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different emission taxes, abatement andwelfare compared to the traditional assumption
of a time-fixed model mistrust. This result holds even if the probability that the model
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the model uncertainty may decrease in the future then current emissions taxes should
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1 Introduction

In this paper I develop a framework to study the regulation of a stock pollutantwhere, in
contrast to previous literature, the degree of trust that the environmental authority has
in its estimated model is allowed to change over time. A time-varying degree of model
uncertainty can arisewhen changes in key environmental, technological, and economic
variables affect the trust that the environmental authority has on the accuracy of its
estimated model. For example, Lang (2014) and Herrnstadt and Muehlegger (2014)
show that unusual changes in weather increases the concerns about climate change.
Herrnstadt andMuehlegger (2014) show that these concerns extend topro-environment
congressional votes. Moreover, previous literature has shown that environmental and
economic systems can experience shifts to different dynamic systems. Polasky et al.
(2011), Crepin et al. (2012), de Zeeuw and Zemel (2012) mention how these dynamic
system shifts can take place in ecological, terrestrial, global climate, consumer choice,
financial markets, cultural, and political systems. Thus, an environmental authority
aware that the dynamics of economic and environmental system can change may
becomemoremistrustful about the accuracy of its own estimatedmodel after observing
changes in key variables. The degree of mistrust may go back to its original level once
these changes and the memory these events have faded away.

The main contribution of this paper is the introduction of a time-varying degree of
uncertainty aversion of the environmental authority. To the best of my knowledge, this
is the first paper to do this in a dynamic framework in environmental economics. The
general results of this paper show that accounting for the possibility of a time-varying
degree of uncertainty aversion produces different emission taxes and abatement com-
pared to those from the traditional time-fixed uncertainty aversion models used in
the previous literature. For example, if the environmental authority believes that the
model uncertainty may be reduced in the future then current emissions taxes should
also decrease.

In particular, I model an environmental authority’s time-varying degree of trust
in its own model of the pollution stock dynamics by setting up a Markov regime-
switching model with an optimistic and a pessimistic regime, where robust control is
introduced in both regimes but the degree of model mistrust is higher in the pessimistic
regime.The theoretical framework I develop is illustratedusingHoel andKarp’s (2001)
functional forms and data because of its simplicity and parsimony, but this setup can be
modified and implemented in more complex linear quadratic models. This framework
is used for normative purposes. This implies that in the decision-making process the
environmental authority anticipates the possibility of alternating to a regime with
different degree of mistrust using the transition probabilities in the Markov chain.

An emergent literature has adapted robust control to environmental and resource
economics and use this new set of tools to obtain optimal policies under Knightian
uncertainty. This paper fits neatly into this nascent literature. In one of the first appli-
cations, Roseta-Palma and Xepapadeas (2004) implements robust control to resource
management decision, particularlywatermanagement.Gonzalez (2008) analyzes opti-
mal emissions taxes and welfare under model uncertainty about the evolution of the
pollution stock. Vardas and Xepapadeas (2010) analyzes the effect of implementing
k-ignorance and robust control to biodiversity management. Funke and Paetz (2011)
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uses robust control to obtain optimal levels of CO2 mitigation. Athanassoglou and
Xepapadeas (2012) analyzes robust policies for a stock pollutant in the presence of
damage control and mitigation. Anderson et al. (2014) introduce robust control in a
dynamic integrated framework that allows them to consider model uncertainty with
respect to climate and economic dynamics. A common thread in Gonzalez (2008),
Vardas and Xepapadeas (2010), and Athanassoglou and Xepapadeas (2012) is the
use of robust control to analyze its relationship with the Precautionary Principle. The
Precautionary Principles is a vague decision rule that in simple terms proposes that
in the face of scientific uncertainty environmental policy should take action to avoid
environmental degradation. In general, these studies have found that the use of robust
control implies an implementation of the Precautionary Principle in that Knightian
model uncertainty leads to a more active environmental policy.

The main contribution of this paper is the introduction of a time-variant degree of
mistrust in the environmental authority’s own model of the pollution stock dynamics.
The model I present in this paper adapts and improves on the Macroeconomic model
in Gonzalez and Rodriguez (2013) using the Hoel and Karp (2001) model as well as
the work in Zampolli (2006) and Hansen and Sargent (2008).

I obtain four main results. First, introducing the possibility that the environmental
authority may switch to a regimewhere it has a different degree of trust in its estimated
model of the pollution stock dynamics, produces changes in the current level of emis-
sions taxes. This result holds even for a small probability to switch to the other regime
and for a short expected duration of the other regime. In general, if the environmental
authority believes that there is a possibility to switch to a regime with higher model
uncertainty, then an active approach compatible with the Precautionary Principle is
optimal by increasing emissions taxes in the current regime. Alternatively, if the envi-
ronmental authority believes that there is a possibility to switch to a regime with lower
model uncertainty, then emissions taxes in the current regime should decrease. These
results also hold when the switch to the other regime is permanent. This suggests that
if the environmental authority considers the possibility that the model uncertainty may
permanently decrease at some point in the future, then current emission taxes should
decrease.

Second, increases in the mistrust of the environmental authority’s model of the
pollution stock dynamics lead to higher emissions taxes. This is also compatible with
the Precautionary Principle and confirms previous results in the literature. However,
this result also indicates that decreases in the mistrust in the environmental authority’s
model of the pollution stock dynamics lead to lower emissions taxes.

Third, there is an interesting asymmetry in the response of the emissions taxes in
each regime to changes in the transition probabilities. Emission taxes in the optimistic
regime are more sensitive than those in the pessimistic regime to changes in the
transition probabilities.

Fourth, in the presence of a range of possible transition probabilities, an envi-
ronmental authority in the optimistic regime is better off by assuming the highest
transition probability to the pessimistic regime in that range. In general, the environ-
mental authority obtains higher welfare by overestimating rather than underestimating
the probability of transiting to the pessimistic regime.
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The paper broadly consists of two parts. The first part (Sects. 2, 3) is the theoretical
approach. The second part (Sects. 4, 5) is a numerical illustration of the theoretical
model. Specifically, the paper is divided into six sections. Section 2 develops the
theoretical model. Section 3 shows the analytical solution to the new environmental
authority problem. Section 4 presents the data used to calibrate the model. Section 5
presents and analyzes the numerical results. Section 6 concludes and suggests paths
for future research.

2 Model

In this model, the environmental authority regulates a stock pollutant (namely CO2)
using emissions taxes. Pollution damages and abatement costs are quadratic while a
linear transition equation describes the evolution of the pollution stock. As in Gon-
zalez (2008), Athanassoglou and Xepapadeas (2012), and Funke and Paetz (2011),
I assume Knightian model uncertainty on the evolution of the pollution stock.
This type of uncertainty can stem from the complexity of physical and economic
systems, the lack of reliable historical data or the inability to perform controlled
experiments. For example, Millner et al. (2013) concludes that given the current
scientific knowledge, climate systems cannot be described by a unique probabil-
ity distribution. This means that the environmental authority is unable to assign
unique probability distributions to alternative models of the pollution stock dynam-
ics. Moreover, this implies that the environmental authority’s model of the pollution
stock dynamics is misspecified in unknown ways. These include a wide range of
misspecified dynamics mentioned in Athanassoglou and Xepapadeas (2012) such
as wrong parameters, autocorrelated errors, feedbacks, nonlinearities, irreversibility,
and hysteresis effects. Wrong parameters in this model can include the miscalcula-
tion of the firms’ abatement costs and their response to emissions taxes, the natural
decay in the pollution stock, and the emission sources in the baseline case. The
degree of Knightian model uncertainty represents the amount of mistrust that the
environmental authority has in its estimated model of the pollution stock dynam-
ics.

To keep the model tractable, I consider two regimes that differ only in the degree of
mistrust (or Knightian uncertainty) that the environmental authority has in its esti-
mated model of the pollution stock dynamics: optimistic and pessimistic. In the
optimistic regime, the environmental authority believes that its estimated model is
a close, although not exact, representation of a true unknownmodel. In the pessimistic
regime, the environmental authority has a higher degree of mistrust in its estimated
model and believes it is relatively far from the true unknown model.

Policy makers facing Knightian uncertainty are unable to use the traditional
expected probabilities approach. I use robust control, as presented in Hansen and
Sargent (2008), in both regimes to deal with the model mistrust in the dynamics
of the pollution stock. Robust control in economics is a practical way to imple-
ment the minmax solution of Gilboa and Schmeidler (1989) and represents a special
case of the more general criterion developed by Klibanoff et al. (2005), Klibanoff

123



Pollution Control with Time-Varying Model… 545

et al. (2006), and more recently by Millner et al. (2013) in the context of climate
policy.1

I introduce aMarkov chain to capture the possibility of change in the degree of mis-
trust, i.e. the possibility of switching between the pessimistic and optimistic regimes.
As in Zampolli (2006) I assume that the transition probabilities are exogenous. This
is similar to the assumption that dynamic systems shift randomly and exogenously
in de Zeeuw and Zemel (2012), among others. Moreover, this implies that the degree
of mistrust changes randomly and independently of the environmental authority’s
actions. I interpret this as the occurrence of exogenous random events that may affect
the trust that the environmental authority has on its estimated model of the pollution
stock dynamics. The use of the Markov chain also indicates that the switch to another
regime is not predicted with total certainty and that it is dependent on the current state.

2.1 Basic Model of the Environmental Authority

The basic model and functional forms are adapted from Hoel and Karp (2001). It is
assumed that the model has one representative firm and one policy maker. The firm
minimizes the net cost of abatement, H, given by:

H = −
(
f + axt − b

2
x2t

)
(1)

where f, a, and b are positive parameters and xt is the firm’s emissions at time t . The
net cost of abatement, H , balances the firm’s benefits and costs of abatement.

The firm learns the value of all parameters at the beginning of each period and
minimizes abatement costs every period. The firm’s optimal level of emissions in the
absence of any regulation is the following:

xt = (a/b) ≡ x̄ (2)

In the presence of taxes, the firm minimizes tax payments plus abatement cost, and
the resulting optimal level of emissions is:

xt = (a − Mt )/b (3)

where Mt is the tax per unit of pollution.
Pollution damages (D) are a quadratic function of the present level of pollutant

concentrations (St ) represented by the following function

D =
(
cSt + g

2
S2t

)
(4)

1 Other possible ways to deal with Knightian uncertainty in environmental economics are mentioned in
Athanassoglou and Xepapadeas (2012), and Gollier et al. (2000).
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where c and g are parameters. Current pollutant stocks depend on the remaining stock
and pollutant emissions from the previous period:

St+1 = αSt + xt + εt+1 (5)

where 0 < α < 1 is the retention coefficient and represents the natural decay in the
pollutant stock and εt+1 is an stochastic disturbance.

The environmental authority’s choice of emissions taxes (Mt ) affects current and
future costs and benefits. Future payoffs are reduced by the discount factor δ. Substitut-
ing Eq. (3) into Eqns. (5) and (1), the basic problem of the environmental authority is
expressed as choosing an infinite sequence of emissions taxes tominimize the expected
discounted infinite sum of pollution damages and abatement costs.

min
{Mt }∞t

E
∞∑
t

δt
{(

cSt + g

2
S2t

)
−

(
φ + 1

2
βM2

t

)}
(6)

Subject to the pollution evolution equation:

St+1 = αSt + βMt + x̄ + εt+1 (7)

where β ≡ − 1
b and φ ≡ f + ax̄ .

The Knightian model uncertainty considered in this paper is on the evolution of the
stock given by Eq. (7).

2.2 Robust Control and Two Regimes

I now introduce an environmental authority that believes that its estimated model of
the pollution stock evolution, given by Eq. (7), is only an approximation to a true
unknown model of the pollution stock dynamics.

Assumption 1 The environmental authority is unable to assign a unique probabil-
ity distribution to the alternative models of the evolution of the pollution stock and
consequently faces Knightian uncertainty.

To simplify the model, I consider two regimes (r = 1, 2) that only differ in the
degree of model mistrust (i.e. Knightian model uncertainty): optimistic and pes-
simistic.2 I define regime 1 and 2 as the optimistic and pessimistic regime, respectively.
In the optimistic regime 1 (r = 1), the environmental authority has a high degree of
trust in its estimated model and believes that it is a close representation of the true
unknown model. In the pessimistic regime 2 (r = 2), the environmental authority has
a lower level of mistrusts in its estimated model and believes it is relatively far from
the true unknown model. To simply notation, the current regime rt is denoted by i and
the next period regime rt+1 by j where i, j = 1, 2.

2 The model and the solution method can be extended to a N number of regimes.
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Assumption 2 The environmental authority uses robust control in both regimes to
deal with the mistrust in its own estimated model of the pollution stock dynamics.

In particular, I implement robust control following the approach of Hansen and
Sargent (2008). I assume that the reader is not familiar with robust control and present
a concise explanation of the essence of robust control under the current model.

The purpose of robust control is to provide the policy maker (the environmental
authority, in this case) with a policy rule that works reasonably well even if its model
does not coincide with a true unknown model, as opposed to a policy rule that is
optimal if it does but possibly disastrous if it does not. The environmental authority
defines a set of likely models around its original estimated model. This set contains the
environmental authority’s estimated model and the worst-case model. The environ-
mental authority suspects that a third model, the true unknown model, is also located
in this set. In robust control the environmental policy follows Gilboa and Schmeidler
(1989) and adopts the emissions tax policy from theworst-casemodel. This is done not
because the environmental authority believes that the worst-case emissions shock will
take place, but rather because this is the emissions tax policy that behaves reasonably
well under Knightian model uncertainty.

A useful and common interpretation of robust control is as a zero-sum two-player
game between the environmental authority and an “evil” nature. In this fictitious game,
the evil nature introduces a distortion ωt+1 in the pollution evolution equation and the
environmental authority responds using emissions taxes.3 The evil nature uses this
distortion to hurt the environmental authority by making emissions shocks higher and
more persistent. Therefore, Eq. (7) in each regime is modified as follows:

St+1, j = αSt,i + βMt,i + x̄ + εt+1 + ωt+1,i i, j = 1, 2 (8)

The evil nature’s distortion ωt+1,i is a new control variable and its value depends on
the current period’s regime (rt = i) and ultimately on the history of the pollution
concentrations:

ωt+1,i = ω(i, St , St+1, . . .) i = 1, 2 (9)

This type of distortion means that the model is misspecified in unknown ways
that include a wide range of misspecified dynamics mentioned in Athanassoglou and
Xepapadeas (2012) such as wrong parameters, autocorrelated errors, feedbacks, non-
linearities, irreversibility and hysteresis effects. Wrong parameters in this model can
include the miscalculation of the firm’s abatement costs and its response to emissions
taxes, the natural decay in the pollution stock, and the emission sources in the baseline
case. The distortion ωt+1,i needs to be bounded or the evil nature will produce infinite
damage to the environmental authority. The bound is given by the following equation:

∞∑
t=0

δtω2
t+1,i ≤ μi i = 1, 2 (10)

3 Hansen and Sargent (2008) show that the timing of the protocols does not change the solution. That is,
the solution of the sequential game is equivalent to solving a simultaneous game. Moreover, the sequence
of the moves between the nature and the environmental authority do not affect the solution.

123



548 F. Gonzalez

where μi is the bound in regime i . Equation (10) is added to the set of constraints
of the environmental authority’s maximization problem and its Lagrange multiplier is
denoted by− 1

2θt+1,i . This new parameter θt+1,i > 0 is known as the “free” parameter
in the robust control literature and represents the degree of mistrust that the envi-
ronmental authority has in its estimated model. The values of θi come from outside
the model and are chosen according to the degree of model mistrust of the environ-
mental authority. Small values of θi are chosen when the environmental authority is
pessimistic about its model because they allow the evil nature to introduce a large
distortion ωt+1 in the dynamics of the pollution stock. This produces an emissions tax
policy for a larger set of alternative models of the pollution stock dynamics. Alter-
natively, large values of θi imply an optimistic environmental authority because the
evil nature can only introduce small distortion ωt+1 to the pollution stock dynamics.
This produces an emissions tax policy for a smaller set of alternative models of the
pollution stock dynamics.

The values of θt+1,i are bounded by θt+1,i ∈ (θ,∞). The lower bound θ represents
the highest degree of model mistrust for which is possible to obtain a robust emissions
tax policy.4 At the upper bound, when θt+1,i → ∞, the model mistrust completely
dissipates and the environmental authority is fully confident that its estimated model
represents the true model.

The main contribution of this paper is precisely that θt+1,i takes on different val-
ues on each regime, representing different degrees of mistrust of the environmental
authority. Thus, θt+1,1 and θt+1,2 represent the value of θt+1,i in the optimistic regime
1 (rt = i = 1) and in the pessimistic regime 2 (rt = i = 2), respectively. Similarly,
the worst-case shock values associated with θt+1,1 and θt+1,2 are ωt+1,1 and ωt+1,2,
respectively. The values of θt+1,i in the model are constrained as follows:

0 < θ < θt+1,2 < θt+1,1 < ∞ (11)

The first part of the restriction, 0 < θ is necessary to assure that the problem is
a minmax. The second part of the restriction θ < θt+1,2 guarantees that the level
of pessimism is reasonable, i.e. the environmental authority is not catastrophist but
rather mistrusting of its own model. The second part of the restriction, θt+1,2 <

θt+1,1, indicates a higher degree of model mistrust of the environmental authority in
regime 2 than in regime 1. The last part of the restriction, θt+1,1 < ∞, denotes that
the environmental authority mistrusts its own estimated model in both regimes. The
following expression summarizes the two regimes:

rt = i =
{
1 optimistic environmental authority: θt+1,i = θt+1,1
2 pessimistic environmental authority: θt+1,i = θt+1,2

(12)

subject to the restrictions in Eq. (11).

4 θ is also known as the breakdown down point in H∞.
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2.3 Switching Between Regimes Using a Markov Chain

I now introduce the Markov chain as the mechanism through which the environmental
authority can switch from one regime to the other. In its general form, the Markov
chain captures that θt+1,i can switch between θt+1,1 and θt+1,2. I follow Zampolli
(2006) and assume that:

Assumption 3 The regime rt+1 follows a first-order Markov chain with transition
probabilities that are exogenous, time-invariant, and given by the following transition
matrix:

P =
(
1 − p p
q 1 − q

)
(13)

where p = Pr{rt+1 = j = 2 | rt = i = 1} is the probability to switch from regime
1 to regime 2; and q = Pr{rt+1 = j = 1 | rt = i = 2} is the probability to switch
from regime 2 to regime 1.

A Markov chain is an appropriate choice to model the environmental authority’s
time-varying mistrust in its own model because: (i) changes in trust are not predicted
with total certainty; (ii) it allows the approximation of more general non-linear time-
varying processes; (iii) the degree of mistrust may be dependent on the current state of
the environment and the economy; and (iv) changes in trust are not tied to a particular
parameter.

Assumption 4 The next regime rt+1 is revealed at the end of the period t after policy
action has been decided.

This assumption implies that when the environmental authority chooses the policy
rule, rt is known but rt+1 is still uncertain. Hence, the uncertainty is about where the
system will be at time t + 1, t + 2 and so forth. The transition probabilities (p, q)

represent the uncertainty about the type of regime in the next period, after the emissions
shock has been observed by the environmental authority. Thus, the probabilities in P
are pre-switch. The information set of the environmental authority at time t is the
following:

It = [P, c, g, β, α, x̄, φ, θt+1,i , rt , i] (14)

2.3.1 Switching to Permanent Regimes

In its general form the Markov chain represents the possibility to alternating between
regimes. However, the transition probabilities can be set up in such a way that once
the environmental authority has switched to a different regime, the new regime is now
permanent. That is, there is a one-time switch, but not alternating, between regimes.
This is accomplished by setting q or p equal to zero in the relevant regime. Two
interesting cases emerge from this type of set up.

In the first case, pessimism may only experience a one-time permanent decrease
in the future. Assume the environmental authority is in the pessimistic regime 2, and
set p = 0 and q > 0. In this case the environmental authority’s degree of pessimism
may go down next period (with probability of q). Once in the optimistic regime,
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the environmental authority’s degree of optimism remains the same. In this set up,
observed events or scientific knowledge may give the environmental authority greater
confidence about the accuracy of its own estimated model.

In the second case, pessimism may only experience a one-time permanent increase
in the future. Assume the environmental authority is in the optimistic regime 1, and
set q = 0 and p > 0. In this case the environmental authority’s degree of pessimism
may go up next period (with probability of p). Once in the pessimistic regime, the
environmental authority’s degree of pessimism remains the same.

2.4 Time-Varying Mistrust Problem of the Environmental Authority

In the new problem, the environmental authority attempts to minimize the expected
discounted infinite sum of pollution damages and abatement costs usingMt,i while the
evil nature tries to maximize it using ωt+1,i . Incorporating Eq. (10), using − 1

2θt+1,i
as its Lagrange multiplier, and following Zampolli (2006), the new optimal problem
of the policy maker can be expressed as solving the following pair of intertwined
Bellman equations5:

ν(St,i , i) =min
Mt,i

max
ωt+1,i

{(
cSt,i + g

2
S2t,i

)
−

(
φ + 1

2
βM2

t,i

)
− 1

2
θt+1,iω

2
t+1,i

+ δ

2∑
j=1

Pi j Et [ν(St+1, j , j)]
}

i, j = 1, 2

(15)

subject to Eq. (8) in each regime. The current regime represented by i = 1, 2 follows
the Markov process of Eq. (13) and the values of θt+1,i satisfy the restrictions of Eq.
(11).Moreover, ν(St,i , i) represents the continuation value of the dynamic programing
problem as function of the pollution stock and the current regime. The regime indicator
i = 1, 2 implies that the solution produces an optimal steady-state value of Mi , ωi ,
Si , and ν(Si , i) for each regime.

The next step is to transform the environmental authority’s problem into its space-
state representation to solve it as a linear quadratic problem (LQP). Thus, I define the
following vectors and matrix:

M̃t,i =
(

Mt,i

ωt+1,i

)
B̃ = (

β 1
)

Λ̃i =
(−β 0

0 −θt+1,i

)
i = 1, 2. (16)

Next, I substitute M̃t,i , B̃ and Λ̃i into the problem given by Eqs. (15) and (8). Since
the Riccati equations for the traditional LQP emerges from the first-order conditions
alone and thefirst-order conditions for extremizing a quadratic criterion functionmatch
those for and ordinary (non-robust) LQP with two control (see Hansen and Sargent

5 In the case of i, j = 1 . . . N , the policy maker problem is expressed as solving N intertwined Bellman
equations. When a regime is absorbing the Bellman equation and solution for that regime (presented in the
next section) is unrelated to the other regime.
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2008), then the problem consists of finding the controls (M̃t,i )
∞
t=0 in order to extremize

current and discounted expected losses.6 Thus, the problem of the environmental
authority is given by the following pair of intertwined Bellman equations:

ν(St,i , i) = ext
M̃t,i

{(
cSt,i + g

2
S2t,i

)
− φ + 1

2
M̃′

t,i
˜ΛiM̃t,i

+ δ

2∑
j=1

Pi, j Et [ν(St+1, j , j)]
}

i, j = 1, 2

(17)

subject to Eqs. (11), (13), and the new pollution evolution equation7:

St+1, j = αSt,i + B̃M̃t,i + x̄ + εt+1 i, j = 1, 2 (18)

3 Analytical Solution

Solving the extremization problem of the previous section is equivalent to finding a
contingent policy rule M̃t,i . The solution is given by the following feedback rule:

M̃t,i = Fi St,i + fi where Fi =
(
FM,i

Fω,i

)
fi =

(
fM,i

fω,i

)
i = 1, 2

Following Kendrick (1981), Zampolli (2006), and Hansen and Sargent (2008);
substituting the matrices and vectors in the problem and after extensive algebra I find
that the feedback matrices take the following form:

Fi = �i

⎛
⎝δ

2∑
j=1

Pi, j B̃′V jα

⎞
⎠ (19)

fi = �i

⎛
⎝δ

2∑
j=1

Pi, j B̃′[V j x̄ + 
 j ]
⎞
⎠ (20)

where�i =
(∑2

j=1 Pi, j [δB̃′V j B̃+ ˜Λ
′
j ]

)−1
and i, j = 1, 2.Vi and ρi are the solution

to the Riccati matrices and vectors, respectively. Similarly, I obtain the following
solution to the Riccati matrices and vector:

Vi = g +
2∑
j=1

Pi, jδα
2V j −

⎛
⎝ 2∑

j=1

Pi, jδB̃′V jα

⎞
⎠ �i�i (21)

6 In this case, extremizing (ext) refers to minimizing the welfare losses with respect to emissions taxes,
Mt,i , and maximizing it with respect to ωt+1,i .
7 The constraint given by Eq. (10) is already incorporated in the criterion function.
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i = c − �i�i

2∑
j=1

Pi, jδB̃′[V j x̄ + 
 j ] +
2∑
j=1

Pi, jδα[V j x̄ + 
 j ] (22)

where �i = ∑2
j=1 Pi, jδαV j B̃ and i, j = 1, 2. Equations (19) and (20) show that the

solutions of Eqs. (21) and (22) produce one Riccati matrix and vector for each regime
(V1, V2, 
1, 
2). The solutions to the Riccati matrix and vector are interrelated across
regimes. That is, the solution to V1 depends on V2 and vice versa. The solution to 
1
depends on V1, V2 and 
2. Similarly, the solution to 
2 depends on V1, V2 and 
1.

The set of Eqs. in (21) and (22) are examples of discrete Lyapunov equations. There
are different methods to solve this type of equations. For the numerical solution, I
choose a simple iteration on the Riccati matrices and vectors because of the small
dimensionality of the model. First, I iterate jointly on V1 and V2 until convergence is
achieved for each of them. Second, I use the solution to V1 and V2 from the previous
step and iterate jointly on 
1 and 
2 until convergence is achieved. The solution to
the Riccati equation for each regime Vi places a weight on the Riccati equation of the
next period regime V j equal to the probability of transiting to that regime Pi, j .

The optimal steady state solution for the pollution stock is obtained by substituting
the right hand side of the feedback rule into the pollution stock dynamics equation in
steady state and solving for Si .

Si = (I − α − B̃Fi )
−1(B̃ fi + x̄) i = 1, 2 (23)

The optimal steady state solution for the vector containing the emissions tax and
the worst-case shock is obtained by substituting Eq. (23) into the feedback rule.

M̃i = (I − α − B̃Fi )
−1 [

(B̃ fi + x̄)Fi
] + fi i = 1, 2 (24)

The small dimensionality of the model allows me to simplify Eq. (24) to obtain the
robust emissions tax rule for each regime:

Mi = FM,i ( fω,i + x̄) + fM,i (1 − α − Fω,i )

1 − α − βFM,i − Fω,i
i = 1, 2 (25)

The main goal of environmental authority is to obtain the robust emissions tax pol-
icy given by Eq. (25). The transition probabilities and the degree of model mistrust
in both regimes are included in the feedback coefficients FM,i , Fω,i , fM,i and fω,i . If
the environmental authority is optimistic about its estimated model, then the relevant
emissions tax policy corresponds to Eq. (25) when i = 1. If the environmental author-
ity is pessimistic about its estimated model, then the relevant emissions tax policy
corresponds to Eq. (25) when i = 2.

The environmental authority’s steady state welfare losses for each regime are given
by the following expression:

Ji =
(

1

1 − δ

)(
cSi + g

2
S2i − φ + 1

2
M̃′

i
˜ΛiM̃i

)
i = 1, 2 (26)

where Si and M̃i are given by Eqs. (23) and (24), respectively.
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3.1 Overall and Regime-Specific Model Mistrust

An important difference between the model presented in this paper and the traditional
robust control model is that the degree of model uncertainty is tied to the free parame-
ters θi and the transition probabilities. In particular, the transition probabilities act as
bounds on θi and limit the ability of the evil nature to hurt the environmental author-
ity. Therefore, to better understand the responses of the environmental authority to
changes in the different parameters, it is useful to differentiate between two types of
uncertainty: regime-specific and overall.

Definition 1 Regime-specific model mistrust is the degree of uncertainty that the
environmental authority has in its estimated model of the pollution stock in a specific
regime and it is given by θi , where lower values of θi represent higher levels of model
mistrust.

The regime-specific uncertainty in regime 1 is given by θ1 and the regime-specific
uncertainty in regime 2 is given by θ2. Thus, the regime-specific uncertainty is equiv-
alent to the model uncertainty considered in the traditional robust control problems.
In this model, the degree of regime-specific model mistrust is higher in regime 2 than
in regime 1, i.e. θ1 > θ2.

Definition 2 Overall model uncertainty, denoted by π , is the degree of trust that the
environmental authority has in its time-varying model (shown at the end of Sect.
2.4) that includes the regime specific uncertainties and the transition probabilities in
the Markov chain. Higher values of π represent a time-varying model that is closer
to the non-robust original model and consequently a lower degree of overall model
uncertainty.

π = π(θi+
, p

−
, q
+
) i = 1, 2. (27)

The signs below the variables in the right-hand side of Eq. (27) indicate their
individual effect on the value ofπ .Higher values of θi decrease the degree of pessimism
in a given regime i and consequently decrease the total amount of pessimism in the
time-varying model, which is represented by a higher π . Higher values of p increase
the total amount of pessimism in the time-varying model and consequently lower π

because: (i) if the current regime is 1, the probability to switch to the pessimistic regime
is higher; and (ii) if the current regime is 2, the expected duration of the optimistic
regime 1 (given by p−1) is lower. Higher values of q decrease the total amount of
pessimism in the time-varying model and consequently increase π because: (i) if the
current regime is 1, the expected duration of the pessimistic regime 2 (given by q−1)
is lower; and (ii) if the current regime is 2, the probability to switch to the optimistic
regime is higher.

The parameters p, q and θt+1,i that directly determine the degree of overall model
uncertainty π are exogenous to the model. By definition p ∈ (0, 1) and q ∈ (0, 1).
Thus, at the beginning of Sect. 5 and in Appendix 1, I discuss in detail how to choose
values of θt+1,i for different combinations of (p, q) to obtain reasonable values of π .
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Table 1 Parameter values
Loss function Pollution dynamics

δ = 0.97 β = −0.02045

φ = 1759.5 α = 0.995

g = 0.000688 x∗ = 6.00

c = −.55 S0 = 800

β = −0.02045

4 Data

The data for this study are taken from Hoel and Karp (2001) for the case of global
warming. This allows me to compare the results to those reported in the previous
literature. Abatement costs aremeasured in billions of 1990 dollars. The initial stock of
pollution is 800 billion tons for 1990. Table 1 presents the parameter values according
to the definitions of the variables in the present study.

The values for g and c correspond to conservative estimates of the pollution damage
function. The values for b, a and f correspond to a moderate estimate of 1% loss of
Gross World Product for a 50% reduction in emissions. The discount factor is set to
δ = 0.97.8

5 Numerical Results

In this section, I solve the policy maker problem using the parameter values in Table
1 and the combinations of θt+1,1 and θt+1,2 obtained from the procedure detailed in
Appendix 1. I analyze the steady state results for emissions taxes, CO2 stocks and
welfare losses for different combinations of p, q and π . I remove the time subscripts
from all the variables but leave the regime indicators, i.e. θt+1,1 = θ1; θt+1,2 = θ2;
ωt+1,1 = ω1; and ωt+1,2 = ω2.

I use two degrees of overall model uncertainty π = 10, 20%. The value of π

represents the probability that the environmental authority can pick the correct model
between two competing models of the pollution stock dynamics. Lower values of
π indicate a diminished ability of the environmental authority to pick the correct
model and consequently higher overall model uncertainty. Appendix 1 details the
procedure to obtain π = 10, 20%. This procedure is just one of the many ways to find
reasonable values of θ1 and θ2. For example, Gonzalez (2008) and Athanassoglou and
Xepapadeas (2012) choose values of θ that generate small and reasonable deviations
from a benchmark model. The most important consideration is to choose values of
θ1 and θ2 that do not produces extreme values of the emissions taxes and pollution
stocks. Therefore, the combinations of θ1 and θ2 I use have the following features: (i)
Eq. (11) is satisfied; (ii) θ1 is large enough that the results in regime 1 are close to

8 This discount factor corresponds to a continuous discount rate of 3% (δ = 0.97 = e−0.03), which is
commonly used in policy analysis. For example, the EPA (2010) recommends the use of 2–3% annual
discount rates. A different discount factor will affect the level of the steady state solutions but the main
findings of this paper will not be affected.
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Table 2 Emissions taxes and CO2 stocks by regime for selected pairs of (p, q) and π = 10, 20%

p q Taxes ($/CO2 ton) Stocks (CO2 billion tons)

π = 10% π = 20% π = 10% π = 20%

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

0 0 7.24 8.68 7.20 8.03 1177.2 1252.4 1175.6 1218.7

0 0.1 7.28 8.56 7.20 7.96 1179.7 1253.3 1175.6 1219.0

0 0.25 7.54 8.56 7.35 7.96 1193.0 1253.3 1183.2 1219.0

0 0.5 7.94 8.60 7.58 7.98 1214.0 1253.0 1195.5 1218.9

0 0.75 8.32 8.64 7.81 8.00 1233.8 1252.7 1207.3 1218.8

0 1 8.68 8.68 8.03 8.03 1252.4 1252.4 1218.7 1218.7

0.25 0.1 7.42 8.61 7.29 8.00 1182.0 1251.2 1177.1 1218.6

0.25 0.25 7.71 8.60 7.46 7.99 1199.4 1251.6 1187.1 1218.6

0.25 0.5 8.19 8.62 7.74 8.00 1226.3 1251.4 1203.2 1218.6

0.25 0.75 8.65 8.65 8.02 8.02 1251.0 1251.0 1218.5 1218.5

0.25 1 9.08 8.68 8.30 8.05 1274.0 1250.7 1233.0 1218.3

0.5 0.1 7.54 8.61 7.36 8.01 1187.6 1250.3 1180.4 1218.5

0.5 0.25 7.96 8.61 7.61 8.01 1212.5 1250.4 1195.2 1218.5

0.5 0.5 8.63 8.63 8.02 8.02 1250.2 1250.2 1218.4 1218.4

0.5 0.75 9.25 8.67 8.42 8.05 1284.0 1250.0 1240.1 1218.2

0.5 1 9.82 8.71 8.80 8.08 1314.5 1249.7 1260.4 1218.1

0.75 0.1 7.83 8.60 7.54 8.01 1203.8 1249.2 1190.1 1218.2

0.75 0.25 8.61 8.61 8.02 8.02 1249.1 1249.1 1218.1 1218.1

0.75 0.5 9.75 8.65 8.76 8.05 1312.9 1248.8 1259.9 1217.9

0.75 0.75 10.72 8.70 9.44 8.09 1366.0 1248.5 1297.0 1217.7

0.75 1 11.56 8.75 10.06 8.13 1411.2 1248.2 1330.3 1217.5

those from the deterministic model without robustness, (iii) increases of θ2 produce
very small changes in the results of regime 2 and (iv) θ1 >> θ2.

The results are generated as follows. I start with p = q = 0.1 and a given combi-
nation θ1 and θ2 that satisfy the aforementioned conditions and produce π = 10%.
Next, I change the combination of (p, q) and I adjust θ1 to keep π at 10%. This
adjustment of θ1 after changing (p, q) is necessary to keep π constant because, as
discussed in Sect. 3.1 and shown in Eq. (27), changes in the transition probabilities
affect π . I continue this procedure for all combinations of (p, q) between (0, 0) and
(1, 1). To obtain the results for π = 20%, I use the same procedure but adjust θ1 to
produce π = 20%.9

Table 2 shows the steady state emissions taxes and the CO2 concentrations in the
optimistic regime 1 and in the pessimistic regime 2 for selected values of p, q andπ . To
keep the exposition succinct, I show the results for the worst-case shock in Appendix

9 The choice of θ1 as adjustment is arbitrary but does not affect any of the conclusions in the paper. Similar
results for the same π are obtained if θ2 is adjusted and θ1 is kept constant or if both of θ1 and θ2 are
adjusted. Keeping one θ constant across all solutions is done for computational ease.
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2. The first two columns present different combinations of p and q. Columns three to
six contain the steady state emissions taxes in each regime (i = 1, 2) for π = 10%
and π = 20%. Columns seven to ten show steady state CO2 concentrations in each
regime for π = 10% and π = 20%.

Proposition 1 Regardless of the current regime, increases in the overall model mis-
trust (denoted by lower values of π ) lead to higher emissions taxes for any given
combination of (p, q).

This aggressive use of emissions taxes in the presence of higher model uncertainty
is consistent with the Precautionary Principle and with previous research on robust
control and model uncertainty (Funke and Paetz 2011; Gonzalez 2008; Hansen and
Sargent 2008; among others).

The effects of changes only in p or q without compensating changes in θi to keep
π constant are relatively straight forward and are shown in Appendix 3. In the rest of
the paper, I concentrate the analysis to the effect of (p, q) for a constant value of π

by adjusting θ1 as mentioned above. This allows me to isolate the effects due only to
different transition probabilities from those of higher overall model uncertainty.

5.1 Responses to p and q in the Optimistic Regime 1

5.1.1 Emissions Taxes Response

To better understand the response of emissions taxes to changes in the transition
probabilities, it is useful to understand the choices faced by the environmental authority
in regime 1 assuming these probabilities were unknown to the environmental authority.
In the optimistic regime 1, the environmental authority faces the possibility to switch to
the pessimistic regime 2 where it will have to counteract a higher worst-case emission
shock. If the environmental authority increases taxes in regime1, preempting a possible
switch to regime 2, abatement costs increase in the current period but the pollution
stock and damages decrease in the next period. If the environmental authority moves
to the pessimistic regime 2 in the next period then, the tax increase and the higher
abatement costs of the previous period were a good idea because the evil nature would
be less able to inflict damage through ω2. However, if the environmental authority
remains in the optimistic regime 1 in the next period, then the higher emissions taxes
of the previous period were not a good idea because too much abatement has taken
place. Another option for the environmental authority is to ignore the possibility to
switch to regime 2. In this case, if the environmental authority switches to regime 2
in the next period, then the evil nature can inflict substantial damage.

When the transition probabilities are known to the policy maker these trade offs
will include the actual values of the transition probability (p), the expected duration
of the pessimistic regime (q−1) and the severity of the worst-case shock in the pes-
simistic regime 2 (ω2). Figure 1 plots the contour lines for emissions taxes and CO2
concentrations in regime 1 and 2 for π = 10% and complements the information in
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Fig. 1 Regime 1 and 2 emissions taxes and CO2 concentrations for π = 10%

Table 2.10 The results for regime 1 and 2 are presented in the first and second column,
respectively. Emissions taxes and CO2 concentrations are shown in the top and bottom
row, respectively. 11

Table 2 and Fig. 1 show that the lowest emissions taxes take place when p = q = 0.
Assuming the environmental authority is initially optimistic p = q = 0 implies that
there is just one optimistic regime.

Proposition 2 When the environmental authority is optimistic about its own model,
introducing the possibility to switch to a pessimistic regime increases emissions taxes,
even if this transition probability (given by p) is small.

Proposition 3 In general, higher values of p and q lead to higher emission taxes in
the optimistic regime.

Changes in p produce two counteracting effects. First, increases in p make the
overall model more pessimistic which tends to increase emissions taxes. Second, to
keep the model uncertainty unchanged the worst-case shock in the pessimistic regime

10 The contour graphs for π = 20% follow the same pattern as those in Fig. 1 for the respective variable.
These graphs can be obtained from the author upon request.
11 Overall model uncertainty is constant within each figure and between the rows of the table.
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has to decrease. The numerical results in Fig. 1 and Table 2 indicate that the first effect
dominates and increases in p lead to higher emissions taxes. Emissions taxes are more
sensitive to changes in p as p → 1. For p > 0.9 emissions taxes respond for the most
part to changes in p and are barely affected by changes in q. Thus, for large values of
p the environmental authority’s main concern is to be prepared (with higher emissions
taxes) for a likely switch to the pessimistic regime 2.

Changes in q also produce two counteracting effects on emissions taxes. First,
higher values of q make the overall model less pessimistic because it implies a lower
expected duration of the pessimistic regime and this tends to decrease emissions taxes.
Second, to keep overall model uncertainty unchanged, the expected worst-case shock
in the pessimistic regime increaseswhich tends to increase emissions taxes. Thenumer-
ical results in Table 2 and Fig. 1 show that, in general, the second effect dominates
and emissions taxes increase with q. That is, for a constant level of model uncertainty
(π ), a decrease in the expected duration of the pessimistic regime (higher q) leads
to higher emissions taxes in the current optimistic regime because the environmental
authority is concerned that the evil nature would hit harder in case it switches to the
pessimistic regime. The only exception is for values of p close to one, in that case
emissions taxes have a negligible response to changes in q.

The largest emissions taxes take place when both p and q are large. This implies
that emissions taxes will be high when the probability to switch to the pessimistic
regime is high, the expected duration of the pessimistic regime is low but a large
worst-case shock awaits the environmental authority if it switches to the pessimistic
regime. A large worst-case shock can inflict significant damage to the environmental
authority even if the expected duration is low because of the long persistence of CO2
stocks.

5.1.2 CO2 Stocks Response

The steady state concentrations of CO2 in Table 2 and Fig. 1 are of limited use because
they include the worst-case shock from the fictitious evil nature the environmental
authority has created to obtain a robust emissions tax rule. Nevertheless, analyzing
steady state concentrations of CO2 helps to: (i) check on the validity of the emissions
tax policy and the overall model, and (ii) explain the environmental authority’s welfare
losses.

CO2 stocks in the optimistic regime 1 follow a similar pattern as the emissions
taxes with respect to changes in the transition probabilities and the degree of model
uncertainty. At first sight, this result seems counterintuitive because taxes and stocks
should move in opposite directions. In the robust control two-player, zero-sum game,
the environmental authority will increase taxes when faced with a higher worst-case
shock. However, this is not enough to completely offset the effect of the worst-case
emission shock on the pollution stock because higher emissions taxes imply higher
abatement costs and losses. Consequently, pollution stocks will: (i) increase despite
higher emissions taxes and (ii) follow a similar pattern as emissions taxes.
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5.2 Responses to p and q in the Pessimistic Regime 2

5.2.1 Emissions Taxes Response

To better understand the response of emissions taxes to changes in the transition
probabilities in regime 2, it is useful to understand the choices and trade offs of the
environmental authority assuming these probabilities are unknown to the environmen-
tal authority. In regime 2, the environmental authority faces the possibility to switch to
the optimistic regime 1, where it will have to counteract a lower worst-case emission
shock. If the environmental authority reduces current emissions taxes, anticipating a
possible switch to the optimistic regime, then abatement costs are reduced this period
but at the expense of higher pollution stocks and damages in the next period. Lower
emissions taxes are a good idea if the environmental authority switches to the optimistic
regime because it did not incur in excessive abatement. However, if the environmental
authority remains in the pessimistic regime in the next period, the evil nature is be able
to inflict higher damage. Another option for the environmental authority is to ignore
the possibility of switching to regime 1 and set emissions taxes assuming that regime
2 is permanent. In this case, if the environmental authority switches to regime 1 in the
next period emissions taxes will be high and too much abatement will take place.

Table 2 and Fig. 1 show the numerical solutions to these trade offs in regime 2
assuming the transition probabilities are known.

Proposition 4 Emissions taxes in regime 2 are mostly insensitive to changes in either
p or q.

This result suggests that once the environmental authority is pessimistic, most of
the effect of the transition probabilities has already been incorporated in the robust
emissions tax policy.A likely explanation is that themain concern of the environmental
authority, as it faces the worst-case emission shock in the pessimistic regime, is to keep
emissions low because of the long persistence of CO2.

Changes in p produce two counteracting effects. First, increases in p imply a
lower expected duration of the optimistic regime making the overall model more pes-
simisticwhich tends to increase emissions taxes. Second, to keep themodel uncertainty
unchanged the worst-case shock in the pessimistic regime has to decrease. The numer-
ical results in Fig. 1 and Table 2 indicate that for the most part the first effect slightly
dominates. Thus, higher values of p produce small increases in emissions taxes.

Higher values of q have two contradictory effects. First, they tend to decrease
emission taxes because it implies a higher probability to switch to the optimistic
regime. Second, to keep overall model uncertainty constant, the worst-case emission
shock in the pessimistic regime has to increase which tends to increase emission taxes.
Table 2 and Fig. 1 show that for most values of q (particularly for large values of p
and q) the second effect slightly dominates and consequently higher values of q lead
to small increases in emissions taxes. Emission taxes are the lowest for q > 0 when
p = 0. That is, emissions taxes in the current pessimistic regime will be lower, for
any given q > 0, if the possible reduction in the fear of model misspecification is
permanent.
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5.2.2 CO2 Stocks Response

As explained in Sect. 5.1.2, the interest in the pollution stocks is mostly to check the
validity of the results and its role in explaining the environmental authority’s welfare
losses. In the pessimistic regime 2, the response of CO2 pollution stocks to changes
in p, q and π follow the same pattern as the worst-case shock (shown in Appendix 2).
The main reason for this type of response is that (as mentioned above) emissions taxes
in regime 2 are mostly insensitive to changes in p and q. Thus, CO2 stocks will move
with the changes in the worst-case emissions shock. An increase in p generates higher
overall model uncertainty, leading to lower ω2 (to keep overall model constant) and
consequently to lowerCO2 stocks. In addition, asmentioned above, changes inq have a
small effect on emissions taxes, theworst-case shock, and consequently onCO2 stocks.

5.3 Emissions Taxes Across Regimes

The results in Table 2 and Fig. 1 also allow me to compare emissions taxes and stocks
across regimes for a given level of overall model uncertainty. Using Eq. (13), the
feedback matrices for regime 1 can be expressed as follows:

F1 = Ω−1
1 Ψ α

[
(1 − p)V1 + pV2

]
(28)

f1 = Ω−1
1 Ψ

[
(1 − p)[V1 x̄ + 
1] + p[V2 x̄ + 
2]

]
(29)

where Ω1 = (1 − p)[B̃′V1B̃ + ˜Λ
′
1] + p[B̃′V2B̃ + ˜Λ

′
2] and Ψ = δB̃′. The feedback

matrices for regime 2 take the following form:

F2 = Ω−1
2 Ψ α

[
qV1 + (1 − q)V2

]
(30)

f2 = Ω−1
2 Ψ

[
q[V1 x̄ + 
1] + (1 − q)[V2 x̄ + 
2]

]
(31)

where Ω2 = q
[
B̃′V1B̃+ ˜Λ

′
1
] + (1− q)

[
B̃′V2B̃+ ˜Λ

′
2
]
. Equations (28) to (31) show

that when p > (1− q) the terms V2, ˜Λ2 and 
2 have a higher weight on the feedback
matrices of regime 1 (F1, f1) than on those of regime 2 (F2, f2). This leads to higher
emissions taxes in regime 1 than in regime 2. Similarly, when p < (1 − q) the terms
V2, ˜Λ2 and 
2 have a higher weight on the feedback matrices of regime 2 (F2, f2)
than on those of regime 1 (F1, f1), leading to higher emissions taxes in regime 2 than
in regime 1. The terms V2, ˜Λ2, and 
2 produce higher emissions taxes because they
contain θ2, allowing the evil nature to inflict more damage. Finally, emissions taxes
are the same in both regimes when p = (1− q) because V2, ˜Λ2 and 
2 have the same
weight in each regime.

5.4 Environmental Authority’s Welfare Losses

In this subsection, I analyze the environmental authority’s losses in steady state, given
by Eq. (26), for different values of p, q and π . The objective of the environmental
authority is to minimize the losses, and they are the lowest when p = q = 0 in regime
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Table 3 Environmental
authority’s normalized losses
for π = 10, 20%

p q π = 10% π = 20%

i = 1 i = 2 i=1 i = 2

0 0 54 719 41 407

0 0.1 74 775 41 439

0 0.25 184 775 103 439

0 0.5 366 772 205 438

0 0.75 544 769 306 437

0 1 719 767 407 436

0.25 0.1 91 754 52 435

0.25 0.25 233 758 132 435

0.25 0.5 464 756 264 435

0.25 0.75 690 752 395 434

0.25 1 911 749 525 433

0.5 0.1 128 745 73 434

0.5 0.25 326 746 187 434

0.5 0.5 651 744 375 433

0.5 0.75 968 742 561 432

0.5 1 1276 739 745 431

0.75 0.1 214 734 123 431

0.75 0.25 550 733 315 431

0.75 0.5 1109 730 639 428

0.75 0.75 1649 727 961 427

0.75 1 2162 725 1279 425

1 (for a given value of π ) because there is only one optimistic regime. Losses increase
with higher CO2 stocks (and consequently with larger worst case emission shocks)
because the pollution damage function is quadratic on CO2 stocks and these cannot
take on negative values. Similarly, losses increase with higher emissions taxes because
the abatement cost function is quadratic in emissions taxes and these are positive in
all the results.

To facilitate the analysis and discussion, I use the normalized losses (Jni ) defined
as the Euclidean distance between the actual losses (Ji ) and those from the solution
to the original problem without model uncertainty (J0) given by Eqs. (6) and (7).

Jni =
√

(Ji − J0)2 i = 1, 2 (32)

Equation (32) indicates that larger values of Jni represent higher welfare losses
for the environmental authority. Table 3 shows the normalized losses Jni for selected
values of p, q and π = 10, 20%.

The first two columns show selected combinations of the transition probabilities
(p, q). Columns three to four presents the normalized losses in regime 1 and 2 (respec-
tively) for π = 10%. Columns five and six show the normalized losses in regime 1
and 2 (respectively) for π = 20%. In the previous subsection, I showed that emissions
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Fig. 2 Regime 1 and 2 normalized environmental authority’s losses for π = 10%

taxes and CO2 stocks increase with higher overall model mistrust. The results in Table
3 show that increases in overall model mistrust (denoted by a lower π ) also produce
higher welfare losses.

Figure 2 plots the contour lines of the environmental authority’s normalized losses
in regime 1 and 2 for π = 10%.

Table 3 and Fig. 2 shows that in the optimistic regime 1, the environmental author-
ity’s losses increase with higher values of p and q. As mentioned before, increases in
p or q lead to higher emissions taxes, worst-case emission shocks, CO2 concentrations
and consequently higher losses.

In the pessimistic regime 2, the losses follow for the most part a similar pattern
(although not the same) as the CO2 concentrations in regime 2. The environmental
authority’s losses are mostly insensitive to changes in q when q > 0.1. However,
when q < 0.1, increases in q generate higher losses for the environmental authority.
An interesting pattern emerges in that the losses change from highly sensitive (vertical
response lines) when q < 0.1 to highly insensitive (horizontal response lines) when
q > 0.1. The response of the losses to changes in p is the opposite of the response to
changes in q. When q > 0.1 higher values of p produce lower the losses and when
q < 0.1 the losses are mostly unresponsive to change in p.

5.5 Pessimistic and Optimistic Errors

An environmental authority may find it difficult to obtain precise estimates of the
transition probabilities in theMarkov chain. This can be the result of a lack of previous
applicable experiences where the environmental authority has become more or less
mistrustful about its model. The environmental authority is more likely to define
intervals for p and q but the model can be solved only for point values of the transition
probabilities. In this subsection, I attempt to provide more guidance as to what type
of assumed transition probabilities are better for the environmental authority given
that objective point estimates are not readily available. I do this by analyzing if the
environmental authority is better off by over or under estimating the probability of
transiting to the pessimistic regime.
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Fig. 3 Losses for ( p̂, p) and q = 0.25, 0.5, 0.75

My approach follows, with some differences, the procedure outlined in Zampolli
(2006). First, I assume that the environmental authority is in the optimistic regime 1.
Second, I assume that the environmental authority does not know the true transition
probability p, but chooses a transition probability p̂. Third, I choose a fixed value
for q. Fourth, I obtain the losses using the emissions taxes associated with p̂ but the
values of θ1, w1 associated with p. I perform this exercise for all the pairs ( p̂, p).
By construction, for every true p, minimal losses occur when the chosen and true
probability to switch to the pessimistic regime are the same, i.e. p̂ = p. I divide the
losses for every p by the losses when ( p̂, p) = (0, 0) and denote these new losses as
Jp̂,p.

Figure 3 shows the losses Jp̂,p for all the pairs ( p̂, p) of chosen and true probabilities
of switching from the optimistic to the pessimistic regime for q = 0.25, 0.5, 0.75.

In each graph of Fig. 3, the losses Jp̂,p are zero at the main diagonal where p̂ = p.
As in the previous subsection, the losses computed in this subsection tend to increase
for higher values of q, because the worst-case shock increases to keep unchanged the
overall degree of model mistrust. The losses Jp̂,p are greater in the right side of the
main diagonal and they increase as the assumed and true values of p are farther apart.

To evaluate and characterize the optimal behavior of the environmental authority, I
define two types of errors: optimistic and pessimistic.

Definition 3 The optimistic error is the sum of the welfare losses when the environ-
mental authority underestimates the probability of switching to the pessimistic regime,
i.e. p̂ < p.

Optimistic error =
∑
p̂<p

Jp̂,p for a given interval of p̂ (33)

Definition 4 Thepessimistic error is the sumofwelfare losseswhen the environmental
authority overestimates the probability of switching to the pessimistic regime, i.e.
p̂ > p.

Pessimistic error =
∑
p̂>p

Jp̂,p for a given interval of p̂ (34)

In Fig. 3, the pessimistic error is the volume under the plane to the left of the main
diagonal for a given interval of p̂. Similarly, the optimistic error is the volume under
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Table 4 Optimistic minus pessimistic error for selected values of p̂ and q

q p̂ ∈ (0, 0.1) p̂ ∈ (0.1, 0.3) p̂ ∈ (0.3, 0.5) p̂ ∈ (0.5, 0.7) p̂ ∈ (0.7, 0.9)

0.1 424.7 0.8 1.6 3.6 17.9

0.25 1145.3 2.5 4.7 10.5 48.1

0.5 1637.1 4.1 7.5 16.8 71.3

0.75 1981.8 6.4 11.6 25.1 96.3

1 2105.8 7.8 14.1 29.9 108.5

the plane to the right of the main diagonal for a given interval of p̂. Figure 3 suggests
that the optimistic error is greater than the pessimistic error because the losses are
higher in the right side of the main diagonal. I confirm this result by computing and
comparing the optimistic and pessimistic errors for all the intervals of (p, p̂) and
different values of q. Table 4 displays the optimistic minus the pessimistic error for
selected values of (p, p̂) and q.12

The positive values in every cell of Table 4 indicate that the optimistic error is
greater than the pessimistic error for the corresponding interval of p̂. For example,
in the fourth column of Table 4, when p̂ ∈ (0.3, 0.5) the environmental authority
obtains higher welfare (i.e. lower losses) by assuming p̂ = 0.5 (the highest transition
probability in the range) for any value of q.

Proposition 5 In the absence of a unique transition probability, the environmental
authority obtains higher welfare by assuming the highest probability of switching to
the pessimistic regime in a given range of likely transition probabilities.

6 Conclusions

In this paper, I develop a model to analyze the regulation of a stock pollutant where the
trust that the environmental authority has on its own estimated model of the pollution
stock dynamics can vary through time. The environmental authoritymay becomemore
or less pessimistic about the accuracy of its estimated model as a result of changes
in key environmental or economic variables. I consider two regimes that differ only
in the degree of model mistrust: optimistic and pessimistic. In the optimistic model,
the environmental authority has more trust in the accuracy of its estimated model to
represent the true dynamics of the pollution stock than in the pessimistic regime. I
use robust control in both regimes to deal with model mistrust. However, the degree
of robustness differs in each regime. I introduce a Markov chain as the mechanism
through which the environmental authority can switch between the optimistic and the
pessimistic regimes.

12 Zampolli’s (2006) analysis of the losses differs in that he computes the sum of the losses from a specific
value of p in a given range of p̂. Themain result does not change under this methodology: the environmental
authority always obtains lower losses by choosing the highest transition probability to the pessimistic regime
in the p̂ range. The step-by-step procedure, matlab implementation and full set of numerical results can be
obtained from the author upon request.

123



Pollution Control with Time-Varying Model… 565

The main finding is that introducing the possibility of switching to a regime with a
different degree of model uncertainty changes emissions taxes in the current regime.
This result holds even for a small probability to switch to the other regime or a short
expected duration of the other regime. In general, if the environmental authority
believes that there is a possibility to switch to a regime with higher model uncer-
tainty, then an active approach compatible with the Precautionary Principle is optimal
by increasing emissions taxes in the current regime and overestimating the probability
to switch to such regime. Alternatively, emissions taxes in the current regime decrease
when the environmental authority believes that it is possible to switch to a regime
with lower model uncertainty. In this sense, the direction of the change in current
emissions taxes will depend on what the environmental authority believes can happen
to the current degree of model mistrust.

Several extensions to thismodel can be incorporated in future research. Considering
a higher number of regimes and adjusting the transition probabilities to consider the
case where the model uncertainty decreases through time is an interesting path for
future work. Moreover, considering three regimes would introduce a middle regime
where the degree of overall model uncertainty can increase or decrease in the next
period. More complex models, such as Anderson et al. (2014), can incorporate the
main elements of the framework presented in this paper to account for time-varying
uncertainty aversion or analyze if robust control rules can be sensitive to the economic
cycle. In addition, modifying the current model and solution to include endogenous
transition probabilities or structured regime changes are interesting, albeit challenging,
paths for future work. Finally, to gain further insight, future research can compare the
emissions tax rules in this paper to those under differentmodel uncertainty assumptions
and policy instruments (e.g. quotas, command and control policies).

Appendix 1: Choice of θ1 and θ2

As mentioned in the main text, the environmental authority’s degree of mistrust about
its ownmodel has to come from outside the model in each regime. In Eq. (11) I narrow
down the possible values of θt+1,1 and θt+1,2. The goal of this Appendix is to satisfy
Eq. (11) by simultaneously finding numerical values of θt+1,1 and θt+1,2 that represent
an environmental authority that is optimistic about its estimated model of pollution
concentration dynamics in regime 1 and pessimistic in regime 2.

I follow with some differences the procedure outlined in Gonzalez and Rodriguez
(2013) that adapts Hansen and Sargent’s (2008) detection error probability approach
to include Markov switching and simultaneously choose θt+1,1 and θt+1,2.13 I con-
sider two models: the original non-robust model without model uncertainty (given by
Eqs. 6–7) and the time-varying model uncertainty model at the end of Sect. 2.4. The
procedure consists of finding values of θt+1,1 and θt+1,2 for which it is statistically
difficult to distinguish between the original and the time-varying model in regime 1
and that also satisfy Eq. (11).

13 The Matlab implementation can be obtained form the author upon request.
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First, I obtain the solution for the pollution stock in the original non-robust model:

S̈t+1 = k̈ S̈t + Ḧ + ε̈t+1 (35)

where k̈ = (α+β F̈) and Ḧ = β f̈ + x̄ . Similarly, I obtain the solution for the pollution
stock in the time-varying model:

St+1, j = ki St,i + Hi + εt+1 i, j = 1, 2 (36)

where ki = (α + B̃Fi ) and Hi = (B̃ fi + x̄). Next, I define the time-varying model in
regime 1 as follows:

S̆t = (1 − p)(k1St,1 + H1) + p(k2St,2 + H2) + ε̆t+1 (37)

The worst-case shock assuming that the pollution stock was generated by the orig-
inal model is given by:

ẅ = Fw S̈t + fw (38)

The worst-case shock assuming that the pollution stock was generated by the time-
varying model is then:

w̆ = Fw S̆t + fw (39)

The log-likelihood ratio under the original model is then:

r̈ = 1

T

T−1∑
t=0

0.5{ẅt+1ẅt+1 − ẅt+1ε̈t+1} (40)

The log-likelihood ratio under the time-varying model is then:

r̆ = 1

T

T−1∑
t=0

0.5{w̆t+1w̆t+1 + w̆t+1ε̆t+1} (41)

I produce 200 random draws over ε̈t+1 and ε̆t+1 and use Eqns. (35) and (37) above
to simulate 200 years (T = 200) of the pollution stock, which is roughly the amount
of recorded CO2 emissions data. Next, using Eqns. (38) and (41), I compute ẅ, w̆, r̈ ,
and r̆ .

I perform 1000 simulations of this procedure and obtain the frequency, over all the
1000 simulations, for which r̈ and r̆ are less than zero:

p̈r = f req(r̈ < 0) p̆r = f req(r̆ < 0) (42)

The error detection probability is then defined as follows:

prob(θ1, θ2, p, q) = 0.5{ p̈r + p̆r} (43)
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In this paper, I use the error detection probability as the measure of model uncer-
tainty and set π = prob(θ1, θ2, p, q). The environmental authority will pick the
correct model with probability of one when π = 0 and it is equally likely to pick
either model when π = 0.5. Therefore, when π → 0.5 overall time-varying model
uncertainty is small and consequently it is difficult for the environmental to distinguish
between the two models. When π → 0 the overall time-varying model uncertainty
is large and it is easy for the environmental authority to distinguish between the two
model. Following Hansen and Sargent (2008), I choose values of θt+1,1 and θt+1,2
associated with π of 0.1 and 0.2 because they correspond to commonly used confi-
dence intervals of 95 and 90%, respectively.

A drawback of the error detection probability algorithm in this context is that it does
not generate a unique set of values of θt+1,1 and θt+1,2 for each π . Therefore, in each
of the simulations, I include additional restrictions on the possible parameters of θi . In
particular, I select a combination of θ1 and θ2 for each pair (p, q) that satisfies Eq. (11)
and produces the desired value of π (0.1 or 0.2) for which: (i) θ1 is large enough that
the results in regime 1 are close to those of the original non-robust model, (ii) increases
of θ2 produce almost no changes in the results of regime 2 and (iii) θ1 >> θ2.

One last clarification is pertinent. I do not claim that the error detection probability
is the only measure of overall model uncertainty. Rather, I use the error detection
probability associated with the time-varying model along with a set of restrictions
outlined above to find values of (θ1, θ2) that generate reasonable levels of robustness.

Appendix 2: Worst-Case Shock Numerical Results

In thisAppendix, I present the solution for theworst-case shock. To keep the exposition
succinct I only show the contour graphs.

The two graphs in the first row of Fig. 4 show the worst-case shock (ω) for all the
different combinations of the transition probabilities for regime 1 and regime 2 when
π = 10%. The second row show the results when π = 20%.

Appendix 3: Emission Taxes for Uncompensated Changes in p and q

In this Appendix, I show the effect of uncompensated changes in the transition prob-
abilities. That is, changes in p and q without the corresponding change in θ2 to keep
the time-varying model uncertainty the same. Figure 5 shows the contour graph of
emission taxes in each regime. The degree of overall model uncertainty varies across
the graph but it is 10% at p = q = 0.1. Uncompensated increases in p produce a
higher overall model uncertainty and generate lower emissions taxes in both regimes,
although emission taxes aremostly insensitive to changes in p in regime 1. Uncompen-
sated increases in q produce a lower overall model uncertainty and generate higher
emissions taxes in both regimes, although emission taxes are mostly insensitive to
changes in q in regime 2. These results along with those of Sects. 5.1 and 5.2 show
that increases in the overall model uncertainty due to either higher p, lower q or higher
θi lead to higher emission taxes.
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Fig. 4 Regime 1 and 2 worst-case emissions shocks for π = 10, 20%

Fig. 5 Emission taxes under uncompensated changes in p and q
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