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Abstract Dagum and Singh–Maddala distributions have been widely assumed as
models for income distribution in empirical analyses. The properties of these distri-
butions are well known and several estimation methods for these distributions from
grouped data have been discussed widely. Moreover, previous studies argue that the
Dagum distribution gives a better fit than the Singh–Maddala distribution in the empir-
ical analyses. This study explores the reason why Dagum distribution is preferred to
the Singh–Maddala distribution in terms of the akaike information criterion through
Monte Carlo experiments. In addition, the properties of the Gini coefficients and the
top income shares from these distributions are examined bymeans of root mean square
errors. From the experiments, we confirm that the fit of the distributions depends on
the relationships and magnitudes of the parameters. Furthermore, we confirm that the
root mean square errors of the Gini coefficients and top income shares depend on the
relationships of the parameters when the data-generating processes are a generalized
beta distribution of the second kind.
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1 Introduction

Kleiber (1996) shows thatDagumandSingh–Maddala incomedistributions are closely
related, although he states that the Dagum distribution should provide a better fit than
the Singh–Maddala distribution. Moreover, Tadikamalla (1980) shows that the shape
of theDagumdistribution is considerablymore flexible than that of the Singh–Maddala
distribution. Therefore, the Dagum distribution more often is assumed as the income
distribution in empirical analyses. Accordingly, Kleiber (2008) reviews studies that
examine income distributions of the Dagum type.

In empirical analyses, grouped data have been utilized widely and many works
have examined several distributions from grouped data (e.g., McDonald and Ransom
1979a). AlthoughMcDonald andMantrala (1995) show that the estimates are different
if the number of groups is different, even if the same data source is used,1 the properties
of the estimators have been examined rarely. As far as we know, the properties of the
estimators have been examined only by McDonald and Ransom (1979b), who assume
a gamma distribution. However, their focus is on comparing several estimation meth-
ods. In addition, the properties of the model selection criteria have not been examined,
in spite of the fact that several model selection criteria, including the akaike informa-
tion criterion (AIC), have been utilized widely in empirical analyses. Therefore, we
consider that the properties of the model selection criteria, which take into account
the effect of group numbers, become important when we use these distributions in
empirical analyses.

Moreover, the parameters are used not only for their own inferences, but also for
the inference of the Gini coefficients (e.g., Atoda et al. 1988; Chotikapanich and
Griffiths 2000; Nishino and Kakamu 2011). However, it is well known that the Gini
coefficients are highly nonlinear functions of the parameters. As shown by Gelfand
et al. (1990), the MCMC method can yield valid inferences on nonlinear functions
of the parameters, such as the Gini coefficients. Therefore, it would be worthwhile to
examine the properties of the Gini coefficients in a Bayesian framework.2

Recently, researchers of inequality have become concerned with not only the Gini
coefficient but also the top income share. For example, Atkinson et al. (2011) examine
the history of the top income shares and Brzezinski (2013) examines the properties
of the top income share. While the Gini coefficient measures inequality among whole
households or individuals, top income share is constructed as ratios (portions) of upper
tails to total income of households or individuals. Therefore, top income sharemight be
sensitive to the choice of the underlying hypothetical distributions. Thus, we analyze
top income share as an alternative inequality measure to the Gini coefficient.

1 Kakamu and Nishino (2014) show that the estimates of the generalized beta (GB) distribution do not
change, even if the number of groups is different when a Markov chain Monte Carlo (MCMC) method is
utilized. Therefore, we also utilize the MCMC method to estimate the parameters of the models.
2 It is desirable to use the maximum likelihood estimates to calculate the Gini coefficients. However, as
stated in the Appendix, it is sometimes difficult to find the mode of parameters by the maximum likelihood
estimates when we assume the Dagum and Singh–Maddala distributions are the income distribution. This
is another reason why we use the MCMC method.

123



Simulation Studies Comparing Dagum and Singh–Maddala... 595

This study has two objectives. One is to explore the reason why Dagum distri-
bution is preferred to Singh–Maddala distribution in terms of AICs through Monte
Carlo experiments, in which the data-generating processes (DGPs) are the generalized
beta distribution of the second kind (GB2 distribution). This involves considering the
Dagum and Singh–Maddala distributions as special cases. The other objective is to
examine the properties of the Gini coefficients and top income shares for these two
distributions by means of root mean square errors (RMSEs). From the experiments,
we confirm that the fit of the distributions depends on the relationships andmagnitudes
of the parameters and that the RMSEs of the Gini coefficients and top income shares
also depend on the relationships of the parameters.

The rest of this paper is organized as follows. In Sect. 2, we briefly discuss the
relationship between the Dagum and Singh–Maddala distributions and set forth the
framework for Bayesian inference. Section 3 presents the results obtained from the
MonteCarlo simulations. Finally, brief conclusions and remaining issues are presented
in Sect. 4.

2 Dagum and Singh–Maddala Income Distributions

Dagum (1977) and Singh and Maddala (1976) distributions are special cases of the
GB2 distribution proposed by McDonald (1984). The probability density function
(PDF) of the GB2 distribution with parameters a > 0, b > 0, p > 0, and q > 0 is
defined as

fGB2(x) = axap−1

bapB(p, q)
[
1 +

( x
b

)a]p+q , x > 0,

where B(·, ·) is a beta function, b is a scale, and a, p, and q are shape parameters.
In particular, parameter p makes the shape of the upper tail change and parameter q
makes the shape of the lower tail change. The distribution proposed by Majumder and
Chakravarty (1990) is simply a reparameterization of the GB2 distribution.

This four-parameter family nests most of the previously considered income distri-
butions as special or limiting cases. Our notations are as follows: GB2(a, b, p, 1)
= DA(a, b, p) and GB2(a, b, 1, q) = SM(a, b, q), where GB2(a, b, p, q),
DA(a, b, p), and SM(a, b, q) are GB2 distribution with parameters a, b, p, and
q; the Dagum distribution has parameters a, b, and p; and the Singh–Maddala dis-
tribution has parameters a, b, and q. These relationships and related distributions are
summarized in Kleiber and Kotz (2003) in detail. In addition, Kleiber (1996) shows

that X ∼ SM(a, b, r) ⇔ 1

X
∼ DA

(
a,

1

b
, r

)
. Therefore, we can confirm that the

Dagum and Singh–Maddala distributions are related closely.
The PDF and cumulative density function (CDF) of the Dagum distribution are

expressed as

fDA(x) = apxap−1

bap
[
1 +

( x
b

)a]p+1 , x > 0, (1)
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FDA(x) =
[
1 +

( x
b

)−a
]−p

, x > 0, (2)

respectively. On the other hand, the PDF and CDF of the Singh–Maddala distribution
are given as

fSM (x) = aqxa−1

ba
[
1 +

( x
b

)a]1+q , x > 0, (3)

FSM (x) = 1 −
[
1 +

( x
b

)a]−q
, x > 0, (4)

respectively. As shown above, these two distributions have closed-form expressions
in their CDFs, unlike the GB2 distribution; furthermore, their CDFs are invertible.
Therefore, these two distributions are tractable and it is possible that the statistical
inference is implemented using these PDFs and CDFs.3

To estimate the parameters of the income distribution from grouped data, Kakamu
andNishino (2014) show that the Bayesian approach is preferred to themaximum like-
lihoodmethod. Therefore, we take the Bayesian approach and introduce the likelihood
function, following Nishino and Kakamu (2011). Let θ be the vector of parameters of
the relevant income distribution and let x = (x1, x2, . . . , xk) be the vector of observed
income in the form of grouped data. Then, xi s are strictly known. In the general form,
the likelihood function given by the PDF and CDF is expressed as follows

L(x|θ)

= n! F(x1)n1−1

(n1 − 1)! f (x1)

{
k∏

i=2

(F(xi ) − F(xi−1))
ni−ni−1−1

(ni − ni−1 − 1)! f (xi )

}

× (1 − F(xk))n−nk

(n − nk)! , (5)

3 Once the parameters are estimated, we could calculate the Gini coefficients from the parameters. The
Gini coefficients from the Dagum and Singh–Maddala distributions are expressed by

GDA = Γ (p)Γ (2p + 1/a)

Γ (2p)Γ (p + 1/a)
− 1,

GSM = 1 − Γ (q)Γ (2q − 1/a)

Γ (q − 1)Γ (2q)
,

where Γ (·) is a gamma function.
Moreover, χ% top income share from these distributions, where χ = 100 × (1 − z), are expressed by

TDA,χ = 1 − It (p + 1/a, 1 − 1/a), where t = z1/p

TSM,χ = 1 − It (1 + 1/a, q − 1/a), where t = 1 − (1 − z)1/q ,

where Ix (a, b) is the incomplete beta function ratio. In this study, we focus on 10 % (z = 0.9) top income
shares.
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where ni is the number of observations when income is less than xi and n is the
number of total observations. If we substitute (1) and (2) into (5), then we could derive
an inference for the Dagum distribution. Similarly, if we use (3) and (4), we could
draw an inference for the Singh–Maddala distribution.

To proceed with the Bayesian analysis, we need to assume the prior distribution as
π(θ). Given the likelihood function (5) and the prior distribution π(θ), the posterior
distribution is expressed as

π(θ |x) ∝ π(θ)L(x|θ).

Using this posterior distribution, posterior inference via the MCMCmethod proposed
by Chotikapanich and Griffiths (2000) is implemented.4

Finally, we specify the prior distribution as π(θ SM ) ∝ b−1, which is the same
assumption as in Chotikapanich and Griffiths (2000). In addition, we assume that the
prior distribution for the Dagum distribution is π(θDA) ∝ b−1.

3 Monte Carlo Experiments

We now explain the setup for the Monte Carlo simulations. First, we set the number
of observations as n = 10,000 and 100,000 to evaluate the effect of the number of
observations. In addition, we assume the number of groups as quintile (k = 4) and
decile (k = 9) to evaluate the effects of the number of groups.

Given n and k, we assume the true DGP to be a GB2 distribution, and L samples
of xi for i = 1, 2, . . . , k are generated. That is, we perform L simulation runs for the
Dagum and Singh–Maddala distributions; in this section, L = 500.

The simulation procedure in this section is as follows:

(i) Given a = 3.0; b = 6.0; p = 0.5, 0.6, 0.7, . . . , 2.9, 3.0; and q =
0.5, 0.6, 0.7, . . . , 2.9, 3.0, we generate random numbers x j s, j = 1, 2, . . . , n
from the GB2 distribution.5

4 Some modifications are required to estimate the parameters. Therefore, the details of the modified algo-
rithm are summarized in the Appendix.
5 To generate a random number from GB2 with parameters a, b, p, and q, we first generate Z from a beta

distribution with parameters p and q. Then, X = b

(
Z

1 − Z

) 1
a
becomes the random number from the GB2

distribution. In addition, the Gini coefficient from the GB2 distribution is as follows

GGB2 = B(2p + 1/a, 2q − 1/a)

B(p, q)B(p + 1/a, q − 1/a)

×
[
1

p 3F2(1, p + q, 2p + 1/a; p + 1 + 1/a, 2(p + q); 1)

− 1

p + 1/a 3F2(1, p + q, 2p + 1/a; p + 1 + 1/a, 2(p + q); 1)
]

,

where 3F2 is a hypergeometric function. However, we calculate the Gini coefficient as well as the top
income share by the numerical integration for the same reason as Hajargasht et al. (2012). Moreover, we
examine several different values of a and b. However, as similar tendencies can be found, we focus on the
cases of a = 3.0 and b = 6.0.
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(ii) Sort the random numbers in ascending order and pick up xi , which corresponds
to the ni -th observation, i = 1, 2, . . . , k.

(iii) Given x = (x1, x2, . . . , xk), we obtain the estimates using the Dagum and Singh–
Maddala distributions. In the MCMC procedure, we run the MCMC algorithm,
with 7000 iterations excluding the first 1, 000 iterations.

(iv) We repeat (i)–(iii) L times, where L = 500, as mentioned above.
(v) From L estimates, we compute the AIC and RMSE for Gini coefficients and top

income shares, as follows

AIC = −2L(x|θ (l)) + 2p,

RMSEG =
(
1

L

L∑
l=1

(G(l) − G)2

) 1
2

,

RMSET =
(
1

L

L∑
l=1

(T (l) − T )2

) 1
2

,

where θ (l), G(l), and T (l) represent the estimators of θ , the Gini coefficient and
the 10 % top income share in the l-th simulation run, respectively, and p denotes
the number of parameters.

We compare the fit of the distributions by the AICs and the accuracy of the estimators
of theGini coefficient and 10% top income share from theDagum and Singh–Maddala
distributions by RMSEs through the Monte Carlo studies. All the results reported here
are generated using Ox version 7.00 (OS_X_64/U) (see Doornik 2009).

Figure 1 shows the selected frequencies of the Dagum distribution compared with
the Singh–Maddala distribution, where the AICs are smaller.6 From the figure, the
standard results can be confirmed: the selected frequency increases as the number of
observations or the number of groups increase, andwhen theDGPs are true.Moreover,
we can establish that the selected frequencies are almost the same if p = q. On the
other hand, the Singh–Maddala distributions are selected if p < q and p > 1.0,
while the Dagum distributions are selected if p > q and q > 1.0. However, if
p < 1.0 or q < 1.0, the opposite results can be confirmed in some regions, that
is, the Singh–Maddala distributions are likely to be selected if p > q, while the
Dagum distributions are likely to be selected if p < q and the frequencies depend
on the relationship between the parameters p and q. Therefore, we can conclude that
the fit of the distributions seems to depend on the relationships and magnitudes of the
parameters p and q if we compare the models by AIC. In fact, for example, McDonald
and Mantrala (1995) estimate the parameters of Dagum, Singh–Maddala, and GB2
distributions and show that the Dagum distribution is preferred to the Singh–Maddala
distribution when the parameters of GB2 distribution are p = 0.5186 and q = 1.358.
From the figure, we can confirm that the Dagum distribution is preferred to the Singh–
Maddala distribution at this point.

6 The detailed tables, which are the source of the figures, are available upon request from the author.
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Figure 2 shows the differences of the RMSEs of the Gini coefficients. From the
figure, similar tendencies can be found, even if the number of observations n and/or
the number of groups are changed. First, we find that the differences of the RSMEs are
almost zero if p = q, p > 1, and q > 1. Second, the RMSEs from the Singh–Maddala
distributions are smaller than those from the Dagum distributions if p < q and p > 1,
while the RMSEs from theDagum distributions are smaller than those from the Singh–
Maddala distributions if p < q and q > 1. Moreover, the difference increases when
parameters p and q move far away from p = q and the differences become largest
when p or q approaches 1. In other words, the RMSEs from the true distribution are
smaller than those from the competing distribution. However, exceptions appear in
the case of p < 1 or q < 1. In the case of p < 1, we find the parameter region
where q < 1.5, while in the case of q < 1, the differences become smaller and cross
zero, that is, the RMSEs from the Singh–Maddala distributions are smaller than those
from the Dagum distributions. Therefore, we can conclude that the accuracy of the
distribution seems to depend on the RMSE relationship of the parameters p and q,
which is the same as the results from the AIC.

Figure 3 shows the differences of the RMSEs of the top income shares. From the
figure, similar tendencies can be found, even if the number of observations n and/or
the number of groups are changed and the tendencies are almost the same as the results
from the Gini coefficients. First, we find that the differences of the RSMEs are almost
zero if p = q, p > 1, and q > 1. Second, the RMSEs from the Singh–Maddala
distributions are smaller than those from the Dagum distributions if p < q and p > 1,
while the RMSEs from theDagum distributions are smaller than those from the Singh–
Maddala distributions if p < q and q > 1. Moreover, the differences increase when
parameters p and q move far away from p = q and the differences becomes largest
when p or q approaches 1. In other words, the RMSEs from the true distribution are
smaller than those from the competing distribution. However, exceptions appear in
the case of p < 1 or q < 1. In the case of p < 1, we find the parameter region
where q < 1.5, while in the case of q < 1, the differences become smaller and cross
zero, that is, the RMSEs from the Singh–Maddala distributions are smaller than those
from the Dagum distributions. Therefore, we can conclude that the accuracy of the
distribution seems to depend on the RMSE relationship of the parameters p and q,
which is the same as the results from the AIC and Gini coefficients.

Summarizing the results, if the DGPs are GB2 distribution, the case in which
p = 1 and q = 1 plays an important role and the selected frequencies or RMSEs
from the Gini coefficients or the top income shares appear as a type of saddle point;
moreover, around the point, the performance of the AIC, Gini coefficients, and top
income shares change. Therefore, it is important to checkwhether parameters p and/or
q in theGB2distribution are one, evenwhenwechoose theDagumandSingh–Maddala
distributions as income distribution.

4 Conclusion

This study compared the fit of the distributions in terms of AIC and the accuracy of
the estimators of the Gini coefficients and top income shares from the Dagum and
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Singh–Maddala distributions by RMSEs through Monte Carlo experiments. From the
experiments, we confirmed that the fit of the distributions depends on the relationships
and magnitudes of the parameters p and q and that the RMSEs of the Gini coefficients
and top income shares depend on the relationships of the parameters when the DGPs
are GB2 distribution. Therefore, a possible reason why the Dagum distribution is
preferred to the Singh–Maddala distribution is that the estimated parameters lie in the
desirable regions where the Dagum distribution is preferredwhen theGB2 distribution
is estimated.

Finally, we mention issues that remain to be analyzed. We examined the fit of the
distributions only byAIC.However, there are several othermodel selection procedures
or tests. Therefore, it is worthwhile examining other methods, including, for example,
themarginal likelihood byChib and Jeliazkov (2001) and the Bayesian goodness-of-fit
test by Johnson (2004). Moreover, we assume GB2 distribution as the DGP. However,
the true income data might not be generated from the GB2 distribution but from the
double Pareto-lognormal distribution by Reed and Jorgensen (2013) or some mixture
of distributions. Therefore, it would be worthwhile to examine the performance of the
Dagum and Singh–Maddala distribution when the true GDP is not GB2. However, we
believe that our findings from the Monte Carlo experiments represent an interesting
first step.
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Appendix: Markov chain Monte Carlo Methods

In this appendix, we introduce a Markov chain Monte Carlo (MCMC) method to
estimate the parameters of the distributions, which is proposed by Chotikapanich and
Griffiths (2000) for the Singh–Maddala distribution. As the estimation procedure of
the Dagum distribution is the same as that of the Singh–Maddala distribution, we
continue the explanation focusing on the Singh–Maddala distribution.

Chotikapanich and Griffiths (2000) first proposed the MCMC method to estimate
the parameters of the distribution from grouped data using a randomwalkMetropolis–
Hastings (RWMH) algorithm. However, it is sometimes difficult to estimate the
parameters using their algorithm. Therefore, some modifications are required. Their
algorithm with some modifications is as follows.

1. Generate a candidate value θnewSM fromN (θ
(m−1)
SM , c2�), where c is a tuning para-

meter and � is the maximum likelihood covariance estimate.7

2. Compute

7 It is sometimes difficult to find the mode of the parameters by maximum likelihood method. Thus, we
implement the simulated annealing of Goffe et al. (1994). Moreover, if the Cholesky decomposition of �

fails, the modified Cholesky of Nocedal and Wright (2000) is utilized.
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α
(
θ

(m−1)
SM , θnewSM

)
= min

{
1,

π(θnewSM |x)
π(θ

(m−1)
SM |x)

}
,

and if any of the elements of θnewSM fall outside the feasible parameter region, then

α
(
θ

(m−1)
SM , θnewSM

)
= 0.

3. Generate a value u from U(0, 1), where U(a, b) is a uniform distribution on the
interval (a, b).

4. If u ≤ α
(
θ

(m−1)
SM , θnewSM

)
, set θ (m)

SM = θnewSM , otherwise θ
(m)
SM = θ

(m−1)
SM .

5. Return to step 1, with m set to m + 1.
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