
Comput Econ (2018) 52:105–121
https://doi.org/10.1007/s10614-017-9664-x

Hilbert Spectra and Empirical Mode Decomposition: A
Multiscale Event Analysis Method to Detect the Impact
of Economic Crises on the European Carbon Market

Bangzhu Zhu1 · Shujiao Ma2 · Rui Xie3 ·
Julien Chevallier4 · Yi-Ming Wei5

Accepted: 15 February 2017 / Published online: 23 February 2017
© Springer Science+Business Media New York 2017

Abstract Exploring the effect of an economic crisis on the carbon market can be
propitious to understand the formation mechanisms of carbon pricing, and prompt
the healthy development of the carbon market. Through the ensemble empirical mode
decomposition (EEMD), a multiscale event analysis approach is proposed for explor-
ing the effect of an economic crisis on the European carbon market. Firstly, we
determine the appropriate carbon price data of the estimation and event windows
to embody the impact of the interested economic crisis on carbon market. Secondly,
we use the EEMD to decompose the carbon price into simple modes. Hilbert spectra
are adopted to identify the main mode, which is then used to estimate the strength of
an extreme event on the carbon price. Thirdly, we perform a multiscale analysis that
the composition of the low-frequency modes and residue is identifying as the main
mode to capture the strength of the interested economic crisis on the carbon market,
and the high-frequency modes are identifying as the normal market fluctuations with
a little short-term effect on the carbon market. Finally, taking the 2007–2009 global
financial crisis and 2009–2013 European debt crisis as two cases, the empirical results
show that contrasted with the traditional intervention analysis and event analysis with

B Bangzhu Zhu
wpzbz@126.com

B Julien Chevallier
julien.chevallier@ipag.fr

1 School of Management, Jinan University, Guangzhou 510632, Guangdong, China

2 School of Business and Management, Hunan University, Changsha 410082, Hunan, China

3 School of Economics and Trade, Hunan University, Changsha 410082, Hunan, China

4 IPAG Lab, IPAG Business School, 184 Boulevard Saint-Germain, 75006 Paris, France

5 Center for Energy and Environmental Policy Research, Beijing Institute of Technology,
Beijing 100081, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-017-9664-x&domain=pdf


106 B. Zhu et al.

the principle of “one divides into two”, the proposed method can capture the influ-
ences of an economic crisis on the carbon market at various timescales in a nonlinear
framework.

Keywords European carbon market · Economic crisis · Ensemble empirical mode
decomposition · Event analysis · Hilbert transform

JEL Classification C6 · C8 · Q4

1 Introduction

As a cost-effective way for dealing with the global climate change, the carbon market
has played a pivotal role (Zhang and Wei 2010), as instructed by the Paris COP21
Agreements in December 2015. In 2005, in order to realize the CO2 emissions reduc-
tion task committed to the Kyoto protocol at the lowest cost, the European Union (EU)
launched the EU Emissions Trading Scheme (EU ETS). As an emerging policy-based
artificial market, the carbon market is not only affected by the internal market mech-
anisms, but also impacted by the external heterogeneity events, such as compliance
events, national allocation plans (NAP), and verified emissions announcements, espe-
cially economic crises (Bel and Joseph 2015). Actually, in recent years, the European
economic downturn has significant effects on EU ETS, which has caused a significant
reduction in the carbon price, even changed the mechanism of carbon pricing. In 2013,
China has launched seven carbon market pilots, and will establish a national carbon
market by 2017. Therefore, exploring the impact of economic crises on the European
carbonmarket is not only conducive to understand the formationmechanism of carbon
pricing, but also is help for construction of China’s national carbon market.

In recent years, exploring the impact of external heterogeneity events on the Euro-
pean carbonmarket has been attractingmore andmore attention (Bel and Joseph 2015;
Alberola et al. 2008; Jia et al. 2016; Lepone et al. 2011; Zhu et al. 2015; Brouwers
et al. 2016). Although the research methods tend to be diversified, they can be roughly
divided into two categories. The first one is the intervention analysis which examines
whether a structural change in the time series is led by an event (Box and Tiao 1975). If
there is a structural change, the intervention analysis is performed on the assumption
that the carbon price change can meet a specified model so as to capture the changing
amplitude and model affected by the external heterogeneity event. A dummy variable
is defined as the external heterogeneity event, which is introduced into the specified
model. Through estimating the coefficient of the dummy variable, and verifying its
significance, the effect intensity of the event on the carbon market can be obtained.
Alberola et al. (2008), Bel and Joseph (2015) and Jia et al. (2016) successively adopted
the intervention analysis to evaluate the impact of external heterogeneity events such as
economic crises and verified emissions announcements on the EU ETS. Their empir-
ical analysis found that the institutional information disclosure is one of the most
significant influences on the carbon market. The second category is the event analysis.
Event analysis is considered as a standard tool to measure the impact of an economic
crisis in the financial field, which can also explore the effect of an abnormal event
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on the carbon market (MacKinlay 1997). Lepone et al. (2011), Zhu et al. (2015) and
Brouwers et al. (2016) successively used the event analysis to examine the impact
of an external heterogeneity event on the carbon market, and all achieved favorable
results.

Previous literature is helpful for understanding the formation mechanism of the
carbon pricing. However, two main drawbacks are found in existing studies: firstly,
both the intervention analysis and event analysis are only suitable for the linear sta-
tionary series generally. On the contrary, the carbon price series is usually nonlinear
and nonstationary (Zhu et al. 2016). Moreover, both of them are based on the prin-
ciple of “one divides into two”, which assumes that the carbon price affected by the
event is composed of two parts: a normal component and a shock of an event. Hence,
the significance level can be estimated by modeling for the two parts respectively.
Otherwise, the latest literature Zhu et al. (2014) and Yu et al. (2015) showed that the
effects of an external heterogeneity event on the carbon market should be multiscale
rather than two-scale. Although the carbon price is the composition of simple modes,
the number of simple modes is more than two generally. Therefore, an external het-
erogeneity event has a multiscale effect on carbon market. Only decomposing carbon
price into two simple components cannot fully describe the multiscale influence of an
external heterogeneity event, so that the reliability of their analyses results is poor.

This research aims to overcome the existing drawbacks of exploring the impact
of economic crises on the European carbon market, and develop a multiscale event
analysis through ensemble empirical mode decomposition (EEMD) to exploring the
impact of economic crises on the European carbon market. The main contributions
of this study have two aspects: firstly, an EEMD-based event analysis with Hilbert
spectrum is constructed for exploring the effect of an external heterogeneity event
on the European carbon market. The proposed method involves three steps: (i) event
analysis, (ii) multiscale decomposition, and (iii) multiscale analysis. Secondly, taking
the 2007–2009global financial crisis and 2009–2013European debt crisis as two cases,
the empirical results show that: compared with the traditional intervention analysis
and event analysis under the principle of “one divides into two”, the proposed method
can capture the influences of an external heterogeneity event on the carbon market at
various timescales in a nonlinear framework.

The remaining of this study is organized as follows: the research methods are
elaborated in the Sect. 2, empirical analysis is given in Sect. 3, and conclusions and
the corresponding proposals are reported in Sect. 4.

2 Methodology

2.1 Empirical Mode Decomposition (EMD)

As an adaptive data analysis method for a nonlinear and non-stationary time series,
EMD can decompose the carbon price into a set of simple modes called intrinsic mode
functions (IMFs) and a residue (Huang et al. 1998).

Setting the original carbon price as x(t), the processes of EMD are following:

123



108 B. Zhu et al.

(1) Confirming all localmaximumpoints and localminimumpoints of carbon price,
x(t);

(2) Connecting all local maximum points and local minimum points by utilizing
the cubic spline curves respectively to form the upper envelope curve emax1(t) and the
lower envelope curve emin1(t).

(3)Obtaining themean envelope curvem1(t) by averaging the upper envelope curve
emax1(t) and the lower envelope curve emin1(t) : m1(t) = [emax1(t) + emin1(t)]/2.

(4) Calculating the difference d1(t) between x(t) andm1(t) : d1(t) = x(t)−m1(t).
(5) Judging whether d1(t) meets the conditions of IMF. If it meets the conditions

provided in Huang et al. (1998), d1(t) is defined as the first IMF; while if d1(t) does
not meet the conditions, it is taken as the original series to obtain the mean envelope
curve m11(t) of the upper and lower envelope curves of d1(t), then to judge whether
d11(t) = d1(t)−m11(t) meets the conditions of IMF. If not, the steps are repeated for
k times to obtain d1k(t) = d1(k−1)(t) − m1k(t) to make d1k(t) meet the conditions of
IMF. Let c1(t) = d1k(t), and c1(t) is the first IMF of x(t).

(6) Separating c1(t) from x(t). The residue, r1(t) = x(t) − c1(t) is taken as the
original series. Then steps (1)–(5) are repeated to obtainm IMFs and one residue rm(t).
At the point, the original carbon price is the sum of all IMFs and the final residue:
x(t) = ∑m

j=1 c j (t) + rm(t).

2.2 Ensemble EMD (EEMD)

Although EMD shows great advantages in processing the non-stationary and nonlinear
carbon price, there is still a disadvantage of the traditional EMD algorithm, namely
the decomposition results may be mode mixing. It means that a single IMF contains
the sparsely distributed time scales or some similar time scales are broken down into
different IMFs. In order to overcome this shortcoming,Wu andHuang (2009) proposed
a novel EEMD algorithm. The procedures of EEMD algorithm are following:

(1) A series of white noise ni (t) , i = 1, 2, . . . , n are added in the carbon price x(t)
by repeating n times, and ni (t) ∼ N

(
0, σ 2

) : xi (t) = x (t) + ni (t), where N (·) is a
normal distribution, σ is a standard deviation, and ni (t) is the added white Gaussian
noise at the i th time.

(2) Through EMD decomposing xi (t) respectively, several IMFs ci j (t) and one
residue ri (t) are obtained,where ci j (t) is the j th IMFobtained byEMDdecomposition
after adding ni (t).

(3) Repeating the steps above. The ensemble mean of the corresponding IMFs
is defined as the final decomposition result: c j (t) = 1

n

∑n
i=1 ci j (t), where n is the

number of an ensemble. The greater n is, the sum of each corresponding IMF to white
Gaussian noise is more close to 0.

Although the EEMD algorithm can effectively solve the mode mixing existed in
traditional EMD algorithm, it still has a limitation that end effect is produced usu-
ally. The main reason is that the envelope curves of carbon price are determined by
EEMD using the cubic spline function. However, owing to the uncertainty of the cubic
spline function, “flying wing” at both carbon price ends is produced. With the EEMD
decomposition, the end effect contaminates the internal carbon price, which can also
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increase the false IMFs to affect the decomposition accuracy. Therefore, we use the
sequence image symmetric extensionmethod (Lin et al. 2012) to restrain the end effect
of EEMD.

2.3 Hilbert Transform

Each IMF c j (t) is changed into c̃ j (t) in a transformplane through theHilbert transform
(Huang et al. 1998):

c̃ j (t) = 1

π
p

∫
c j (x)

t − x
dx

where p is the Cauchy principle value.
According to the definition of Hilbert transform, c j (t) and c̃ j (t) are complex con-

jugate pairs, and they can form a complex series, cAj (t):

cAj (t) = c j (t) − ic̃ j (t) = A j (t)e
iθ j (t)

The corresponding amplitude and instantaneous frequency are respectively defined
as:

⎧
⎪⎨

⎪⎩

A j (t) =
√
c2j (t) + c̃2j (t)

ω j (t) = dθ j (t)
dt

The phase angle θ is defined as θ j (t) = arctan
c̃ j (t)
c j (t)

, and the Hilbert spectrum is

defined as H(ω, t) = A2(ω, t).
At time t , the marginal spectrum of frequency in the range of [ωa, ωb] is defined

as:

h(t) =
∫ ωb

ωa

H(ω, t)dω.

2.4 An EEMD-Based Event Analysis for the Impact of Economic Crises on
Carbon Market

To thoroughly exploring the impact of an economic crisis on the European carbon
market, an EEMD-based event analysis is proposed, as shown in Fig. 1. In the proposed
approach, three main steps are involved, i.e., event analysis, multiscale decomposition
and multiscale analysis.

(1) Event analysis Firstly, we determine economic crises, and select the appropriate
carbon price data to embody the impact of the economic crises on carbon market.
Then, we divide the carbon price data into the estimation and event windows. The
event window refers to the time range of carbon price affected by the economic crises,
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Fig. 1 An EEMD-based event analysis for the impact of economic crises on carbon market

while the estimation window is the time range of carbon price without the influence
of the economic crises. Finally, we obtain a primary qualitative understanding of the
effect intensity and mode of the economic crises on carbon market through a graphical
analysis.

(2) EEMD decomposition The selected carbon price data are decomposed into a set
of IMFs and one residue by the EEMD algorithm.

(3) Multiscale analysis Firstly, we identifying the main mode of event window by
using the statistical analysis and compositional methods, which plays an important
role in carbon price fluctuations, from the decomposed IMFs. The main mode is a
single IMF or the composition of several IMFs. For the lack that the main mode
cannot contain the influence of short-term noise on the carbon price, it is identified
as the strength of the economic crisis on carbon market during the event window
(Zhang et al. 2008). Since the influence of an economic crisis on carbon market is
multiscale, besides identifying the main mode, it is necessary to examine whether the
other IMFs are abnormal in the event window. Due to the great uncertainty of carbon
market brought by the economic crisis, short-termfluctuations of carbonprice increase.
Namely, the high-frequency IMFs in the event window should be abnormal. It can be
judged by comparing their fluctuations in the event and estimation windows by using
the Hilbert transform and t test methods. Besides, in order to test the effect caused by
the economic crisis is temporary or permanent, we choose a longer time interval to
inspect if there is a structural breakpoint during or after the event window by using the
structural breakpoint test method. Finally, we summarize the influences of economic
crises on carbon market so as to provide a support for related decision-makings.
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3 Empirical Analysis

In order to verify the effectiveness of the proposed EEMD-based event analysis, we
explore the influences of two economic crises on the European carbon market: 2007–
2009 global financial crisis, and 2009–2013 European debt crisis.

3.1 Examining the Impact of 2007–2009 Global Financial Crisis on the EU ETS

(1) Event analysis The 2007–2009 global financial had a strong impact on the EU ETS
during that period. The United States subprime mortgage crisis began in Spring 2006,
and swept through the global major financial markets in August 2007. In September
2008, some quite financial institutions were bankrupted or were taken over by the
governments. The crisis continued to be worsening, and rapidly developed as another
global financial crisis. The crisis impacted the global economic growth, at the same
time, seriously affected the EU ETS, even led to a great collapse of carbon price. Later
on, the United States, European Union, Japan, etc. have taken a series of bailouts.
Until April 2009, the global financial market recovered gradually, and the crisis was
over.

As the most liquid carbon market under the EU ETS at present, European Climate
Exchange (ECX) is the largest carbon market all over the world, which can largely
reflect the overall state of the EU ETS. Therefore, we select the carbon price in ECX to
examine the influence of 2007–2009 global financial crisis on EUETS. The estimation
window is defined from January 2, 2007 to August 8, 2007 and from April 1, 2009 to
December 31, 2009; while the event window is defined from August 9, 2007 to March
31, 2009. Thus, the analysis window is from January 2, 2007 to December 31, 2009
with 768 daily trading prices totally. Figure2 presents the daily carbon price in the
analysis window with unit of e/t.

As shown in Fig. 2, for the lack that the concrete progress was unclear for carbon
traders before the crisis, fromAugust 2007 toAugust 2008, EUETSwas influenced by
uncertainty and the price changes were relatively smooth. The average price was 25.92
e/t, which suggested that EU ETS was at “high carbon price era”. From September
2008 to February 2009, the crisis broke out fully so that some main countries were
plunged into an economic panic. Industrial production was badly affected, meanwhile,
carbon price decreased sharply from more than 30 e/t to less than 10 e/t. And it fell
to a new low of 9.43 e/t on February 12, 2009. From March 2009 to December 2009,
the economy recovered gradually with the joint efforts of numerous nations. During
the period, carbon price was steady at around 15 e/t.

(2) EEMD decomposition The carbon price in analysis window is decomposed
by using the EEMD algorithm. The EEMD was implemented in the Matlab R2013a
software package produced by the MathWorks Inc, and run on a personal computer
with an Intel Core i3-2130DuoCPU3.40GHz and 4.0GBRAM.Among the abundant
Matlab functions library, we have used the randn function to obtain the normally
distributed random numbers, the find and diff functions to find out all the local maximal
and minimal positions and values of the carbon price, and the spline function to form
the cubic spline interpolation. In the meantime, inspired byWu and Huang (2009), the
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Fig. 2 The daily carbon price in the analysis window
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Fig. 3 EEMD decomposition results of the carbon price in the analysis window

input parameters of EEMDwere set as follows: σ is 0.2 times of the standard deviation
of the carbon price series; n is 100; and the terminal condition is the maximum times
of sifting, namely 10 times. The carbon price is decomposed into seven IMFs and one
residue, presented in Fig. 3, in which the last res is the residue. Comparing with the
original carbon price in the analysis window, it is apparent that the IMFs including
the residue are more simple, more smooth and more regular, therefore, they are more
likely to be explored.

(3) Mode analysis Firstly, we identify the main mode. As for each IMF including
the residue in the event window, a few statistics, including the average period, Pearson
correlation coefficient, Kendall correlation coefficient and variance percentage (Zhang
et al. 2008), are applied to investigate the relationships between each IMF, residue and
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Table 1 Statistical analyses for IMFs and res

Average period/day Pearson coefficient Kendall coefficient Variance as % of DEC12

IMF1 3.05 0.045 0.038 0.19

IMF2 6.32 0.075 0.067∗ 0.19

IMF3 14 0.149∗∗ 0.114∗∗ 0.40

IMF4 32.31 0.198∗∗ 0.134∗∗ 0.99

IMF5 70 0.421∗∗ 0.318∗∗ 1.66

IMF6 168 0.703∗∗ 0.519∗∗ 11.73

IMF7 420 0.901∗∗ 0.765∗∗ 11.23

res 0.795∗∗ 0.335∗∗ 21.62

* Correlation is significant at the level of 0.05 (2-tailed)
** Correlation is significant at the level of 0.01 (2-tailed)

the original carbon price. For an IMF with length of n with s peaks and troughs, its
average period is defined as T̄ = 2n/s. The variance percentage is defined that the
variance of an IMF accounts for the percentage of that of the original carbon price.
Their results are listed in Table1. For the lack of only considering the contribution
to variation of the original carbon price in the event window, the sum of the variance
percentages inTable1 is less than 1. For IMF3, IMF4 and IMF5, although there are high
correlations between them and the original carbon price, their variance percentages are
low, which are much less than those of IMF6, IMF7 and res, 11.73, 11.23 and 21.62%
respectively. Both the correlations between IMF1, IMF2 and the original carbon price,
and their variance percentages are very low. Thus, the sum of IMF6, IMF7 andres is
identified as the main mode. Figure4 reports the comparison between the main mode
and the original carbon price. It can be found that the main mode and original carbon
price have an overall consistent evolution. In terms of the main mode, we can obtain
that the influence of 2007–2009 global financial crisis on EU ETS is 17.09 e/t, rather
than 24.95 e/t, which is defined as the difference between the highest point and the
lowest point in the event window. For the difference between 17.09 e/t and 24.95 e/t,
it is because that the latter includes, however, the former excludes, the influences of
irregular short-term fluctuations of high-frequency modes on the EU ETS.

Secondly, we explore the high-frequency modes. The high-frequency modes,
IMF1 ∼ IMF5, have the mean periods of 3, 6, 14, 32 and 70days respectively, which
can reveal the short-term fluctuations of the original carbon price. They have low
correlations with the original carbon price, as well as have little variance percent-
ages. All the amplitudes of high-frequency modes are within 2 e/t. Thereby, although
the short-term fluctuations are violent, they have limited influences on the EU ETS.
At the same time, in the event window, all the means of high-frequency modes are
approximate to 0. Thus, we can deduce that the mean of sum of IMF1 ∼ IMF5 is
0, which can be verified by the fine-to-coarse reconstruction algorithm (Zhang et al.
2008) to test whether the sum from IMF1 to IMFi deviates significantly from 0 at
the IMFi . We perform the fine-to-coarse reconstruction algorithm via the Statistical
Product and Service Solutions (SPSS) software package developed by the IBM cor-
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Fig. 4 Comparison between the main mode and DEC12

Table 2 Mean, t value and p value

s1 s2 s3 s4 s5 s6 s7

Mean −0.0024 −0.0025 −0.0012 −0.0086 −0.0126 0.1476 −0.1528

t value −0.2942 −0.1915 −0.0642 −0.3118 −0.3019 1.9997 −1.3321

p value 0.7686 0.8481 0.9488 0.7552 0.7627 0.0455 0.1828

poration, and obtain the test results, as reported in Table2. At the significance level of
0.05, it can be found that the mean of sum of IMF1 ∼ IMF6 (s6) deviates significantly
from 0. Therefore, IMF1-IMF5 are the high-frequency modes, while IMF6 ∼ IMF7
are low frequency modes, and the residue is the trend of the carbon price. Therefore,
the fluctuations of IMF1 ∼ IMF5 cannot change the mean of the carbon price, which
demonstrates that identifying IMF6, IMF7 and res as the main mode is reasonable.

Thirdly, we use the Hilbert transform to explore whether the crisis has induced
the increase of short-term volatilities of the carbon price. We use the Hilbert–Huang
spectrum analysis software package developed by Huang et al. obtained from the
website of RCADA (http://rcada.ncu.edu.tw/) to present the Hilbert spectrum for the
carbon price in the analysis window, as shown in Fig. 5. The horizontal axis stands
for time, while the vertical axis is frequency, and the frequency is standardized to an
interval of [0, 1]. Energy is represented by color points, which means that the lighter
the color, the less the corresponding energy to the time and frequency; on the contrary,
the deeper the color, the greater the energy. For comparison, the original carbon price
is also painted on the corresponding panel in a red line. Here energy is defined as
∣
∣A j (t)

∣
∣2. On the whole timeline, the energy is concentrated in the low frequency

IMFs because the main mode is low-frequency. In the high frequency region, it can
be observed that the intensity of grey spots from the 157th day to the 576th trading
day in the event window is higher than that of the estimation window, as well as the
energy. Thus, the energy in the event window ismuch higher than that in the estimation
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Fig. 5 Hilbert spectrum for the carbon price in the analysis window

window. Furthermore, the t test result shows that the amplitude of highest-frequency
mode, IMF1, of the event window is significantly higher than that of the estimation
window. Therefore, during the crisis, it can be deduced that the fluctuations of carbon
price increased significantly.

Last but not the least, for verifying the impact of the crisis is temporary or permanent,
we use the Bai–Perron structural breakpoints test (Bai and Perron 2003) to explore the
structural changes of the monthly average carbon price from January 2006 to April
2012. On the basis of the Bayesian information criteria (BIC), three breakpoints are
detected out: September 2007, October 2008, and May 2011. It can be found that
the latest breakpoint to the crisis is in October 2008. Due to the hysteresis effect, the
breakpoint did not appear immediately after the full-blown of this crisis. Thus, we can
deduce that the breakpoint in October 2008 is induced by this crisis. Therefore, the
crisis is a stepped event, which has a permanent impact on the EU ETS.

According to the analyses above, we can summarize the influence of 2007–2009
global financial crisis on the EU ETS as follows: 1© This crisis has a multiscale influ-
ence on the carbonmarket: long-term slump at a large scale and short-term fluctuations
at a small scale. 2© The short-term effects are described by the high-frequency modes,
so they cannot impact the tread of carbon price in the long term. 3© The main influ-
ence of this crisis on the carbon market is captured by the main modes including the
low-frequency modes and the residue. This crisis is a stepped event, which has made
a structural change of carbon price. Thus, this crisis can impact the carbon price in the
long term.

3.2 Examining the Impact of 2009–2013 European Debt Crisis on the EU ETS

Since the detailed analyses are provided in Sect. 3.1, only simple outlines and conclu-
sions are given in this section.
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Fig. 6 The daily carbon price in the analysis window

The European debt crisis started at the end of 2009. At that time, Fitch downgraded
Greece credit rating from A− to BBB+ with a negative outlook. Afterwards, Standard
& Poor and Moody also lowered Greece sovereign debt rating, and the sovereign
debt crisis spread to the “PIIGS”, Portugal, Italy, Ireland, Greece and Spain from
March 2010. Especially, in November 2011, as the main European countries including
Germany and France were drawn into the crisis, the European debt crisis broke out
fully, which had lasted for over two years and gradually faded at the end of 2013.

Similar to 2007–2009 global financial crisis, we chose the carbon price in ECX to
explore the influence of European debt crisis on the EU ETS. The estimation window
is defined from April 1, 2009 to December 7, 2009, while the event window is from
December 8, 2009 to December 16, 2013, so the analysis window is from April 1,
2009 to December 16, 2013, with 1209 daily price data in total, shown in Fig. 6, with
unite of e/t. The carbon price kept stable at around 15 e/t before the full-blown of
European debt crisis. OnMay 2, 2011, the local peak was 19.69 e/t. As the debt crisis
deteriorated from June 2011 to October 2011, the carbon price fell from over 15 e/t
to less than 10 e/t. In November 2011, the European debt crisis worsened further, and
the carbon price experienced another decline to 6 e/t until it hit the lowest point, 2.78
e/t on April 17, 2013.

The EEMDalgorithm is used to decompose the carbon price in the analysis window.
The parameters are same with those utilized in Sect. 3.1. As illustrated in Fig. 7, the
carbon price is decomposed into eight IMFs and one residue. Table3 lists the statistical
analyses in the eventwindow. So, IMF6, IMF7, IMF8 and res are identified as themain
mode. The reasons are as follows: first, in terms of correlation, IMF6, IMF7, IMF8,
res and DEC13 are highly correlative to the original carbon price. Both the Pearson
correlation coefficient and Kendall correlation coefficient are significant at the signif-
icant level of 0.01. Second, from the perspective of variance percentage, compared
with the other IMFs, IMF6, IMF7, IMF8 andres contribute more to the variation of
original carbon price. Third, the results of fine-to-coarse reconstruction algorithm,
shown in Table 4 manifest that: the mean of the sum of IMF1 ∼ IMF6, (s6) has a

123



Hilbert Spectra and Empirical Mode Decomposition… 117

0
10
20

si
ng

al
-1
0
1

im
f1

-1
0
1

im
f2

-1
0
1

im
f3

-1
0
1

im
f4

-1
0
1

im
f5

-2
0
2

im
f6

-2
0
2

im
f7

-2
0
2

im
f8

0 200 400 600 800 1000 1200 1400
0

10
20

re
s

Fig. 7 EEMD decomposition results of the carbon price in the analysis window

Table 3 Statistical analyses for IMFs and res

Average
period/day

Pearson
coefficient

Kendall
coefficient

Variance
as % of DEC13

IMF1 2.94 0.025 0.028 0.08

IMF2 6.09 0.034 0.028 0.05

IMF3 12.60 0.062∗ 0.048∗ 0.09

IMF4 28.69 0.086∗∗ 0.086∗∗ 0.24

IMF5 51.65 0.160∗∗ 0.165∗∗ 0.39

IMF6 137.73 0.145∗∗ 0.129∗∗ 0.94

IMF7 295.14 0.202∗∗ 0.165∗∗ 2.41

IMF8 688.67 0.730∗∗ 0.435∗∗ 3.06

res 0.948∗∗ 0.668∗∗ 72.96

* Correlation is significant at the level of 0.05 (2-tailed)
** Correlation is significant at the level of 0.01 (2-tailed)

Table 4 Mean, t value and p value

s1 s2 s3 s4 s5 s6 s7 s8

Mean −0.0010 −0.0001 0.0006 0.0009 0.0024 −0.0105 −0.0191 −0.0589

t value −0.211 −0.018 0.186 0.292 0.658 −2.360 −3.181 −8.706

p value 0.833 0.985 0.852 0.770 0.511 0.018 0.002 0.000
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significant deviation from 0 at the significant level of 0.05. In term of the main mode,
we can obtain that the overall impact of European debt crisis on the carbon price was
15.45 e/t, which is less than that of 2007–2009 global financial crisis, 17.09 e/t. As
shown in Fig. 8, the main mode can describe the evolution of the carbon price as a
whole. As presented in Fig. 9, similar to the global financial crisis, theHilbert spectrum
for the carbon price in the analysis window shows that the carbon price fluctuations
increased during the European debt crisis. The t test result also shows that the ampli-
tude of highest-frequency mode, IMF1, in the event window is significantly higher
than that of the estimation window. Similar to the global financial crisis, we also used
the Bai-Perron structural breakpoints test to detect the structural changes of monthly
carbon price from April 2008 to December 2013, and two breakpoints are found: May
2011 and November 2011. It can be found that the times of these two breakpoints are
in line with the European debt crisis. At the same time, these breakpoints appeared
immediately when the European debt crisis escalated and broke out at a full scale. It
can be deduced that both the breakpoints are produced by the European debt crisis.
Therefore, the European debt crisis is also a stepped event like the global financial
crisis, which has an impact on the carbon market in the long term.

3.3 A Comparison Between the Two Crises

Comparing the global financial crisis and the European debt crisis, a few common
and different characteristics are summarized as follows: firstly, both have multiscale
influences on the carbon market: long-term slump at a large scale and short-term
fluctuations at a small scale. Secondly, the high-frequency modes have a little short-
term effect on the carbon market, and cannot impact the long-term tread of the carbon
price. Thirdly, the low-frequency modes and the residue are the main mode, which
has the main long-term influence of the two crises on the carbon market. Last but not
the least, as stepped events, both have so significantly negative effects on the carbon
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Fig. 9 Hilbert spectrum for the carbon price in the analysis window

market as to cause the structural changes in the carbon price. Meanwhile, there is also
a difference between these two crises that the impact of the global financial crisis on
the carbon market is more serious than that of the European debt crisis. The former
dropped by 17.26 e/t, while the latter declined by 15.44 e/t. However, the former
had caused one structural change in the carbon price one month later than the full-
blown of this crisis, while the latter had caused two structural changes in the carbon
price immediately when the European debt crisis escalated and fully broke out. From
this perspective, the impact of the European debt crisis on the carbon market is more
serious than that of the global financial crisis. The main reason may lie in that our
selected carbon market is the EU ETS.

4 Conclusions and Future Work

This paper develops a novel ensemble empirical mode decomposition-based event
analysis and Hilbert spectra to examine the influences of economic crises on the EU
ETS. The 2007–2009 global financial crisis and the 2009–2013 European debt crisis
are taken as two cases to verify the effectiveness of the proposedmethod. It is found that
both economic crises have seriously affected the carbon market, and caused several
structural changes in the carbon price. The empirical results show that, contrasted
with the traditional intervention analysis and event analysis with the principle of “one
divides into two”, the proposed method can capture the influences of an economic
crisis on the carbon market at various timescales in a nonlinear framework. Therefore,
the proposed approach appears as a new tool for engineers, computer scientists and
economists.

However, there are some limitations of the proposed method. First, the precision
of EEMD decomposition can directly affect the estimating accuracy of the impact of
an economic crisis on the carbon market. In this study, we have adopted the sequence
image symmetric extension EEMD method to decompose the carbon price. How to
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find a better decomposition method or to improve EMD/EEMD algorithms to enhance
the decomposition precision of carbon price is our future work. Second, in this study,
the effectiveness of the proposed method is only verified by two economic crises, or
stepped events. But the influence of an impulsive event on carbon market is less than
that of a stepped event on carbon price. Hence, whether this method is suitable for
exploring the impact of an impulsive event on the carbon market needs to be further
tested. Last but not the least, the aim of estimating the effect of an economic crisis on
the carbonmarket is to help improve the forecasting accuracy of carbon price (Zhu and
Wei 2013). Thus, how to integrate the obtained effect of an economic crisis to increase
the carbon price prediction is also our future research task, as a direct extension of the
works by Zhu et al. (2015).
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