution (Lachos et al.
2010a). We define the conditional moments by

ur = E
[
κ−r (U )| y] , ηr = E

[
κ−r/2(U )W�

(
κ−1/2(U )A

)
| y
]
,

where W�(x) = φ(x)/�(x), x ∈ R. The pdf of Y and the conditional moments
under some heavy-tailed SMSN distributions, such as the multivariate skew-Student
t (ST), skew-slash (SS), skew-contaminated normal (SCN) distributions, are given in
“Appendix A”.

3 Model Description and Parameter Estimation

Let x, y be the unobserved (true) covariate and response, respectively. They satisfy
an incomplete linear relationship y = α + βx + e, in which the equation error e
means that the true variables x and y are not perfectly related if other factors besides
x are also accountable for the variation in y. We usually observe X = x + δ and
Y = y + ε with measurement errors δ and ε, as the surrogates of x and y. Suppose
x and y are respectively observed p and q times to bring out replicated observations
X (i)
t , i = 1, . . . , p and Y ( j)

t , j = 1, . . . , q. Then the SMSN-RMEM with equation
error is given by

X (i)
t = xt + δ

(i)
t , i = 1, . . . , p,

Y ( j)
t = yt + ε

( j)
t , j = 1, . . . , q,

yt = α + βxt + et , t = 1, . . . , n,

(2)

where, δ(i)
t , ε( j)

t and et are uncorrelated each other, and

Ut
iid∼ H (u; ν) , t = 1, . . . , n,

xt |Ut = ut
ind∼ SN (μx , κ(ut )φx , λx ) , i.e., xt

iid∼ SMSN(μx , φx , λx ;H),

δ
(i)
t |Ut = ut

ind∼ N(0, κ(ut )φδ), i.e., δ(i)
t

i id∼ SMN(0, φδ;H),
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ε
( j)
t |Ut = ut

ind∼ N(0, κ(ut )φε), i.e., ε( j)
t

i id∼ SMN(0, φε;H),

et |Ut = ut
ind∼ N(0, κ(ut )φe), i.e., et

iid∼ SMN(0, φe;H).

Note that the observation vector is Zt = (X�
t ,Y�

t )
�
, where X t = (X (1)

t , . . . , X (p)
t )

�

and Y t = (Y (1)
t , . . . ,Y (q)

t )
�
. Motivated by Montenegro et al. (2010) and Zeller et al.

(2011), we express model (2) by the following hierarchical representation

Zt |xt ,Ut = ut
ind∼ Nm(a + bxt , κ(ut )�1),

xt |Ut = ut , Vt = vt
ind∼ N(μx + τxvt , κ(ut )γx ),

Vt |Ut = ut
ind∼ HN(0, κ(ut )),

Ut
iid∼H(u; ν),

(3)

where m = p + q, a = (0�
p , α1�

q )
�
, b = (1�

p , β1�
q )

�
, c = (0�

p , 1�
q )

�
, �1 =

D(φ)+φecc� withφ = (φδ1�
p , φε1�

q )
�
, τx = φ

1/2
x δx with δx = λx (1+λ2x )

−1/2, γx =
(1−δ2x )φx = φx/(1+λ2x ), and D(·)denotes a diagonalmatrixwhosediagonal elements
are formed by a vector.

It is straightforward to know that Zt∼SMSNm(μ,�,λ;H), and its conditional
distribution Zt |ut∼SNm(μ, κ(ut )�,λ), where the location, scale and skewness

parameters can be expressed as μ = a+ μx b, � = �1 + φx bb� and λ = λxφx�
−1/2b√

φx+λ2xx

respectively, with x = φx/c and c = 1 + φx b��−1
1 b.

3.1 EM Algorithm

It is intractable to calculate MLEs effectively through common likelihood method.
In the assumption of SMN distributions, Lin and Cao (2013) proposed an iterative
approach using EM algorithm in RMEM without assuming equation errors. Here we
devote to get the MLEs of model (2) by EM algorithm.

Denoting the parameter vector of model (2) by θ = (μx , α, β, λx , φx , φδ, φε, φe)
�,

the estimates of θ at the k-th iteration by θ̂
(k)

and the complete data set of model
(2) by Zc = {Z, x, v, u}, where Z = {Z1, . . . , Zn}, x = (x1, . . . , xn)�, v =
(v1, . . . , vn)

�, u = (u1, . . . , un)�, then the complete log-likelihood function based
on Zc is given by

l(θ
∣∣Zc) =

n∑

t=1

(
lxt |vt ,ut + lZt |xt ,ut

)
,
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where,

lxt |vt ,ut = −1

2
log(γx ) − 1

2
γ −1
x κ−1(ut ) (xt − μx − τxvt )

2 ,

lZt |xt ,ut = −1

2
log (|�1|) − 1

2
κ−1(ut )(Zt − a − bxt )��−1

1 (Zt − a − bxt ).

with �−1
1 = diag{ 1

φδ
Ip, 1

φε
Iq − φe

φε(φε+qφe)
1q1�

q } and |�1| = φ
p
δ φ

q−1
ε (φε + qφe). We

ignore the constant which is independent of θ in above expressions. The EM algorithm
is constructed as follows.

E-step: Given the value of θ̂
(k)
, we calculate the Q-function by using the property of

conditional expectation E
[
l(θ |Zc)

∣
∣̂θ (k)

, Z
]
. The Q-function takes the following form

Q
(
θ |̂θ (k)

)
=

n∑

t=1

[
Q1t

(
θ |̂θ (k)

)
+ Q2t

(
θ |̂θ (k)

)]
, (4)

where

Q1t

(
θ |̂θ (k)

)
= − 1

2
log(γx ) − 1

2
γ −1
x

(
ûx2

(k)
t + μ2

x û
(k)
t + τ 2x ûv2

(k)
t

− 2μx ûx
(k)
t − 2τx ûxv

(k)
t + 2μxτx ûv

(k)
t

)
,

Q2t

(
θ |̂θ (k)

)
= − 1

2
log (|�1|) − 1

2

[
û(k)
t (Zt − a)� �−1

1 (Zt − a)

− 2ûx (k)
t (Zt − a)� �−1

1 b + ûx2
(k)
t b��−1

1 b
]
,

with û(k)
t = E[κ−1(Ut )|̂θ (k)

, Zt ], ûv
(k)
t = E[κ−1(Ut )vt |̂θ (k)

, Zt ], ûv2
(k)
t =

E[κ−1(Ut )v
2
t |̂θ (k)

, Zt ], ûx (k)
t = E[κ−1(Ut )xt |̂θ (k)

, Zt ], ûx2(k)
t = E[κ−1(Ut )x2t |̂θ (k)

,

Zt ], ûxv(k)
t = E[κ−1(Ut )xtvt |̂θ (k)

, Zt ], and they can be readily evaluated by

ûv
(k)
t = û(k)

t μ̂(k)
vt

+ M̂ (k)
v η̂

(k)
1,t ,

ûv2
(k)
t = û(k)

t μ̂2(k)
vt

+ M̂2(k)
v + M̂ (k)

v μ̂(k)
vt

η̂
(k)
1,t ,

ûx (k)
t = û(k)

t r̂ (k)
t + ûv

(k)
t ŝ(k),

ûx2
(k)
t = û(k)

t r̂2(k)t + 2ûv
(k)
t r̂ (k)

t ŝ(k) + ûv2
(k)
t ŝ2(k) + γ̂ (k)

x /̂c(k)
1 ,

ûxv(k)
t = ûv

(k)
t r̂ (k)

t + ûv2
(k)
t ŝ(k),

with μ̂vt = τ̂x ât /̂c, M̂v = √
ĉ1/̂c, η̂

(k)
1,t = E

[
κ−1/2(Ut )W�

(
κ−1/2(Ut )μ̂vt /M̂v

)∣∣̂θ
(k)

,

Zt
]
, r̂t = μ̂x + γ̂x ât /̂c1, ŝ = τ̂x /̂c1, at = (Zt − μ)��−1

1 b, c1 = 1 + γx b��−1
1 b.
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M-step: Maximizing Q(θ |̂θ (k)
) with respect to θ , we achieve the updated estimates

θ̂
(k+1)

by the following iterative equations:

μ̂(k+1)
x =

∑n
t=1 ûx

(k)
t
∑n

t=1 ûv2
(k)
t −∑n

t=1 ûv
(k)
t
∑n

t=1 ûxv
(k)
t

∑n
t=1 û

(k)
t
∑n

t=1 ûv2
(k)
t −

(∑n
t=1 ûv

(k)
t

)2 ,

τ̂ (k+1)
x =

∑n
t=1 û

(k)
t
∑n

t=1 ûxv
(k)
t −∑n

t=1 ûv
(k)
t
∑n

t=1 ûx
(k)
t

∑n
t=1 û

(k)
t
∑n

t=1 ûv2
(k)
t −

(∑n
t=1 ûv

(k)
t

)2 ,

γ̂ (k+1)
x = 1

n

n∑

t=1

(
ûx2

(k)
t +

(
μ̂(k+1)
x

)2
û(k)
t +

(
τ̂ (k+1)
x

)2
ûv2

(k)
t

−2μ̂(k+1)
x ûx (k)

t − 2τ̂ (k+1)
x ûxv(k)

t + 2μ̂(k+1)
x τ̂ (k+1)

x ûv
(k)
t

)
,

α̂(k+1) =
∑n

t=1

(
û(k)
t Ȳt

)∑n
t=1 ûx

2(k)
t −∑n

t=1 ûx
(k)
t
∑n

t=1

(
ûx (k)

t Ȳt
)

∑n
t=1 û

(k)
t
∑n

t=1 ûx
2(k)
t −

(∑n
t=1 ûx

(k)
t

)2 ,

β̂(k+1) =
∑n

t=1 û
(k)
t
∑n

t=1

(
ûx (k)

t Ȳt
)

−∑n
t=1 ûx

(k)
t
∑n

t=1

(
û(k)
t Ȳt

)

∑n
t=1 û

(k)
t
∑n

t=1 ûx
2(k)
t −

(∑n
t=1 ûx

(k)
t

)2 ,

φ̂
(k+1)
δ = 1

n

n∑

t=1

[
1

p
û(k)
t

p∑

i=1

(X (i)
t )

2 − 2ûx (k)
t X̄ t + ûx2

(k)
t

]

,

φ̂(k+1)
ε = 1

n(q − 1)

(
n∑

t=1

π̂
(k+1)
1t − q

n∑

t=1

π̂
(k+1)
2t

)

,

φ̂(k+1)
e = 1

n(q − 1)

(

q
n∑

t=1

π̂
(k+1)
2t − 1

q

n∑

t=1

π̂
(k+1)
1t

)

,

where,

X̄t = 1

p

p∑

i=1

X (i)
t , Ȳt = 1

q

q∑

j=1

Y ( j)
t ,

π̂
(k+1)
1t = û(k)

t

q∑

j=1

(
Y ( j)
t − α̂(k+1)

)2 − 2qûx (k)
t

(
Ȳt − α̂(k+1)

)
β̂(k+1)

+ qûx2
(k)
t

(
β̂(k+1)

)2
,

π̂
(k+1)
2t = û(k)

t

(
Ȳt − α̂(k+1)

)2 − 2ûx (k)
t

(
Ȳt − α̂(k+1)

)
β̂(k+1) + ûx2

(k)
t

(
β̂(k+1)

)2
.
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Note that the estimators λ̂x and φ̂x can be inferred from the one-to-one transforma-
tion λx = τx/

√
γx and φx = γx + τ 2x . Thus the iterative expressions for these two

parameters can be written as

λ̂(k+1)
x = τ̂ (k+1)

x

/√
γ̂

(k+1)
x ,

φ̂(k+1)
x = γ̂ (k+1)

x +
(
τ̂ (k+1)
x

)2
.

Starting from suitable initial values (for example, the MLEs from the SMN-RMEM or
the moment estimators), the iterations of the above EM algorithm between E-step and

M-step are repeated until a suitable convergence rule is satisfied, e.g., ‖̂θ (k+1)−θ̂
(k)‖ is

sufficiently small. We will apply a closed form (Harville 1997) to compute the inverse
of matrix �1 as

�−1
1 = D−1(φ) − φeD−1(φ)cc�D−1(φ)

1 + φec�D−1(φ)c
.

This can guarantee a positive covariance matrix.

3.2 The Observed Information Matrix

Asymptotic confidence intervals of the MLEs can be constructed using the observed
information matrix. We have inferred Zt∼SMSNm(μ,�,λ;H), so the log-likelihood
function of Z respect to θ is given by l(θ) =∑n

t=1 lt (θ), where

lt (θ) = log 2 − m

2
log(2π) − 1

2
log |�| + log(Kt ), (5)

with Kt = ∫∞
0 κ−m/2(ut ) exp{−κ−1(ut )dt/2}�

(
κ−1/2(ut )At

)
dH(ut ), dt = (Zt −

μ)��−1(Zt − μ), and At = λ��−1/2(Zt − μ).
We use the observed information matrix with the help of score function for θ . It is

expressed by

∂lt (θ)

∂θ
= −1

2

∂ log |�|
∂θ

+ 1

Kt

∂Kt

∂θ
, (6)

where, ∂Kt
∂θ

= Iφ
t
(m+1

2

)
∂At
∂θ

− 1
2 I

�
t

(m+2
2

)
∂dt
∂θ

, and in which,

I�
t (w) =

∫ ∞

0
κ−w(ut ) exp

{
−κ−1(ut )dt/2

}
�
(
κ−1/2(ut )At

)
dH(ut ),

Iφ
t (w) =

∫ ∞

0
κ−w(ut ) exp

{
−κ−1(ut )dt/2

}
φ
(
κ−1/2(ut )At

)
dH(ut ).
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Then the asymptotic covariance of the MLEs can be estimated by the inverse of the

observed information matrix I
(̂
θ
) = ∑n

t=1

(
∂lt (θ)

∂θ

) (
∂lt (θ)

∂θ

)�|θ=θ̂ . Explicit expres-

sions of I�
t (w) and Iφ

t (w) for some SMSN distributions can be found in Lachos et al.
(2010a) and Zeller et al. (2011). The derivatives of the score function are given in
“Appendix B”.

3.3 Empirical Bayes Estimation and Prediction

In this section, we consider an empirical Bayes approach to estimate the true variable
xt and to predict Y t given X t . From the definition of the models, it is not difficult to
derive that the conditional distribution of xt given Zt and ut belongs to the extended
SN (ESN) distributions (Azzalini and Capitanio 1999), with the conditional pdf as

f (xt |Zt , ut ) = φ(xt ;μx + xat , κ(ut )x )
�
(
κ−1/2(ut )λxφ

−1/2
x (xt − μx )

)

�(κ−1/2(ut )At )
.

Thus, we get the conditional expectation of xt given Zt and ut as

E[xt |Zt , ut ] = μx + xat + κ1/2(ut )
λxx√
1 + λ2xx

W�

(
κ−1/2(ut )At

)
.

Then

x̂t =E[xt |Zt ] = E{E[xt |Zt , ut ]|Zt }
=μx + xat + λxx√

1 + λ2xx
η−1,t ,

where η−1,t = E[κ1/2(Ut )W�(κ−1/2(Ut )At )|Zt ].
Next, we will predict Y t given X t . From the previous conclusions, we know that

Zt ∼ SMSNm(μ,�,λ;H), and Zt |ut ∼ SNm(μ, κ(ut )�,λ). Now, partition � as

� =
(

�11 �12
�21 �22

)
,

where �11 = φδIp + φx1p1�
p , �12 = βφx1p1�

q , �21 = ��
12, �22 = φεIq + (φe +

β2φx )1q1�
q . Then we have marginal distribution

X t ∼ SMSNp
(
μx1p,�11,λ1t ;H

)
,

where λ1t = λxφx√
1+λ�λ

�
−1/2
11,t 1pt

/√
1 − ρ2 pt

φδt +ptφx
, i.e., X t |ut ∼ SNpt (μx1pt , κ(ut )

�11,t ,λ1t ).
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Denote A1,t = λ�
1 �

−1/2
11 (X t − μx1p) = ρp

φδ+pφx
(X̄t − μx )/

√
1 − ρ2 p

φδ+pφx
, with

ρ = λxφx/
√
1 + λ�λ, then Y t |X t , ut ∼ ESNq(μ2·1,t , κ(ut )�22·1; λ0,t ,λ1,t ), where

μ2·1,t =
[
α + βμx + pφx

φδ + pφx
β(X̄t − μx )

]
1q ,

�22·1 = �22 − �21�
−1
11 �12 = φεIq +

(
φe + φδφxβ

2

φδ + pφx

)
1q1�

q ,

λ0,t = κ−1/2(ut )
ρp

φδ + pφx
(X̄t − μx )/

√
1 − ρ2b�−1b,

λ1,t = ρβφδ

φδ + pφx
�

−1/2
22·1 1q/

√
1 − ρ2b�−1b.

Accordingly, we get the conditional expectation of Y t given X t and ut as

E[Y t |X t , ut ] = μ2·1,t + κ1/2(ut )�
1/2
22·1

λ1,t

1 + λ�
1,tλ1,t

W�

(
κ−1/2(ut )A1,t

)

= μ2·1,t + κ1/2(ut )W�

(
κ−1/2(ut )A1,t

) ρβφδ

φδ + pφx
1q
/
√

1 − ρ2 p

φδ + pφx
,

Then, the prediction of Y t is given by

Ŷ t =E[Y t |X t ] = E{E[Y t |X t , ut ]|X t }

= μ2·1,t + η̃−1,t
ρβφδ

φδ + pφx
1q
/
√

1 − ρ2 p

φδ + pφx
,

(7)

where η̃−1,t = E[κ1/2(Ut )W�(κ−1/2(Ut )A1,t )|X t ].

4 Simulation Studies

In this section, we will report the results of two simulation studies. The first one is
to confirm the effectiveness and accuracy of the MLEs under SMSN distributions.
The second one is to investigate the robustness of SMSN-RMEM when there has
outliers. In each simulation study, we consider three skew distributions, including SN,
ST with ν = 4 and SCN with ν = 0.2, γ = 0.3, in RMEM with or without equation
error, respectively. Under the circumstances of no equation error, we denote the SN,
ST and SCN distributions by SN0, ST0 and SCN0 correspondingly. The regression
parameters α and β will be regarded as parameters of interest in both simulation
studies.
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4.1 The First Simulation Study

In this simulation study, the parameters of SMSN-RMEM model are set as μx =
1.5, α = 2, β = 1, λx = 0.5, φx = 1, φδ = 1 and φε = 0.5. For comparison, we
set φe = 0.5, 1 and 1.5 respectively, which shows that the matching degree between
the true covariate and response tends from strong to weak. The replicated numbers
of the observations are chosen as p = 4 and q = 3. We generate data from model
(2) with sample size n = 50 or 100 under ST distribution (ν = 4). Based on the
sample data, we compute the MLEs of θ using EM algorithm under SN, ST and SCN
distributions with or without equation error, respectively. After 1000 times repetition,
we calculate the sample bias (BIAS) and the standard deviation (SD) as assessments
for the estimates.

Table 1 displays the estimations of α and β based on six type SMSN-RMEMs
(SN-RMEM, ST-RMEM, SCN-RMEM, SN0-RMEM, ST0-RMEM, SCN0-RMEM).

Table 1 Performances of estimators under ST-RMEM with or without equation error

Parameter n Estimator φe = 0.5 φe = 1 φe = 1.5

BIAS SD BIAS SD BIAS SD

α 50 SN −0.131 0.674 −0.128 0.811 −0.155 0.821

ST −0.062 0.430 −0.047 0.506 −0.072 0.570

SCN −0.081 0.519 −0.076 0.605 −0.088 0.622

SN0 −0.972 1.280 −2.093 2.084 −3.239 2.611

ST0 −0.806 0.572 −1.853 1.121 −2.857 1.585

SCN0 −0.853 0.699 −1.908 1.246 −2.946 1.739

100 SN −0.061 0.445 −0.064 0.552 −0.080 0.546

ST −0.026 0.287 −0.027 0.346 −0.030 0.377

SCN −0.036 0.327 −0.037 0.396 −0.044 0.417

SN0 −0.890 0.687 −2.005 1.276 −2.996 1.804

ST0 −0.800 0.408 −1.790 0.714 −2.800 0.998

SCN0 −0.833 0.481 −1.864 0.863 −2.826 1.134

β 50 SN 0.067 0.343 0.060 0.411 0.083 0.419

ST 0.032 0.214 0.021 0.247 0.039 0.287

SCN 0.041 0.264 0.035 0.302 0.049 0.314

SN0 0.506 0.667 1.081 1.024 1.690 1.344

ST0 0.431 0.290 0.989 0.575 1.541 0.838

SCN0 0.451 0.359 1.006 0.631 1.572 0.916

100 SN 0.025 0.225 0.026 0.281 0.040 0.279

ST 0.011 0.141 0.011 0.171 0.014 0.191

SCN 0.015 0.162 0.014 0.197 0.021 0.214

SN0 0.453 0.363 1.027 0.666 1.551 0.965

ST0 0.427 0.207 0.958 0.367 1.496 0.513

SCN0 0.437 0.249 0.982 0.449 1.491 0.596
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As we expected, No matter it is α or β, the BIAS and SD of all estimates get smaller
as samples size increasing from 50 to 100. The BIAS and SD under ST distribution
are almost always the smallest for all cases, which fully reflects the effectiveness
and accuracy of the ML estimates. Moreover, the performance under SCN and ST
distribution behaves better than SN distribution, which may attribute to their heavy-
tailed features.

Obviously, the estimates with equation error consistently perform better than the
estimates without equation error. Especially, when φe increases from 0.5 to 1.5, the
ratios of SD without equation error and with equation error become clearly larger.
It states that for the data with skewness or heavy-tailed features, ignoring equation
error will bring serious deviation for statistical inference. The equation error plays an
important role in expressing the uncertain relationship between the true covariates and
the response.

4.2 The Second Simulation Study

In this simulation study, we aim at examining the robustness of skew-heavy tailed
models by comparing the performance of estimates in the presence of outliers.We first
generate a data set with sample size n = 100 from model (2) under SN distribution,
and take the first half as training data and the rest as testing data. Then we shift
the observed value X (i)

t to X (i)
t + wμx and Y ( j)

t ′ to Y ( j)
t ′ + w(α + βμx ) for all i, j ,

respectively, where the two subject number t and t ′ are chosen randomly from training
data each time. The value of w, from −3 to 3, indicates the degree of contamination.
All the true values of parameters are the same as the first simulation study. After that,
we calculate the MLEs of α and β based on six type SMSN-RMEMs (mentioned in
the first simulation study) under the shifted data and the non-shifted data, respectively.
For the testing data, we use the empirical Bayes method to predict Y t according to the
observed values of X t under the aforementioned six type SMSN-RMEMs. Based on
1000 simulations, the mean squared error (MSE) values of α, β and the predictions at
different w are computed and shown in Fig. 1 for the six models. The smaller MSE
value is, the better robustness of model will behave.

Whether it is α or β, MSEs of estimates without assuming equation error are always
larger than the ones assuming equation error. It indicates the significant importance
of equation error for skew or heavy-tailed data. This finding matches the results from
the first simulation study. The MSEs of estimates based on SN, SN0, ST0 and SCN0
models increase quickly along with w, which shows that the influence of the outliers
become serious when the absolute value of w increases. On the contrary, the MSEs of
estimates based on ST and SCN models almost do not change with w, which reveals
the robustness of ST and SCN models. As expected, the MSEs are the smallest at the
zero point (i.e., no perturbation in the data) for all the cases. The impacts of positive
disturbance are almost as much as negative disturbance. Although the true data follow
the SN distribution, the superiority of robustness based on heavy-tailed models is
obvious. Similar conclusions for predictions can be drawn from Fig. 1c. That is to say,
the robustness of skew-heavy tailed distributions are also efficient for Bayes prediction
approach.
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Fig. 1 Performances of estimates in the presence of outliers: MSE versus w, for a α; b β; c predictions

To sum up, the MLEs based on skew-heavy tailed models are more appealing since
they behave better than the traditional SN ones in terms of robustness and accuracy.

5 Application

We give an illustrative example using the CSFII dataset. This dataset has conducted
the 24-h recall measures, as well as three additional 24-h recall phone interviews of
1827 women who were recorded about their daily diet intake (for example, saturated
fat, calories, vitamin, and so on). Carroll et al. (2006) have indicated that saturated
fat has great relationship with the risk of breast cancer and other diseases, but the
statistical significance for saturated fat disappeared when adding caloric intake into
the logistic regressionmodel. Thus it is really necessary to reveal the inner relationship
between saturated fat and caloric intake. In this illustrative example, we take the calorie
intake/5000 as x and the saturated fat intake/100 as y (Carroll et al. 2006; Lin and
Cao 2013). Instead of x and y, the nutrition variables X and Y are calculated by four
24-h recalls, and suppose that they follow model (2) with p = q = 4. Acceptable
saturated fat daily intake has been considered as an important reference index for
health in the survey (le Coutre et al. 2013). There are some differences for daily diet
habits for people in different ages, which may be aroused by their different lifestyles
or nutrition awareness. In order to compare the difference of adults at different ages,
we divide the dataset into two groups. Group 1 is younger than 40years old, and group
2 is over 40. With the purpose of verifying the existence of skewness and heavy-tails
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Fig. 2 Histogram and normal Q–Q plot of empirical Bayes estimates of xt under N0 model, a, b for group
1, and c, d for group 2

in the latent covariate x , we fit the data using normal RMEM without equation error.
Figure 2 presents the corresponding histogram and Q–Q plot of the empirical Bayes
estimates of xt , both showing that the latent covariate is positively skewed and heavy-
tailed in each group. This hints that a normal model may not offer a good fit. We now
consider SMSN distributions for xt and SMN distributions for measurement errors
δt , εt and equation error et in the RMEM, i.e., the SMSN-RMEM proposed in this
paper. For the sake of comparison, we also consider the SMN distributions for xt , i.e.
the distributions without assuming skewness.

We calculate the MLEs of parameter θ and their standard errors (SEs) and also
Akaike information criterion (AIC) (Akaike 1974) values based on RMEM model
under above distributions. This estimates are displayed in Table 2 for group 1 and
Table 3 for group 2, where ST, ST0, SS, SS0, SCN, SCN0, T, T0, S, S0 and CN,
CN0 denote the skew-t , skew-slash, skew-contaminated normal, Student t , slash and
contaminated normal distributions with or without equation error correspondingly.
The degrees of freedom for different distributions, chosen by the Schwarz (1978)
information criterion, are also reported in the tables.

We draw some conclusions from Tables 2 and 3. The AIC values are used for
model selection. The smaller the AIC value is, the better the model is. We find that the
AIC value under Student-t distribution is always the smallest for each group, whether
there are equation error or skewness or not, and it gets the smallest value under ST0
distribution in all situations. Thus, ST0-RMEM is more suitable for the two group
data. Moreover, the heavy-tailed models show smaller SEs than the normal model.
Meanwhile, we’d better consider skewness in the models for their smaller AIC values.
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Table 2 Parameter estimations of group 1 (age�40) for CSFII data

Model Degree AIC Parameter

μx α β λx φx φδ φε φe

SN / −12,993 0.201 −0.050 0.920 3.888 0.018 0.013 0.015 0.0010

(0.006) (0.019) (0.056) (0.986) (0.002) (0.0002) (0.0003) (0.0005)

ST ν = 4 −14,549 0.204 −0.047 0.901 2.242 0.012 0.008 0.009 0.0004

(0.006) (0.012) (0.041) (0.416) (0.001) (0.0003) (0.0003) (0.0003)

SS ν = 1.2 −14,364 0.205 −0.046 0.896 2.289 0.007 0.005 0.005 0.0003

(0.007) (0.013) (0.043) (0.553) (0.0008) (0.0001) (0.0002) (0.0002)

SCN ν = 0.4 −14,341 0.204 −0.045 0.893 2.247 0.008 0.006 0.006 0.0003

γ = 0.2 (0.006) (0.013) (0.043) (0.401) (0.0009) (0.0001) (0.0002) (0.0002)

SN0 / −13,143 0.201 −0.059 0.947 3.723 0.018 0.013 0.013 /

(0.006) (0.014) (0.043) (0.831) (0.002) (0.0002) (0.0002)

ST0 ν = 4 −14,657 0.204 −0.053 0.920 2.214 0.011 0.007 0.007 /

(0.006) (0.010) (0.033) (0.394) (0.001) (0.0003) (0.0003)

SS0 ν = 1.2 −14,473 0.205 −0.051 0.915 2.230 0.006 0.004 0.004 /

(0.007) (0.010) (0.034) (0.516) (0.0008) (0.0001) (0.0001)

SCN0 ν = 0.4 −14,451 0.204 −0.051 0.914 2.163 0.008 0.005 0.005 /

γ = 0.2 (0.006) (0.010) (0.035) (0.372) (0.0008) (0.0001) (0.0001)

N / −12,946 0.305 −0.049 0.915 / 0.007 0.013 0.015 0.0010

(0.004) (0.021) (0.062) (0.0005) (0.0002) (0.0003) (0.0005)

T ν = 5 −14,376 0.284 −0.046 0.897 / 0.006 0.008 0.009 0.0005

(0.003) (0.013) (0.045) (0.0004) (0.0003) (0.0003) (0.0003)

S ν = 1.3 −14,289 0.287 −0.045 0.893 / 0.004 0.005 0.005 0.0003

(0.003) (0.014) (0.045) (0.0002) (0.0001) (0.0002) (0.0002)

CN ν = 0.3 −14,188 0.286 −0.043 0.889 / 0.005 0.007 0.007 0.0004

γ = 0.2 (0.003) (0.014) (0.044) (0.0003) (0.0002) (0.0002) (0.0002)

N0 / −13,088 0.305 −0.057 0.941 / 0.007 0.013 0.013 /

(0.004) (0.015) (0.046) (0.0005) (0.0002) (0.0002)

T0 ν = 5 −14,478 0.283 −0.052 0.916 / 0.006 0.008 0.008 /

(0.003) (0.010) (0.035) (0.0004) (0.0003) (0.0003)

S0 ν = 1.2 −14,392 0.284 −0.050 0.912 / 0.003 0.004 0.004 /

(0.003) (0.010) (0.034) (0.0002) (0.0001) (0.0001)

CN0 ν = 0.3 −14,294 0.288 −0.051 0.917 / 0.005 0.007 0.007 /

γ = 0.3 (0.003) (0.010) (0.037) (0.0003) (0.0002) (0.0002)

We now do a test to compare the robustness among each model. We aim at α, β

and λx as our test targets. Figure 3 shows the index plots of Mahalanobis distance
dt , t = 1, . . . , n (mentioned in Sect. 3.2) under the normal RMEM. In this case, we
have dt ∼ χ2(8). Here, we adopt the cutoff lines correspond to the quantile χ2

0.01 for
the distribution of dt . As we can see, there are 69 potential outliers in group 1 and 36
points in group 2. Removing these observations, we calculate the change ratios of α,
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Table 3 Parameter estimations of group 2 (age>40) for CSFII data

Model Degree AIC Parameter

μx α β λx φx φδ φε φe

SN / −6397 0.191 −0.070 0.994 3.477 0.016 0.010 0.014 0.0011

(0.009) (0.026) (0.078) (1.078) (0.002) (0.0003) (0.0004) (0.0007)

ST ν = 4 −7365 0.195 −0.056 0.927 2.013 0.011 0.006 0.007 0.0004

(0.008) (0.017) (0.063) (0.535) (0.002) (0.0003) (0.0004) (0.0004)

SS ν = 1.2 −7311 0.198 −0.056 0.929 1.931 0.006 0.004 0.004 0.0002

(0.011) (0.020) (0.068) (0.712) (0.001) (0.0002) (0.0002) (0.0002)

SCN ν = 0.3 −7250 0.200 −0.057 0.940 1.887 0.008 0.005 0.006 0.0004

γ = 0.2 (0.010) (0.020) (0.071) (0.540) (0.002) (0.0002) (0.0002) (0.0003)

SN0 / −6478 0.190 −0.078 1.019 3.604 0.016 0.010 0.012 /

(0.008) (0.020) (0.060) (1.056) (0.002) (0.0003) (0.0003)

ST0 ν = 4 −7425 0.193 −0.060 0.942 2.081 0.010 0.006 0.006 /

(0.008) (0.013) (0.049) (0.530) (0.002) (0.0003) (0.0003)

SS0 ν = 1.2 −7370 0.196 −0.060 0.945 1.987 0.005 0.003 0.003 /

(0.010) (0.014) (0.051) (0.694) (0.001) (0.0002) (0.0002)

SCN0 ν = 0.3 −7310 0.197 −0.063 0.962 1.985 0.008 0.005 0.006 /

γ = 0.2 (0.009) (0.016) (0.055) (0.534) (0.001) (0.0002) (0.0002)

N / −6368 0.287 −0.067 0.983 / 0.007 0.01 0.014 0.0010

(0.005) (0.027) (0.083) (0.0006) (0.0003) (0.0004) (0.0007)

T ν = 4 −7294 0.266 −0.055 0.922 / 0.006 0.006 0.008 0.0004

(0.004) (0.018) (0.064) (0.0006) (0.0003) (0.0004) (0.0004)

S ν = 1.2 −7284 0.268 −0.054 0.924 / 0.003 0.004 0.004 0.0002

(0.004) (0.020) (0.067) (0.0003) (0.0002) (0.0002) (0.0002)

CN ν = 0.2 −7204 0.272 −0.055 0.931 / 0.005 0.006 0.007 0.0004

γ = 0.2 (0.004) (0.020) (0.070) (0.0004) (0.0002) (0.0003) (0.0004)

N0 / −6439 0.287 −0.074 1.006 / 0.007 0.010 0.013 /

(0.005) (0.020) (0.060) (0.0006) (0.0003) (0.0003)

T0 ν = 4 −7345 0.265 −0.059 0.937 / 0.005 0.006 0.006 /

(0.004) (0.013) (0.048) (0.0005) (0.0003) (0.0003)

S0 ν = 1.2 −7336 0.267 −0.058 0.938 / 0.003 0.003 0.004 /

(0.004) (0.014) (0.050) (0.0003) (0.0002) (0.0002)

CN0 ν = 0.2 −7256 0.270 −0.061 0.951 / 0.004 0.006 0.006 /

γ = 0.2 (0.004) (0.015) (0.053) (0.0004) (0.0002) (0.0002)

β and λx under above models and display their values in Tables 4 (for group 1) and
5 (for group 2). The estimated values get slightly smaller after deleting the influential
observations in all situations. Specially, both the cases with andwithout equation error,
the change ratios of estimators under heavy-tailed distributions are smaller than those
under normal distribution, which also implies that heavy-tailed models fit the data
better than normal ones.
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Fig. 3 Performances of the influential points, a for group 1 and b for group 2

Table 4 Change ratios of α, β, λx after deleting outliers in Group 1 (in%)

Model With equation error Without equation error

α β λx α β λx

SN −10.52 −2.35 −30.07 −10.43 −2.48 −27.60

ST −4.00 −0.89 −5.57 −3.96 −0.95 −4.81

SS −4.17 −0.89 −5.57 −4.09 −0.92 −4.70

SCN −5.35 −1.29 −15.72 −5.30 −1.32 −14.81

N −9.61 −2.11 / −9.52 −2.26 /

T −3.90 −0.89 / −4.06 −0.95 /

S −3.79 −0.83 / −3.78 −0.87 /

CN −3.91 −0.91 / −5.84 −1.40 /

Now, we explain the data by parameters of interest β, λx and φe. From Table 2,
The values of φe seem very small and only slightly changes among different models,
indicating that there is inapparent random relationship between calorie and saturated
fat intake. The almost same conclusions can be drawn from Table 3 for group 2. The
practical significance of parameter β can be described as the positive proportion of
saturated fat in calorie. It takes a smaller value in the younger group than the older
group. Thus it can be seen that age factor has a certain effect on their diet habits. The
younger people may react quickly than the older ones when acquiring new nutrition
knowledge. Besides, it should be noted that the estimates of β under heavy-tailed
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Table 5 Change ratios of α, β, λx after deleting outliers in Group 2 (in%)

Model With equation error Without equation error

α β λx α β λx

SN −19.89 −5.96 −37.57 −19.10 −6.04 −36.70

ST −7.37 −1.99 −7.98 −7.01 −1.96 −7.43

SS −6.67 −1.80 −8.64 −6.49 −1.79 −7.75

SCN −13.57 −4.05 −14.67 −17.64 −5.47 −14.27

N −18.06 −5.37 / −17.50 −5.47 /

T −5.85 −1.52 / −5.60 −1.48 /

S −5.55 −1.45 / −5.64 −1.56 /

CN −8.18 −2.30 / −7.74 −2.38 /

models are smaller than the normal ones. Skew parameter λx is positive, suggesting
that the two group data skewed to the right. Moreover, the value of μx in group
1 is consistently larger than group 2, that may due to younger’s demands on more
calories.

6 Conclusions

In this paper, we proposed a RMEMunder the SMSN distribution class, called SMSN-
RMEM, which is suitable for asymmetric and heavy-tailed data. It includes many
special cases, such as non-replicated MEM under SMN distributions (Lachos et al.
2011), RMEM under normal distribution (Lin et al. 2004) or SMN distributions (Lin
and Cao 2013). Considering the SMSN-RMEM with equation error, we provided
the explicit iterative expressions of MLEs via an EM type algorithm. Additionally,
empirical Bayes estimations have been conducted for predicting the true covariate
and response. Simulation studies and the application on CSFII data demonstrated
the effectiveness and robustness of inferences under the SMSN-RMEM model. The
proposedmodel has good features in terms of robustness against outlying observations,
adaptation to general data type and convenience for extensive applications. We expect
that the model provides satisfactory results for data in presence of measurement error,
skewness and outliers, etc., which are often observed in many areas, particularly in
economics, medicine and environment.

We assume a SMSNdistribution for the true error-prone covariate while the random
errors are all assumed following SMNdistributions, which is similar as those in Lachos
et al. (2010b) and Zeller et al. (2014), etc. Owing to the hierarchical structure of
the model, the features of skewness of both covariate and response can be captured
under this assumptions. We may also assume that some random errors follow skew
distributions, if we have an evidence from the data collection process. However, we
need consider carefully the identification of themodel. Thismay be an interest research
later.We conductedmodel selectionmainly throughAIC criterion. Other criteria, such
as BIC and EDC can also be chosen. For the CSFII data, the order of the candidate
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models does not change and the advantage of heavy-tailedmodels is alwaysmaintained
under different criteria. The computing code is available from the authors upon request.
In the future work, it is also necessary to perform some statistic diagnostics and
hypothesis tests for the significance of parameters or equation error. Furthermore, the
model can be extended to multivariate cases for some statistical studies, or analyzed
under a Bayesian paradigm.
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Appendix

A The PDF of Some SMSN Distributions and the Conditional Moments

The pdf of some important SMSN distributions and the properties about conditional
moments are as follows:

(1) The multivariate skew-t distribution STm(μ,�,λ; ν):
κ(u) = 1/u, U ∼ Gamma(ν/2, ν/2) with ν > 0. The pdf of Y is given by

f ( y) = 2tm( y|μ,�; ν)T

(√
m + ν

d + ν
A; ν + m

)

,

where d = ( y − μ)��−1( y − μ), tm(·|μ,�; ν) and T (·; ν) denote the pdf of m-
dimensional Student-t distribution and the cdf of standard univariate t distribution,
respectively. The skew-normal distribution is the limiting case when ν → +∞.

The conditional moments take the forms

ur = f0( y)
f ( y)

2r+1�((ν + m + 2r)/2)(ν + d)−r

�((ν + m)/2)
T

(√
m + ν + 2r

d + ν
A; ν + m + 2r

)

,

ηr = f0( y)
f ( y)

2(r+1)/2�((ν + m + r)/2)

π1/2�((ν + m)/2)

(ν + d)(ν+m)/2

(ν + d + A2)(ν+m+r)/2
.

where f0( y) = ∫∞
0 φm( y|μ, κ(u)�)dH(u), i.e. the pdf of the class of SMN distribu-

tion when λ = 0.
(2) The multivariate skew-slash distribution SSm(μ,�,λ; ν):
κ(u) = 1/u, U ∼ Beta(ν, 1) with 0 < u < 1 and ν > 0. The pdf of Y is given by

f ( y) = 2ν
∫ 1

0
uν−1φm( y|μ, u−1�)�(u1/2A)du.

When ν → +∞, the skew-slash distribution reduces to the skew-normal one.
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The conditional moments take the forms

ur = f0( y)
f ( y)

2�((2ν + m + 2r)/2)

�((2ν + m)/2)

( 2
d

)r P1((2ν + m + 2r)/2, d/2)

P1((2ν + m)/2, d/2)

× E[�(S1/2A)],

ηr = f0( y)
f ( y)

2(r+1)/2�((2ν + m + r)/2)

π1/2�((2ν + m)/2)

d(2ν+m)/2

(d + A2)(2ν+m+r)/2

× P1((2ν + m + r)/2, (d + A2)/2)

P1((2ν + m)/2, d/2)
,

where S ∼ Gamma((2ν + m + 2r)/2, d/2)I(0,1) and Px (a, b) denotes the cdf of the
Gamma(a, b) distribution evaluated at x .

(3) The multivariate skew-contaminated normal distribution SCNm(μ,�,λ; ν, γ ):
When κ(u) = 1/u and U follows a discrete random probability function

h(u; ν, γ ) = νI(u=γ ) + (1 − ν)I(u=1) with given parameter vector ν = (ν, γ )�
and 0 < ν < 1, 0 < γ � 1, we get the multivariate skew-contaminated normal
distribution with the pdf as

f ( y) = 2
{
νφm

(
y|μ, γ −1�

)
�
(
γ 1/2A

)
+ (1 − ν)φm ( y|μ,�)�(A)

}
.

The SN distribution is a special case as γ = 1.
The conditional moments take the forms

ur = 2

f ( y)

{
νγ rφm

(
y|μ, γ −1�

)
�
(
γ 1/2A

)
+ (1 − ν)φm ( y|μ,�)�(A)

}
,

ηr = 2

f ( y)

{
νγ r/2φm

(
y|μ, γ −1�

)
φ
(
γ 1/2A

)
+ (1 − ν)φm ( y|μ,�) φ(A)

}
.

B The First Derivatives of dt , At and log |�| with Respect to θ

By direct calculations, we have the first derivatives of dt , At and log |�| as follows:
for dt :

∂dt
∂θi

= −2(Zt − μ)��−1 ∂μ

∂θi
− (Zt − μ)��−1 ∂�

∂θi
�−1(Zt − μ),

for At :

∂At

∂θi
=
(

∂ψ

∂θi
b� + ψ

∂b�

∂θi
− ψb��−1 ∂�

∂θi

)
�−1(Zt − μ) − ψb��−1 ∂μ

∂θi
,

where ψ = λxφx√
φx+λ2xx

.
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for log |�|:
∂ log |�|

∂β
=2qβφδφx/τ,

∂ log |�|
∂φx

=
[
p(φε + qφe) + qβ2φδ

]
/τ,

∂ log |�|
∂φδ

=(p − 1)/φδ + (φε + qφe + qβ2φx )/τ,

∂ log |�|
∂φε

=(q − 1)/φε + (φδ + pφx )/τ,

∂ log |�|
∂φe

=q(φδ + pφx )/τ,

where |�| = φ
p−1
δ φ

q−1
ε τ , τ = (φδ + pφx )(φε + qφe) + qβ2φδφx .

In addition, we also need to calculate the following derivation:
for μ:

∂μ

∂μx
= b,

∂μ

∂α
= c,

∂μ

∂β
= μx c.

for �:

∂�

∂β
= φx

(
cb� + bc�

)
,

∂�

∂φx
= bb�,

∂�

∂φδ

= D
{(

1�
p , 0�

q

)}
,

∂�

∂φε

= D(c),
∂�

∂φe
= cc�.

for b:

∂b
∂β

= c.

for ψ :

∂ψ

∂β
= qβc−2ψ3/(φε + qφe),

∂ψ

∂λx
= φ2

x (φx + λ2xx )
−3/2,

∂ψ

∂φx
= 1

2
ψφ−1

x + 1

2
ψ3φ−1

x c−2b��−1
1 b,

∂ψ

∂φδ

= −1

2
pψ3c−2φ−2

δ ,

∂ψ

∂φε

= −1

2
ψ3c−2qβ2(φε + qφe)

−2,
∂ψ

∂φe
= −1

2
q2ψ3c−2β2(φε + qφe)

−2.
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