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Abstract In the paper, we consider a Kaldor-type model of the business cycle with
external additive and internal parametric disturbances. We study analytically and
numerically the probability properties of stochastically forced equilibria and limit
cycles via stochastic sensitivity function technique. In particular, we discuss the effects
of additive and parametric noises on the economic variables and we detect some
stochastic bifurcations such as a P-bifurcation, i.e a phenomenon of noise-induced
transition from monostability to bistability. This stochastic bistability causes a new
trigger regime in economic dynamics.

Keywords Stochastic business cycle model · Random disturbances · Stochastic
sensitivity function · Noise-induced bi-stability

1 Introduction

The model proposed by Kaldor (1940) is one of the first and best known endogenous-
business-cycle models. According to Kaldor’s idea, the main economic proxy toward
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business fluctuations is a non-linearity in the investment-saving mechanism. This idea
was formalized in amodel and studied bymeans of themathematical theory of dynam-
ical systems in Chang and Smyth (1971), where the authors using Poincare–Bendixson
theorem proved rigorously that Kaldor’s assumption can indeed lead to business cycle
dynamics. Since these pioneer papers, the Kaldor model has attracted the interest of
many researchers in both economics and mathematics, see e.g. Lorenz (1993), Gan-
dolfo (2009) and Wu (2011). In particular the model has been extended into two
main directions. One important extension is the introduction of discrete time, see e.g.
Bischi et al. (2001) and Dieci et al. (2001). These two contributions highlight the non-
invertibility of the discrete-time variant of the business cycle model and the related
important consequences in the dynamics of the economic variables. The second type of
extension is the introduction of different types of delay in the investment-saving deci-
sions as suggested in a seminal contribution by Kalecki (see Szydlowski and Krawiec
2005; Krawiec and Szydlowski 1999; Wu and Wang 2010; Kaddar et al. 2008 for
continuous-time and Dobrescu and Opris (2009) for discrete-time Kaldor–Kalecki
models with delay). All these models of business cycles exhibit different types of
bifurcations, such as Andronov–Hopf, Bogdanov–Takens and Neimark–Sacker bifur-
cations, and different scenaria of transition to chaos.

The third and less explored generalization of the model regards the introduction
of random disturbances. The introduction of random disturbances in a Kaldor model
provides a deeper perspective on the qualitative and quantitative understanding of the
phenomena at stake, as it allows a study of the combination of deterministic and sto-
chastic forces that lead to the creation of a business cycle. One of the first attempts
to analyze the dynamics of a stochastic version of the Kaldor model is presented in
Grasman and Wentzel (1994). The authors introduce random noises as independent
Wiener processes in the Kaldor model of the business cycle and show that these ran-
dom perturbations generate chaotic dynamics instead of simply regular oscillations
(observable in the deterministic version of the model). For other contributions on sto-
chastic business cycle models see also Huang et al. (2010) and Mircea et al. (2011).
Despite the limited number of contributions, the analysis of stochastic business cycle
models and more generally the dynamics of stochastic economic models is an impor-
tant area of research. Indeed, random disturbances are often considered an inevitable
attribute of any economic system and the parameters of the real economic models are
subject to perturbations that can be considered as stochastic or uncertain.

The main difficulties in studying stochastic business cycle models, or more in
general stochastic economic models, is the lack of simple mathematical tools for
the investigation of the dynamics of these models. It is worth noting that the inter-
action between nonlinearity and stochasticity in dynamical systems can generate
various not-easy-to-analyze phenomena such as noise-induced transitions, see e.g.
Horsthemke and Lefever (1984), stochastic bifurcations, see e.g. Arnold (1998), and
noise-induced chaos, see e.g. Gao et al. (1999). For this reason stochastic and non-
linear dynamics are an actively developing research domain of modern mathematical
economics.

The most commonly used tool for studying stochastic dynamics is direct numer-
ical simulations based on the Monte Carlo approach, see e.g. Metropolis and Ulam
(1949). This is a time-consuming method that allows a detection only of the after-
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effects of noises. The Kolmogorov–Fokker–Planck equation represents an alternative
and, at the same time, a more sophisticated tool. This is a partial differential equation
which provides the most detailed probabilistic description of stochastic dynamics of
a model. However, a direct use of this equation is technically very difficult, even for
the simplest possible situations. Therefore, some asymptotic methods and approxi-
mations of the solution of the Kolmogorov–Fokker–Planck equation are commonly
used. For example, in physic applications it is commonly used an asymptotic method
to approximate the solution of the Kolmogorov–Fokker–Planck equation called qua-
sipotential method, see Freidlin andWentzell (2012). As a further development of this
method, in Bashkirtseva and Ryashko (2000) and Bashkirtseva and Ryashko (2004)
the so-called stochastic sensitivity function (hereafter, SSF) technique was developed
for the probabilistic description of stochastic attractors. This technique is based on
an approximation of the quasipotential function for low-intensity noise. It helps to
obtain more accurate results than a simple Monte Carlo analysis and it requires much
easier calculations than the one required to solve the Kolmogorov–Fokker–Planck
equation.

In this paper, using this technique as our main analytical tool, we analyzed a sto-
chastic version of the Kaldor model of the business cycle. In particular, using this
technique we are able to extend the analysis identifying how the economic parame-
ters, such as the adjustment coefficient of the level of activity, affect the dispersion of
the random states around a stochastic attractor when the model is influenced by addi-
tive noise, by multiplicative noise or by both. Moreover, we investigate the dispersion
of the random states along business cycles and how this depends on the values of the
parameters of the model. More generally, we show how the deterministic and stochas-
tic forces combine together and generate different types of dynamics when the values
of the parameters vary. In the final part of the paper, we also discuss a phenomenon
of a noise-induced bistability, i.e. a qualitative change in the stochastic dynamics of
the model due to a P-bifurcation (we refer to Arnold (1998) for a general treatment of
stochastic bifurcations). This reveals that the Kaldor model of the business cycle can
generate different kinds of cyclical dynamics that mimic the real fluctuations observed
in the real time series.

The plan of the paper is as follows. In Sect. 2, we briefly introduce the model and
study its deterministic dynamics in a subregion of the parameter space. In Sect. 3,
we introduce and analyze by means of a stochastic sensitivity function technique the
dynamics of the Kaldor model of the business cycle with low-intensity random pertur-
bations. In Sect. 4, we detect the existence of a noise-induced bistability which appears
through a P-bifurcation. A theoretical background of the general SSF technique for
stochastic equilibria and cycles is shortly discussed in Appendix.

2 Deterministic Kaldor Model

The Kaldor original model is a one-sector business model which describes the dynam-
ics of the level of activity Y and the stock of capital K in a closed economy, see e.g.
Kaldor (1940) and Chang and Smyth (1971). The Kaldor’s main idea was to introduce
a periodic regime on the correlated dynamics of Y and K as a consequence of the
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investment and saving decisions1 captured by the shape of the investment function
I (Y, K ) and saving function S(Y, K ).

Adopting the standard capital accumulation equation as suggested in Lorenz
(1993)2, Kaldor model can be written as a system of two differential equations

{
Ẏ = α(I (Y, K ) − S(Y, K )),

K̇ = I (Y, K ) − δK ; (1)

where α > 0 is an adjustment coefficient in the goods market that measures the speed
of reaction of the economic system to the difference between investments and savings,
and parameter δ ∈ (0, 1) represents the depreciation rate of capital stock.

In order to provide some specific cases to discuss, to introduce some form of
noise and to analyze how this influences the dynamics, we have to assume a specific
functional form for the investment function and the saving function. The investment
function is chosen to be additive in Y and K , and it takes the form

I (Y, K ) = I (Y ) − βK , (2)

where β > 0 (it will be assumed to be stochastic in the next section). This parameter
β measures the sensitivity of investments to a variation in the stock of capital, indeed
β = −I ′

K (Y, K ). As far as I (Y ) is concerned, following Rodano (1997), Gandolfo
(2009) and Bischi et al. (2001) and given the exogenously assumed “normal” level
of income as c > 0, we assume the following increasing S-shaped function of the
difference between current income and its normal level

I (Y ) = 1

1 + exp(−b(Y − c))
+ d (3)

where b, d > 0.
We define the saving function as

S(Y, K ) = γY, (4)

where γ ∈ (0, 1) measures the saving propensity of the agents with respect to the
income. The condition γ < 1 indicates that the marginal propensity to consume
is positive and proportional to the level of activity, which is the basic principle of
Keynesian investment multiplier.

Given the investment and saving functions, we obtain the following Kaldor-type
model

1 This ideawas elaboratedmathematically on the base of rigorous qualitative theory of differential equations
in Chang and Smyth (1971) for the first time.
2 In his contribution Lorenz (1993), Lorenz proposed the Kaldor model in the so-called standard form. In
this paper we adopt a similar model setup. This version of the Kaldor model differs from the one proposed
in Chang and Smyth (1971) as it takes into account the depreciation of the stock of capital.
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⎧⎨
⎩
Ẏ = α

(
1

1+exp(−b(Y−c)) + d − βK − γY
)

,

K̇ = 1
1+exp(−b(Y−c)) + d − (β + δ)K .

(5)

The dynamical system (5) has always at least one equilibrium, namely (Y , K ).
For the sake of simplicity and without loss of generality we assume Y = K , which
implies that the marginal propensity to consume is equal to the depreciation rate of
capital stock, i.e. δ = γ , and we normalize to one the “normal” level of income, i.e.
c = 1. We assume also a relatively high depreciation rate of the capital stock, i.e.
we fix γ = 0.5, as it is typical in the modern economies where a fast technological
development accelerates the process of obsolescence. Moreover, we assume that d,
which represents the minimum level of investment, is greater than half of the level
of investment at the “normal” level of income, specifically we fix d = 0.6. This is
consistent with a developed economy where the high standard of technology adopted
in the production sector requires continuous investments. In addition, assuming that
the system reacts quickly to correct the misalignments between the current and the
“normal” level of income, we chose b > 1, specifically b = 4.2. Thus, we consider
the following subset of the parameter space:

{(b, c, d, α, β, γ, δ) |b = 4.2, c = 1, d = 0.6, α > 0, β > 0, γ = 0.5, δ = 0.5}
(6)

Focusing on the stochastic version of the model and interesting to understand how
the deterministic forces of this model combine with the stochastic one, in this paper we
provide a brief description of the deterministic dynamics of this model varying only
the parameters α and β. As the deterministic analysis of the model is not the main task
of this paper, we report only the results that are useful to understand the dynamics of
the stochastic version of the model and we refer to Wu (2011) for a deeper and more
comprehensive investigation of the deterministic model.

For each constellation of the values of the parameters in (6), system (5) has a unique
equilibrium (Ȳ , K̄ ), such that Ȳ = K̄ , and the level of activity Ȳ is proportional to the
investment, i.e. I (Ȳ ) = (β +0.5)Ȳ . The Jacobian matrix calculated at the equilibrium
(Ȳ , K̄ ) is a function of the two bifurcation parameters α and β and is given by

J (Ȳ , K̄ ) =
[

α(I
′
Y (Ȳ ) − 0.5) −αβ

I
′
Y (Ȳ ) −(β + 0.5)

]
, (7)

where

I
′
Y = 4.2 exp (−4.2(Y − 1))

(1 + exp (−4.2(Y − 1)))2
. (8)

Focusing on β = 0.6, we have that (Ȳ , K̄ ) = (1, 1) and the Jacobian matrix at this
equilibrium becomes

J (1, 1) =
[
0.55α −0.6α
1.05 −1.1

]
, (9)

from which by straightforward algebra we found that the equilibrium undergoes a
supercritical Andronov–Hopf bifurcation at α∗ = 2.
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Fig. 1 Bifurcation diagram of
deterministic Kaldor model (5)
for equilibria (Ȳ , K̄ ): A (stable
node), B (stable focus), C
(unstable focus), D (unstable
node)
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By standard analysis we can obtain the bifurcation curves as functions of the two
bifurcation parameters α and β, see Fig. 1, which divide the (α,β) parameter space
into four regions: in A ∪ B the equilibrium (Ȳ , K̄ ) is the only stable attractor (a
node in region A and a focus in region B); in C ∪ D there are two invariant sets,
a stable limit cycle and the unstable equilibrium (Ȳ , K̄ ) (a focus in region C and a
node in region D). By further considerations, as the one provided in Wu (2011), we
can find that the critical line of Fig. 1, separating regions B and C , is the Andronov–
Hopf bifurcation curve, i.e. crossing that curve from left to right a limit cycle appears
through a Andronov–Hopf bifurcation.

In the next section, we introduce one parametric and two additive stochastic dis-
turbances to the business cycle model (5), we provide a sound economic justification
for the presences of these stochastic terms, and we perform a noise-induced stability
analysis of the model by means of the stochastic sensitivity matrix.

3 Stochastic Kaldor Model

In order to study the response of the Kaldor model to random disturbances, we intro-
duce two additive noises and one parametric noise obtaining the following stochastic
nonlinear dynamical system

{
Ẏ = α(I (Y ) − βK − Y ) + ε(−σ1αK ẇ1 + σ2ẇ2),

K̇ = I (Y ) − (β + 1)K + ε(−σ1K ẇ1 + σ3ẇ3); (10)

wherewi (i = 1, 2, 3) are independent standardWiener processes such that E(wi (t)−
wi (s)) = 0 and E(wi (t) − wi (s))2 = |t − s|, σi (i = 1, 2, 3) are elements of matrix-
valued function of disturbances and ε is a scalar parameter of noise intensity. We
associate σ2 and σ3 with additive noises and σ1 with the parametric noise.

Additive noise σ2ẇ2 measures changes in the level of activity not directly related
to investment and saving decisions but due to exogenous events, such as unexpected
information that force economic agents to modify their production level. On the con-
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trary, additive noise σ3ẇ3 represents the effect of external events that could affect
the stock of capital, such as unexpected losses. Concerning parametric noise, in this
stochastic model, we consider a unique parametric noise forcing the parameter β only:
β → β +σ1ẇ1. To assume that β is stochastic means that the propensity to invest with
respect to a change on the stock of capital can be governed by a random component,
which indicates that the investment decisions of the agents in the economy can be
influenced by external news or events. It is well known that the investment decisions
are strongly influenced by pessimistic (or optimistic) news about the state of the econ-
omy. For example, if the stock of capital is decreasing and as a consequence of this,
in absence of external events, the agents would increase investments, there could be
an external shock (news or events) that could modify (alter) this decision.

It is worth pointing out that a similar stochastic version of the Kaldor model with
additive noise only has been proposed in Grasman and Wentzel (1994).

3.1 Stochastic Equilibria

As long as the random noise is assumed to be at a relatively low level of intensity, i.e.
we assume that the dynamics of the macroeconomic variables are governed mainly by
deterministic components and only slightly forced by stochastic disturbances, to study
the stochastic Kaldor model we can apply the stochastic sensitivity function technique
for weak noise. This function can be used to characterize the dispersion of random
states around a deterministic attractor. A brief description of this technique is reported
in Appendix.

Random trajectories of the stochastically forced model (10) leave a deterministic
attractor (equilibrium or cycle) and form a so-called stochastic attractor around the
deterministic one. It is obvious that, as noise intensity increases, the dispersion of
random states around the deterministic attractor grows. However, it is not an easy task
to understand how the dispersion of the random states changes as the values of the
parameters of the deterministic component of the model change. In this subsection, we
show that these changes can bemeasured and in particularwe study how this dispersion
depends on the deterministic adjustment parameter α, keeping β fixed and equal to
0.6. This information helps to understand how the dynamics of the stochastic system
changes if some of the exogenous economic conditions, captured by the parameters,
change.

Let us start considering a constellation of the values of the parameters such that(
Ȳ , K̄

) = (1, 1) is stable and is the unique attractor of the deterministic model, i.e.
0 < α < α∗ (α∗ = 2). When the Kaldor model is affected by noise as in (10), with
σ2 = σ3, the stochastic sensitivity of equilibrium

(
Ȳ , K̄

)
can be characterized by the

stochastic sensitivity matrix

W (α, σ1, σ2) =
[

w11 (α, σ1, σ2) w12 (α, σ1, σ2)

w21 (α, σ1, σ2) w22 (α, σ1, σ2)

]
(11)

where

w11 (α, σ1, σ2) = 5α + 0.5α2

1.1 − 0.55α
σ 2
1 + 24.2 + 0.5α + 7.2α2

1.1α − 0.55α2 σ 2
2 ,

123



706 I. Bashkirtseva et al.

w12 (α, σ1, σ2) = w21 (α, σ1, σ2) = 5.5α

1.1 − 0.55α
σ 2
1 + 23.1 + 6.6α2

1.1α − 0.55α2 σ 2
2 , (12)

w22 (α, σ1, σ2) =
(

−9 + 19

2 − α

)
σ 2
1 + 22.05 + 0.5α + 6.05α2

1.1α − 0.55α2 σ 2
2 ,

which are obtained solving the algebraic system (20) indicated in Appendix. This
matrix captures the interaction between the deterministic forces, described by Jacobian
matrix (9), and the stochastic disturbances, which are described, see (20), by the
following matrix

G = σ
(
Ȳ , K̄

) =
[−α K̄σ1 σ2 0

−K̄σ1 0 σ2

]
. (13)

Let us point out that value w11 defines the stochastic sensitivity of the equilibrium
along Y -axes, value w22 defines the stochastic sensitivity of the equilibrium along
the K -axes and values w12 = w21 give a measure of the correlation between the
level of activity and the capital stock. The matrix is valid as long as 0 < α < 2, i.e.
as long as the deterministic equilibrium

(
Ȳ , K̄

)
is stable. It is worth observing that

w11 (α, 0, 1) > w22 (α, 0, 1) for all α ∈ (0, 2). This means that the dynamics of the
level of activity is more sensitive to additive noise than the dynamics of the level of
capital stock.

Moreover, we have w12 (α, 0, 1) > w12 (α, 1, 0) > 0 for all α ∈ (0, 2). This
means that there is a positive covariance between the level of activity and the stock of
capital and it follows that to a large level of capital stock corresponds a large level of
production and vice versa.

For a parametric analysis of stochastic sensitivity of the equilibrium forced by
random noise, it is possible to use eigenvalues μ1, μ2 of matrixW . These eigenvalues
are depicted in Fig. 2a for α ∈ [0, 2] and σ1 = 0, σ2 = σ3 = 1. The plot of μ1
reflects a non-monotonicity property mentioned above and both plots give a measure
of the level of dispersion of random states. For small α, the stochastic sensitivity
of the equilibrium is quite large in one component μ1 and relatively small in the
other component μ2. This means that dispersion, which we denote by D, of random
states near the equilibrium depends essentially on the specific direction. In this case,
max D ≈ ε2μ1 is in the direction of eigenvector v1 associated to the eigenvalue μ1,
and min D ≈ ε2μ2 is in the direction of eigenvector v2 associated to the eigenvalue
μ2. This can be easily understood from Fig. 2b observing that the random attractor
is flattened in the direction spanned by the eigenvector v2 and it is stretched in the
direction of the other eigenvector v1. This example shows from one side how the
deterministic forces acting with different strength along different directions of the
state space contribute to mold the shape of the random attractor and, from the other
side, the utility of the stochastic sensitivity matrix to describe the dynamics of the
economic variables. Let us also note that the eigenvalues of this matrix, i.e. μi (α)

(i = 1, 2), grow and tend to infinity when α converges to α∗, where α∗ = 2 is the
bifurcation value of the deterministic version of the model. This indicates that even
the stochastic model (10) has a bifurcation at α = α∗.

The specific effects of changing the values of α on the set of random states can be
observed in Fig. 2b, where the stochastic equilibrium of the Kaldor model is depicted
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Fig. 2 For β = 0.6 and σ1 = 0, σ2 = σ3 = 1: a plots of functions μ1(α) and μ2(α), b random states of
model (10) with ε = 0.01 for α = 0.05 (black), α = 0.8 (light-grey), α = 1.95 (dark-grey)

0.05 0.8 1.95
0

200

400

α

μ

0.7 1 1.3

0.7

1

1.3

Y

K
(a) (b)

Fig. 3 For β = 0.6 and σ1 = 1, σ2 = σ3 = 0: a plots of functions μ1(α) and μ2(α), b random states of
model (10) with ε = 0.01 for α = 0.05 (black), α = 0.8 (light-grey), α = 1.95 (dark-grey)

for different values of α. In particular, in Fig. 2b, sets of random states of the system
(10) forced by additive noise only (σ1 = 0, σ2 = σ3 = 1, ε = 0.01) are plotted for
α = 0.05 (black), α = 0.8 (light-grey), α = 1.95 (dark-grey). As one can see, an
increase in the value of the parameter α does not necessary imply an increase in the
dispersion of the random states. It is interesting to know, that the Andronov–Hopf
bifurcation value α∗ = 2 is a critical point for both the deterministic and stochastic
model. So, for α in a neighborhood of α∗, the dispersion of states in the random
attractor increases and tends to infinity.

Let us now consider the influence of parametric (multiplicative) noise. In Fig. 3a,
for α ∈ (0, 2) and σ1 = 1, σ2 = σ3 = 0, the eigenvalues μi (α) (i = 1, 2) of
stochastic sensitivity matrix are plotted. It can be seen that under parametric noise
both functionsμ1(α) andμ2(α) aremonotonous increasing for α ∈ (0, 2). Thismeans
that the dispersion of random states around equilibrium monotonously increases as α
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increases. Moreover, it is important to notice that this parametric noise does not alter
the sign of the correlation between Y and K , which remains positive as for the additive
noise.

Comparing Figs. 2a and 3a, it is observable a lower sensitivity of the Kaldor model
to parametric noise than to additive noise as long as α is small. This occurs because
random changes in the difference between investments and savings are dumped by
a small adjustment coefficient. The sets of random states generated by system (10)
with parametric noise and α = 0.05 (black), α = 0.8 (light-grey), α = 1.95 (dark-
grey) are depicted in Fig. 3b. On the contrary, as highlighted above, the effects of
additive noises σ2 and σ3 are not dumped by small values of the adjustment coefficient.
All these details can be derived from the stochastic sensitivity matrices W (α, 1, 0)
and W (α, 0, 1). This shows that the stochastic sensitivity matrix is a useful tool to
understand the dynamics of the stochastic business cycle model and it is very easy to
calculate since it requires just solving a linear system.

We can add that the analysis underlines a very important role played by the parame-
ter α. Indeed, in the case of additive noise and α close to zero, we have large excursion
of the system out of the equilibrium value, where we easily move from situations of
high levels of capital stock and investments to low level of capital stock and invest-
ment. In case of parametric noise, this is observable only for α closed to the bifurcation
value α∗ = 2. Another important feature to analyze is the amplitude of the random
fluctuations of the two macroeconomic variables, which are of the same magnitude,
i.e. the capital stock undergoes fluctuations of the same size as the ones of the level
of activity. This feature of regularity gives indication that the system is at a regime
in which the capital stock is adjusted to fit the differences in the level of activity and
there are not problems of over or under accumulation of capital stock. This does not
hold true in case of stochastic limit cycle as will be underlined in the next section.

3.2 Stochastic Cycles

As shown in sect. 2, for α > α∗ (let us fix α = 4, β = 0.6), the deterministic business
cycle model exhibits a stable limit cycle. Instead, when we have either parametric
noise (σ1 = 1, σ2 = σ3 = 0) or additive noise (σ1 = 0, σ2 = σ3 = 1), the model is
characterized by a stochastic limit cycle.

The stochastic sensitivity matrix is not only useful to give information about the
dispersion of random states around a stable equilibrium, but it can even be used to
give information about the dispersion of the random states along the stable limit
cycle. However, the calculations to obtain the stochastic sensitivity matrix W (t) are
more complicated as they require solving a boundary value problem for a differential
equation (22) and no longer a simple algebraic equation. Moreover, for a given limit
cycle Γ , we have a matrix W (t) for any point of the closed orbit. In particular, for a
two-dimensional dynamical system (as Kaldor model is), we have that

W (t) = μ (t) p(t)pT (t), (14)

where p(t) is a normalized vector orthogonal to limit cycle Γ , μ (t) is a scalar func-
tion (called stochastic sensitivity function), and operator •T means transposition. The
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Fig. 4 For α = 4, β = 0.6 and σ1 = 0, σ2 = σ3 = 1: a stochastic sensitivity function μ(t), b stochastic
cycles for ε = 0.02, c, d the time series of variables Y and K for ε = 0.02

stochastic sensitivity function measures the dispersion of random states in a proximity
of a point of the deterministic cycle (see Appendix for more details).

The stochastic sensitivity function μ(t) calculated for the stochastic limit cycle
generated by the Kaldor model (10) exhibits a cyclical pattern with wide fluctuations
(see Fig. 4a). This shape of the function indicates a non-uniform dispersion of random
states along the business cycle, as it can be observed in the numerical simulation
of Fig. 4b. In particular we can recognize four different phases along the business
cycle: two phases in which the level of activity and the capital stock move in the same
direction, i.e. they both increase or decrease and two phases in which they move in
different directions. For large values of Y and K we have that the first variable (i.e. the
level of activity), decreases and the second one (i.e. the capital stock) increases. Those
two opposite movements of the two variables reflect the basic economic property of
short-period Keynesian models, i.e. an adjustment along the capital curve is much
slower than the one along the income curve, see Gandolfo (2009), Kaldor (1940) and
Kaldor (1971). Using the stochastic sensitivity function μ (t) we found that these two
last phases are the most sensitive to stochastic additive disturbances and the dispersion
of the random states along these two phases is higher than along the other two phases.
This indicates that periods of large amplitude variations are followed by periods of
small amplitude variations. At a qualitative level, this dynamics along the business
cycle mimics the phenomenon of “volatility clustering”, which occurs, as indicated
in Mandelbrot (1963), when large changes tend to be followed by large changes, of
either sign, and small changes tend to be followed by small changes.
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Fig. 5 For β = 0.6: a stochastic sensitivity factor M(α), b stochastic cycles (α = 10) for additive noise
(σ1 = 0, σ2 = σ3 = 1) with ε = 0.001 (black) and parametric noise (σ1 = 1, σ2 = σ3 = 0) with
ε = 0.001 (grey)

An endogenous explanation of this phenomenon was already provided in Gauners-
dorfer et al. (2008), where the authors show that volatility clustering arise when a
deterministic model characterized by coexistence of two stable attractors (an equilib-
rium and a business cycle) is buffed by small noise. In the framework of our approach,
thanks to the use of the stochastic sensitivity function, we show that even a determin-
istic model characterized by only one attractor can generate, once buffed by small
additive noise, time series characterized by volatility clustering.

So far, we have analyzed the effects of an additive noise on the business cycle
generated by the Kaldor model. Let us now turn to the parametric noise and let us
compare the responses of the stochastic limit cycle of the model to additive and para-
metric noises of the same intensities. We observed already that Kaldor model reacts
differently to parametric and to additive noise, but if at the equilibrium the dynamics
of the Kaldor model was more sensitive to additive noise than to parametric noise,
the order of sensitivity is reversed when the stochastic business cycle appears, i.e.
when α > α∗. In fact, the Kaldor model is much more sensitive to parametric random
disturbances along the limit cycle. See the values of M (α) = maxγ∈[0,T ] μ (t, α) in
Fig. 5a. The value M (α) plays an important role and measures the maximum level
of dispersion of the random states along a stable closed orbit and we can consider it
as a factor of sensitivity of a cycle Γ to random disturbances. The sensitivity factor
M (α) is very useful to analyze how the sensitivity to random disturbances of the limit
cycle changes as a parameter of the model changes. As the adjustment coefficient α

increases, the dispersion of the random states generated by parametric noise increases
around the trajectory of the deterministic limit cycle, however the influence of the
additive noise remains small and does not increase as α increases (see Fig. 5a).

In Fig. 5b, random states of the stochastic cycle generated by additive noise, σ1 = 0,
σ2 = σ3 = 1, ε = 0.001, are plotted in black and the ones by parametric noise, σ1 = 1,
σ2 = σ3 = 0, ε = 0.001 are in grey. It is worth noting that under parametric noise the
dispersion of the random states along the limit cycle is larger than the one observed
with additive noise. Moreover, the two parts of the limit cycle in which the capital
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stock and the level of activitymove in opposite directions, are characterized by a higher
level of dispersion of the random states and the differences in the variance of the two
economic variables along the limit cycle are more pronounced for the parametric noise
in respect to the additive noise and they grow as the adjustment coefficient increases.

For both parametric and additive noise we have underlined a first important dif-
ference between the two regimes of the model, i.e. variance and covariance of the
macroeconomic variables are constant at the stochastic equilibrium while they change
over time at the stochastic limit cycle. Moreover, we have described how the dynamics
of the Kaldor model responds to additive and parametric noise and the main differ-
ences between the dynamics of the attracting stochastic equilibrium and the dynamics
of the attracting stochastic limit cycle.

Another interesting aspect is the different effect of noise on the two economic
variables: level of activity and capital stock. This kind of information can be obtained
from the stochastic sensitivity matrix W given in (14). For stochastic limit cycle, it is
quite challenging to derive the stochastic sensitivitymatrix as a function of α, although
it is still possible to obtain this matrix for a single given value of α and for different
points of a limit cycle Γ . This is useful, as it allows us to compare how variance and
covariance of the variables change passing from a single stationary equilibrium to a
business cycle. Furthermore with this technique we can rely on a robust theoretical
method to compute variance and covariance.

Considering additive noise only, we report the stochastic sensitivity matrix com-
puted in two different points of the limit cycle, one point taken from the region of
the phase space characterized by high volatility, high value of μ(t), and the other one
taken from the region of the phase space characterized by low volatility, low value of
μ(t):

– W (t) calculated in correspondence of the maximum of μ(t) is the following

W =
[

2.72881 −0.89126
−0.89126 0.29110

]
. (15)

– W (t) calculated in correspondence of the minimum of μ(t) is the following

W =
[
0.00039 0.01254
0.01254 0.39727

]
. (16)

As we can see from matrix (15), in the point of maximum random state dispersion,
the correlation between the level of activity and the capital stock is negative and the
level of activity is characterized by a large variance, i.e. w11 takes a large value (w11
= 2.72881). On the contrary, the variance of the capital stock ismuch smaller. Looking
at matrix (16), we observe that in the point of minimum random state dispersion, the
variance of the capital stock is increased, compared to the point of maximum random
state dispersion, of a small amount, while the variance of the level of activity is almost
null. Moreover, the correlation between the two variables is positive as for the case of
the random equilibrium.

From the times series of the two economic variables Y and K (see Fig. 4c–d) we can
observe that the fluctuations in the level of activity are much larger than the magnitude
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of fluctuations in the stock of capital. Along with this feature, we expect a different
speed of reaction of the two variables to the noise, i.e. we expect that the variance of
the capital stock will be sensitively lower than the variance of the level of activity. This
reflects the fact that the stock of capital is an economic variable which can not change
excessively in a short period as it requires time to be accumulated, and we expect a
smaller variance of this variable compared to the one of the level of activity in any
point of the business cycle. It is worth remembering that for a random equilibrium the
variances of the two variables were almost the same.

All these elements underline the fundamental differences between the stochastic
equilibrium of the Kaldor model and its stochastic business cycle, some of which are
unobservable in the deterministic version of the model.

4 Noise-Induced Bistability in the Kaldor Model

In the previous sectionwe have seen that randomnoise can induce quantitative changes
in the stochastic dynamics of the Kaldor model. We have also presented a possible
way to measure these quantitative changes and study the sensitivity to variations of the
parameters. In this Section, we investigate the qualitative changes induced by random
disturbances, i.e. wewould like to understand if there are types of dynamics that are not
observable in the deterministic version of the model. These noise-induced changes in
the dynamics of the Kaldor model occur through the so-called stochastic bifurcations.

As can be seen from the bifurcation diagram of Fig. 1, if we cross, going from
left to right, the Andronov-Hopf-bifurcation curve, we observe the creation of a small
limit cycle which increases its amplitude as α increases. On the contrary, if we cross,
moving upwards, the Andronov–Hopf bifurcation curve, we observe the creation of a
limit cycle which has a large amplitude. It is in this region of the space of the parame-
ters, where equilibrium

(
Ȳ , K̄

)
is stable but crossing the Andronov-Hopf-bifurcation

curve a business cycle of large amplitude appears, that the dynamical system becomes
excitable to noise and stochastic bifurcations can occur. Stochastic bifurcations of
randomly forced cycles were considered in (Bashkirtseva et al. 2009, 2015).

Choosing α and β in order to be in the excitable region, in particular α = 2.2
and β = 0.593, the noise-induced excitement found confirmation through numerical
simulations (see Fig. 6). As noise intensity increases, the dispersion of random states
increases too. But alongwith these quantitative changes, a new qualitative deformation
of the probability density is observed. For weak noise, random states are concentrated
in a small vicinity of the stable equilibrium (see Fig. 6a). In this case, the probability
density has a single peak (see Fig. 6c). For further increasing of noise intensity, the
probability density changes from unimodal to bimodal, through a P-bifurcation.3 In
this case, for σ2 = σ3 = 1, ε = 0.05, random states are concentrated in two separate
areas of the phase plane (see Fig. 6b) and the corresponding probability density has
two peaks (see Fig. 6d).

3 According to Arnold (1998), a P-bifurcation is a transition from a probability density function p to a
new one q which is not equivalent to the first one, i.e. it does not exist two diffeomorphisms g, r such that
p = g ◦ r ◦ q. The transition from a unimodal density function to a bimodal is such a point.
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Fig. 6 Example of P-bifurcation. For α = 2.2, β = 0.593, σ1 = 0 and σ2 = σ3 = 1: a, b random states
for model (10) for ε = 0.001 and ε = 0.05 correspondingly; probability density functions for c ε = 0.001
(unimodal density) and d ε = 0.05 (bimodal density)

In this Section, we have seen that along with the stable regime and the stable cycle,
the stochastic Kaldor model can have an additional third type of dynamics character-
ized by bi-stability as a result of a P-bifurcation. One peak of the probability density
function corresponds to the stable equilibrium of the deterministic system, while the
secondpeak does not have a deterministic analogue. Thus, this simple two-dimensional
model demonstrates how random disturbances induce a new dynamical trigger regime
in nonlinear economics that can not be explained by a deterministic theory. This is
important to analyze, as we show that bi-stability regimes in an economic business
cycle model are observable even if the underlined deterministic component of the
motion of the macroeconomic variables does not present bi-stability. In particular, the
transition from a stable random equilibrium to a stochastic limit cycle is characterized
by a phase of bi-stability due to the emergence of a bimodal probability density.

In Fig. 7, the time series of level of activity (Y ) and capital stock (K ) are plotted
for monostable and bistable regimes of stochastic Kaldor model. In the monostable
regime, variables Y and K randomly oscillate near equilibrium values Ȳ , K̄ (see
Fig. 7a). In the bistable regime, a response of Y and K on random disturbances is
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Fig. 7 For α = 2.2, β = 0.593, σ2 = σ3 = 1 and σ1 = 0 the time series: a ε = 0.001, b ε = 0.05

quite different. Here, a capital stock K randomly oscillates with a sufficiently large
dispersion while level of activity Y exhibits random jumps between two definitely
separated random states. So, for high noise, a stochastic Kaldor model behaves as a
trigger.

5 Conclusions

In this paper, we have analyzed the sensitivity of theKaldormodel of the business cycle
to low intensity random disturbances using a stochastic sensitivity function technique.
In particular,we have investigated how the adjustment coefficient in the level of activity
affects the dispersion of the random states characterizing the attractors of the model
for both additive and parametric noises.

The analysis reveals that the adjustment coefficient in the level of activity influences
the dispersion of random states around the stochastic equilibrium of the model in a
non-monotonically way if we consider additive noise. Indeed, the dispersion of the
random states first decreases and then increases when the value of the adjustment
coefficient increases. On the contrary, considering parametric noise and increasing
the value of the adjustment coefficient, the dispersion of the random states around the
equilibrium monotonically increases. At the same time, the investigations point out
that the dispersion of the random states along the stochastic limit cycle is not evenly
distributed, and it is possible to distinguish phases of large dispersion of random states
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that alternate with phases of low dispersion of random states. Stochastic sensitivity
analysis shows that the dispersion of the random states along the cycle is mainly due
to the perturbations on the level of activity, while the stock of capital is characterized
by a small and almost constant variance along the cycle. This means that the level of
activity is more sensitive to noise than the stock of capital. The fact that the level of
stock of capital is less sensitive to small noise is reasonable in short-term economic
models, where changes in the level of stock are expected to be limited.

Moreover, the analysis reveals that the noise affects the dynamics of the model not
only quantitatively but also qualitatively. In fact, for certain parameter values we can
observe a noise-induced bi-stability that occurs due to a P-bifurcation. This underlines
that the Kaldor model of the business cycle can exhibit a type of behavior that is
qualitatively different from the stochastic convergence to an equilibrium, oscillatory
dynamics or a mix of the two (see Grasman and Wentzel (1994), for a discussion of
this last type of dynamics).

As a final remark, we point out that the stochastic sensitivity function technique is
a powerful method to study the dynamics of any other economic model. In particular,
it could be interesting to use this technique to investigate the dynamics of a business
cycle model which includes a financial sector in order to analyze the diffusion of the
random disturbances through the economic and financial markets.
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Appendix: Stochastic-Sensitivity-Function Technique for Equilibria and
Limit Cycles

A standard mathematical model for the description of the results of random exter-
nal disturbances is a system of stochastic differential equations (in either Ito’s or
Stratonovich’s sense)

ẋ = f (x) + εσ (x)ẇ, (17)

where x is an n-vector, f (x) is a n-vector function, w(t) is a l-dimensional standard
Wiener process, σ(x) is a n×l-matrix-valued function of disturbances and ε is a scalar
parameter of noise intensity. Assuming that the deterministic system obtained by (17)
fixing ε = 0 has an exponentially stable attractor (equilibrium or limit cycle), then
the trajectories of the randomly forced system (17) leave this deterministic attractor
and form a corresponding stochastic attractor which is described by a stationary prob-
abilistic distribution ρ(x, ε). This stationary probability distribution is very difficult
to obtain. In case of small noise, i.e. small ε, it is possible to overcome the problem
as stationary probabilistic distribution ρ(x, ε) can be approximated by

ρ(x, ε) ≈ K · exp
(

−v(x)

ε2

)
, (18)
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where v(x) = − limε→0 ε2 ln ρ(x, ε) is called quasipotential function, see e.g. Frei-
dlin andWentzell (2012) and Dembo and Zeitouni (2009) for more details. According
to the type of stable attractor of system (17) with ε = 0, i.e. a stable equilibrium or
a stable closed orbit, we can obtain an approximation of the quasipotential function
which helps us to understand the main features of a stochastic attractor of system (17).

Let us first consider the case of a deterministic exponentially stable equilibrium
x̄ of system (17) with ε = 0. Using a quadratic approximation of the quasipotential
(see Mil’shtein and Ryashko 1995) the stationary distribution of random states of
the related stochastically forced equilibrium of system (17) can be approximated in
Gaussian form as

ρ(x, ε) ≈ K · exp
(

− (x − x̄,W−1(x − x̄))

2ε2

)
(19)

where ε2W is the covariance matrix, and W is a positive definite n × n-matrix which
can be easily obtained solving the matrix equation

JW + W J	 = −S, where J = ∂ f

∂x
(x̄), S = GG	, G = σ(x̄). (20)

The matrix W is called a stochastic sensitivity function (SSF) (see Ryashko et al.
2010, Bashkirtseva and Ryashko 2011, Bashkirtseva and Ryashko 2011) of the equi-
librium x̄ . This matrix characterizes the configurational arrangement and the size of
the stationary distributed random states of the stochastic system (17) around the deter-
ministic equilibrium x̄ .

Let us now consider the case of an exponentially stable limit cycle Γ for system
(17) with ε = 0. This cycle has a natural parametrization given by function ξ(t) (T -
periodic solution of system (17)). Indeed, it defines the one-to-one correspondence
between orbit Γ points and interval [0, T ] time moments. Again, using a quadratic
approximation of the quasipotential function v(x) in a neighborhood of the limit cycle
Γ (seeMil’shtein andRyashko 1995)we can approximate the stationary distribution of
random states of the stochastic forced limit cycle. LetΠt be a hyperplane orthogonal to
the cycle at the point ξ(t) (0 ≤ t < T ). In this case, for the Poincare section Πt in the
neighborhood of the point ξ(t), using a quadratic approximation of the quasipotential
function v(x), the stationary distribution of random states of the stochastically limit
cycle can be can approximated in Gaussian form as

ρt (x, ε) ≈ K exp

(
− (x − ξ(t),W+(t)(x − ξ(t)))

2ε2

)
. (21)

where sign “+” stands for pseudoinversion and W (t) is a singular matrix called sto-
chastic sensitivitymatrix of cycleΓ and it is the unique solution, see, e.g., Bashkirtseva
and Ryashko (2004), of the Lyapunov equation

Ẇ (t) = J (t)W (t) + W (t)J	(t) + P(t)S(t)P(t) (22)
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under conditions:
W (0) = W (T ), W (t)r(t) ≡ 0, (23)

where J (t) = ∂ f

∂x
(ξ(t)), S(t) = σ(ξ(t))σ	(ξ(t)) , r(t) = f (ξ(t)), P(t) is a matrix

of the orthogonal projection onto the hyperplane Πt .
For the case of two dimensional random dynamical system, which is the case of the

model considered in this paper, the stochastic sensitivity matrix W (t) can be written
as W (t) = μ(t)P(t). Here, μ(t) > 0 is a T -periodic scalar stochastic sensitivity
function satisfying the following boundary problem (see Bashkirtseva and Ryashko
2000)

μ̇(t) = a(t)μ(t) + b(t), μ(0) = μ(T ) (24)

with T -periodic coefficients

a(t) = p	(t)(F	(t) + F(t))p(t) , b(t) = p	(t)S(t)p(t), (25)

where p(t) is a normalized vector orthogonal to f (ξ(t)). The explicit formula for the
solution μ(t) of the problem (24) is given by

μ(t) = g(t)(c + h(t)), (26)

where

g(t) = exp

⎛
⎝

t∫
0

a(s)ds

⎞
⎠ , h(t) =

t∫
0

b(s)

g(s)
ds, c = g(T )h(T )

1 − g(T )
. (27)

The quantity M = maxμ(t), t ∈ [0, T ] is called stochastic sensitivity factor and
it plays an important role in the analysis of the stochastic dynamics near a limit cycle
as it measures the maximum degree of dispersion of the random states around the limit
cycle Γ .
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