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Abstract Volatility modeling and forecasting play a key role in asset allocation, risk
management, derivatives pricing and policy making. The purpose of this paper is
to develop an evolving fuzzy-GARCH modeling approach for stock market asset
returns forecasting. The method addresses GARCH volatility modeling within the
framwork of evolving fuzzy systems. This hybrid methodology aims to account for
time-varying volatility, from GARCH approach, as well as volatility clustering and
nonlinear time series identification, from evolving fuzzy systems, which use time-
varying data streams to continuously and simultaneously adapt the structure and
functionality of fuzzy models. The motivation is to improve model performance as
new data is input through gradual model construction, inducing model adaptation and
refinement without catastrophic forgetting while keeping current model useful. An
empirical application includes the forecasting of S&P 500 and Ibovespa indexes by
the evolving fuzzy-GARCH against traditional GARCH-family models and a fuzzy
GJR-GARCH methodology. The results indicate the high potential of the evolving
fuzzy-GARCHmodel to forecast stock returns volatility, which outperformsGARCH-
typemodels and showed comparable forecasts with fuzzyGJR-GARCHmethodology.
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1 Introduction

Accuratelymeasuring and forecastingfinancial volatility play a crucial role in asset and
derivative pricing, hedge strategies, portfolio allocation and risk management (Franke
and Westerhoff 2011; Huang 2011; Berument et al. 2012; Brandão et al. 2012; Lin
et al. 2012; Haugom et al. 2014; Seo and Kim 2015). A convenient framework for
dealing with time-dependent volatility in financial markets involves the generalized
autoregressive conditional heteroskedasticity (GARCH) model (Engle 1982), a pop-
ular tool for volatility modeling. The GARCH model jointly estimates a conditional
mean and variance, characterized by a fat tail and excess of kurtosis, regularly used
in studying daily stock market return data (Han and Park 2008; Bentes 2015).1

Despite its success, GARCH modeling has been criticized for failing to capture
volatility dynamics of asset returns in highly unstable environments, as during a finan-
cial crisis (Kung and Yu 2008; Tseng et al. 2008; Lim and Sek 2013; Apergis 2015).
Methods based on artificial neural networks have been extensively used because they
provide a flexible way to describe stock returns volatility (Hajizadeh et al. 2012; Krist-
janpoller et al. 2014; Monfared and Enke 2014; Dash et al. 2015). Neural networks
approaches use volatility as input to achieve more accurate forecasts (Tung and Quek
2011; Wang et al. 2012; Fernandes et al. 2014; Vortelinos 2015).2 Despite their attrac-
tiveness, neural networks have some drawbacks such as their “black box” nature,
proneness to overfitting, and the character of model development. Moreover, they do
not consider one important asset return stylized fact: volatility clustering (Liu and
Hung 2010; Ning et al. 2015).

To overcome these limitations, methods based on fuzzy set theory have been devel-
oped as a flexible framework to explain complex dynamics such as stock trading
decision (Troiano and Kriplani 2011; Vella and Ng 2014), exchange rate forecasting
(Korol 2014; Gharleghi et al. 2014), portfolio selection (Bermúdez et al. 2012; Zhang
and Zhang 2014; Li et al. 2015), term structure of interest rates estimation (Sánchez
andGómez 2003), asset pricingmodeling (Moussa et al. 2014), and also financial time-
series volatilitymodeling and forecasting (Hung 2011a;Capotorti et al. 2013;Muzzioli
et al. 2015). Basically, these methods construct hybrid models combining fuzzy sys-
tems and GARCHmodels whose structure addresses both, time-varying volatility and
volatility clustering. Popov and Bykhanov (2005), Chang et al. (2011), Helin and
Koivisto (2011) and Hung (2011b), for example, combine fuzzy and GARCH models
to tackle the problem of volatility modeling and forecasting. Modeling in this frame-
work requires high computational effort because theymust estimate model parameters

1 Modeling and forecasting financial volatility involve several distinctive approaches, including realized
volatility models (Hansen and Lunde 2006; Souček and Todorova 2014) and stochastic volatility (Venter
and Jongh 2014; Creal and Wu 2015).
2 Alternatively, volatility models based on autoregressive processes and GARCH structures have also been
developed to improve forecasts (Sohn and Lim 2007).
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using all data currently stored in the database. This may be troublesome in situations in
which forecasts are needed whenever new data arrive. Therefore, current hybrid mod-
eling methods may be useless in dynamic environments such as volatility forecasting,
immunization strategies, portfolio allocation, and risk management.

This paper suggests an evolving fuzzy-GARCH approach for financial time-series
volatility modeling and forecasting. The model is a collection of fuzzy rules whose
consequents are GARCHmodels. The collection of fuzzy rules, or rule base for short,
is continuously revised whenever new data is input. The number of fuzzy rules and
parameters of the rules antecedents and consequents are simultaneously adjusted using
a recursive clustering procedure to create/exclude/update rules, and a recursive algo-
rithm to estimate the parameters. This is an essential requirement to develop models
in time-varying, nonstationary environments (Lemos et al. 2011). Evolving funda-
mentally means high level adaptation to accommodate new data into existing models
on a recursive basis. Adaptation may add new rules into the rule base, remove, or
update current rules whenever necessary. The parameters of the GARCH models of
rule consequents are also object of adaptation. This means that the evolving fuzzy
model captures new information from data streams, adapts itself to the new scenario,
and avoids redesigning and retraining.

Recent literature reveals several applications of evolving fuzzy rule-based models
in finance and economics. Examples include: Value-at-Risk modeling and forecasting
(Ballini et al. 2009a), sovereign bonds modeling (Ballini et al. 2009b), exchange rates
forecasting (McDonald and Angelov 2010), fixed income option pricing (Maciel et al.
2012b), interest rate term structure forecasting (Maciel et al. 2012a), financial volatility
forecasting (Luna andBallini 2012a), stochastic volatility prediction (Luna andBallini
2012b), and volatility forecasting with jumps (Maciel et al. 2013; Rosa et al. 2014).

Recently, Maciel (2012, 2013) proposed a fuzzy GJR-GARCH model to forecast
the volatility of S&P 500 and Ibovespa indexes. The model addresses fuzzy inference
systems and GJR-GARCH framework, which is appropriate to account for lever-
age effects. Moreover, a differential evolution (DE) algorithm is suggested to solve
the problem of fuzzy GJR-GARCH parameters estimation. The results indicate that
the proposed method offers significant improvements in volatility forecasting perfor-
mance in comparison with traditional GARCH-type models. Besides the good results,
the model does processes data in batch, which requires large quantities of data in
the database. Moreover, the DE algorithm requires a considerable number of tuning
parameters, defined by the user, as well as is computational time consuming, i.e., it is
inefficient in on-line domains.

The evolving fuzzy-GARCH model suggested brings novel features to the exist-
ing approaches addressed in the literature. First, the evolving fuzzy-GARCH model
combines adaptive fuzzy modeling with GARCHmodels, which gives a more realistic
framework to capture the imprecise and time-varying nature of volatility and volatility
clustering. Second, the approach translates into a simple, fast and memory efficient
recursive algorithm which process data streams naturally. Indeed, the computational
experiments performed using S&P 500 (United States) and Ibovespa (Brazil) indexes
from January 3, 2000 through September 30, 2011, show that the evolving fuzzy-
GARCH outperforms the GARCH-family of models, and also provides comparable
results with fuzzy GJR-GARCH methodology.

123



382 L. Maciel et al.

The reminder of this paper proceeds as follows. Section 2 details the evolving
fuzzy-GARCH model suggested in this work. Section 3 describes the computational
experiments and analyzes stock market volatility forecasting. Section 4 concludes the
paper summarizing its contributions and issues for further investigation.

2 Evolving Fuzzy-GARCH Modeling

2.1 Evolving Fuzzy Systems

The effectiveness of data stream oriented learning algorithms is rooted in their aptitude
to quickly evolve models from nonstationary data. The key issues are incremental
learning and recursive data processing. New data may either reinforce or suggest
revision of the current model, depending if data is compatible with existing knowledge
or not. Data stream and recursive processing approaches are particularly important in
time-varying and nonstationary dynamic system modeling because usually system
operating conditions change, fault occurs, and parameters modify.

The main concern in evolving systems modeling is how update the current model
structure and parameters using the newest data sample. An evolving system can
both, develop model structure from scratch and perform recursive computation using
incoming data to continuously develop model structure and functionality through self-
organization.

Fuzzy rule-based models whose rules are endowed with functions forming their
consequents are commonly referred to as fuzzy functional models. The Takagi-
Sugeno is a typical example of a fuzzy functional model. A particularly important
case is when rules consequents are linear functions of the variables that appear in
the rules antecedents. For instance, the evolving Takagi-Sugeno model and its varia-
tions (Angelov and Filev 2004) assume rule-based models whose fuzzy rules are as
follows:

Ri : IF x is Ai THEN yi = ai0 +
m∑

j=1

ai j x j , i = 1, . . . , R,

where Ri is the i th fuzzy rule, R is the number of fuzzy rules, x ∈ �m is the input
data, yi is the output of the i th rule,Ai is the vector of antecedents fuzzy sets, ai0, ai j
is the parameters of the consequent

The collection of the R rules constructs the model as a combination of local linear
models. Given an input x = [x1, x2, . . . , xm]T , the contribution of a local linear
model to the overall output is proportional to the membership degree Ai (x), called
the activation level of the i th rule.

Antecedent fuzzy sets may have triangular, rectangular or Gaussian membership
functions. Recursive learning of evolving fuzzy models requires recursive clustering
to find the rules and the membership functions of the fuzzy sets of rules antecedents.
Each cluster corresponds to a fuzzy rule. Fuzzy sets ofAi (x) may have parameterized
membership functions. For instance, if they are Gaussians, then cluster centers are
assigned as their central values and spread is chosen to partition input spaces properly.
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Often, the recursive least squares algorithm is used to compute the parameters of the
rules consequents, as it will be shown in Sect. 2.3.

2.2 GARCH-Type Models

The GARCH(p, q) considers that the current conditional variance depends on p past
conditional variances and on q past squared innovations. Let rt = 100 × (ln Pt −
ln Pt−1) denote the continuously compounded rate of stock returns from time t − 1
to t , where Pt is the daily closing stock price at t . The GARCH(p, q) model can be
written as:

rt = σtξt , (1)

σ 2
t = α0 +

q∑

n=1

α1,nr
2
t−n +

p∑

j=1

α2, jσ
2
t− j , (2)

where ξt is a sequence of independent and identically distributed random variables
with zero-mean and unit variance, σ 2

t is the conditional variance of ξt , and α0, α1,n
and α2, j are unknown coefficients to be estimated.

The GARCH model reduces the number of parameters by considering the infor-
mation in the lags of the conditional variance and in the lagged r2t−n terms as in
ARCH-type models. The simplicity of GARCH modeling and its ability to capture
volatility persistence explain its empirical and theoretical attractiveness. However, it
fails to capture stock fluctuations with volatility clustering well. This fact can lead to
inadequacy and poor forecasting ability. The fuzzy-GARCH appears as an alternative
approach for volatility modeling and forecasting in a presence of volatility clustering
as discussed next.

2.3 The Evolving Fuzzy-GARCH Model

Fuzzy functional models and inference systems are universal approximators. They can
uniformly approximate any continuous function in compact domains with arbitrary
accuracy (Ji et al. 2007; Kreinovich et al. 1998). GARCH models are able to capture
time-varying volatility. The fuzzy-GARCH approach combines the approximation
power of functional fuzzy modeling with the GARCH ability to encapsulate time-
varying volatility to model the behavior of stock fluctuations with volatility clustering.
A fuzzy-GARCH(p, q) model is a collection of functional fuzzy rulesRi of the form:

Ri : IF Ar
(
rt−n is Ai,n

)
AND Aσ 2

(
σ 2
t− j is Ai,q+ j

)

THEN σ 2
i,t = αi

0 +
q∑

n=1

αi
1,nr

2
t−n +

p∑

j=1

αi
2, jσ

2
t− j , (3)

where Ar
(
rt−n is Ai,n

)
and Aσ 2

(
σ 2
t− j is Ai,q+ j

)
are the rule antecedents asso-

ciated with stock market returns r and volatility σ 2, i = 1, 2, . . . , R, variables
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rt−n and σ 2
t− j , n = 1, 2, . . . , q and j = 1, 2, . . . , p, are lagged values of

the stock market return and volatility. Rule antecedent Ar
(
rt−n is Ai,n

)
denotes

(rt−1is Ai,1 AND rt−2 is Ai,2 AND · · · AND rt−q is Ai,q) for short. Similarly,

Aσ 2

(
σ 2
t− j is Ai,q+ j

)
denotes (σ 2

t−1 is Ai,q+1 AND σ 2
t−2 is

Ai,q+2 AND · · · AND σ 2
t− j is Ai,q+ j ).

Let x ∈ �q+p the vector x = [x1, x2, . . . , xl , . . . , xq+p]T such that x1 =
rt−1, x2 = rt−2, . . . , xq+p−1 = σ 2

t−p−1, xq+p = σ 2
t−p be the input, and y = σ 2

t
be the output, y ∈ �. Assuming Gaussian membership functions for the fuzzy sets of
the rules antecedents we have:

Ai,l (xl) = exp

⎛

⎜⎝−
(
x∗
i,l − xl

)2

2s2

⎞

⎟⎠ , (4)

where Ai,l (xl) denotes the membership degree of lth input vector component xl , x∗
i,l

the i th cluster center of the lth input component and s the spread of the lth fuzzy set
in the antecedent of the i th fuzzy rule.3

The activation level of the i th rule, assuming AND as the product T -norm in rules
antecedents, is:

τi (x) =
q+p∏

l=1

Ai,l (xl). (5)

The output y of the model is the weighted average of the individual rule contribu-
tions:

y =
R∑

i=1

λi yi =
R∑

i=1

λixTe Θi , λi = τi∑R
h=1 τh

, (6)

where Θi =
[
αi
0, α

i
1,1, α

i
1,2, . . . , α

i
1,q , α

i
2,1, α

i
2,2, . . . , α

i
2,p

]T
is the vector of parame-

ters of the i th rule consequent, λi is the normalized activation level of the i th rule, and

xe = [
1 xT

]T
is the expanded input vector.

There are essentially two sub-tasks related to the recursive identification of evolv-
ing fuzzy-GARCH models: clustering to learn rules and the central points of the
membership functions of rules antecedents, and estimate the parameters of the linear
functions of rules consequents. Rules learning and consequent parameters estimation
are detailed in the next sections.

2.3.1 Learning Rules and Their Antecedents

Rules antecedent learning in fuzzy-GARCHmodeling uses the eClustering algorithm,
developed by Angelov (2010). eClustering is a recursive procedure to process stream-

3 Without loss of generality we assume si,l = s ∀ i, l, as in Angelov and Filev (2004).
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ing data and find clusters in the input space.4 The collection of fuzzy clusters defines
the fuzzy rule base. Each cluster and a corresponding linear function forms a fuzzy
rule. The mechanism to form a new rule, modify an existing one, or remove a rule
from the rule base is rooted on the notion of density of a data point using Cauchy
functions.

Density is computed recursively, and information related to the spatial distribution
of all data at step k is accumulated by the variables βk and δkl . The detailed steps are
as follows:

Dk
(
zk

)
= k − 1

(k − 1)
(∑q+p

l=1

(
zkl

)2 + 1
)

+ βk − 2
∑q+p

l=1 zkjδ
k
j

, (7)

where Dk
(
zk

)
is the density of the data around the last data point of the data stream

input to the algorithm, zk = ([xT , y]T )k is an input/output pair at step k (k = 2, 3, . . .),
and

βk = βk−1 +
q+p∑

l=1

(
zk−1
l

)2
, β1 = 0, δkl = δk−1

l + zk−1
l and δ1l = 0. (8)

eClustering ensures a gradual change of the rule-base. High-density data points are
potential candidates for becoming central points of the fuzzy sets in antecedents of the
fuzzy rules. The density of a data point selected to be a center has its density computed
using (7) and is updated whenever new data is input. The density of the central points
is recursively updated by:

Dk
(
zi

∗) = k − 1

k − 1 + (k − 2)

(
1

Dk−1
(
zi∗

) − 1

)
+ ∑q+p

l=1

(
zi

∗
l − zkl

) , (9)

where D1
(
zi

∗) = 1, k = 2, 3, . . ., and i∗ denotes the center point of the i th fuzzy

rule. Notice that initialization (k = 1) sets z1
∗ ← z1, R ← 1, that is, the first data

point is set as the cluster center to form the first rule.
The recursive density-based clustering approach does not rely on user- or problem-

specific thresholds, unlike methods such as subtractive clustering or participatory
learning, for example. The density is evaluated recursively and accumulates the infor-
mation about the spatial distribution of all the data by a small number of variables
(Angelov 2010).

In the eClustering procedure, representative clusters with high generalization capa-
bility are formed by considering the data points with the highest value of D. This is
translated into Condition (I) as follows:

4 Alternative clustering algorithms for evolving fuzzy modeling include the ones based on potential and
scattering (Angelov and Filev 2004), and participatory learning (Silva and Gomide 2007).
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(I) : IF Dk
(
zk

)
>

R
max
i=1

Dk
(
zi

∗)
OR Dk

(
zk

)
<

R
min
i=1

Dk
(
zi

∗)

THEN z(R+1)∗ ← zk, R ← R + 1. (10)

If the current data point satisfies Condition (I), then it becomes a new cluster center
and a new rule is formed with its central point at the new data point (z(R+1)∗ =
zk; R ← R + 1). This condition ensures good convergence, but it is sensitive to
outliers. The influence of outliers can be smoothed using quality clusters indicators
(Angelov 2010).

To control for the level of overlap and to avoid redundant clusters, the following
condition is verified, Condition (II):

(II) : IF ∃ i : Ai,l(x
k
l ) > e−1 ∀ l

THEN remove zi
∗
and update R (R ← R − 1). (11)

Condition (II) removes highly overlapping clusters, avoiding redundant rules. The
previously existing central point(s) for which this condition holds is (are) removed.
These mechanisms simplify the rule base once number of rules depends on the infor-
mation available only.

Quality measures for recursively monitoring of the clusters include support, age,
utility, zone of influence and local density (Angelov 2010). In this paper, as in Angelov
(2010), the quality of the clusters ismonitored using the relative accumulated activation
level of a rule at step k:

Uk
i =

∑k
t=1 λt

k − T i∗ , i = 1, 2, . . . , R; k = 2, 3, . . . , (12)

where T i∗ is a time tag to indicate when the i th fuzzy rule was generated.
The utility of the clusters is evaluated using (12) and Condition (III):

(III) : IF Uk
i < ε

THEN remove zi
∗
and update R (R ← R − 1) , (13)

where ε is a threshold related to the minimum utility of a cluster (threshold values are
typically in the range [0.03, 0.1]).

Condition (III) means that if a cluster has low utility (lower than a threshold ε),
then the data pattern has shifted away from the central point of that rule and, if a rule
is such that it satisfies (13), then it is removed from the rule base. This quality measure
evaluates the importance of fuzzy rules and assists the evolving process (Angelov
2010). The next step is to estimate the parameters of the linear rule consequents.

2.3.2 Recursive Consequent Parameter Identification

Expression (6) can be put into the following vector form:

y = ΛTΦ, (14)
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where y is the output,Λ = [
λ1xTe , λ2xTe , . . . , λq+pxTe

]T
denotes the fuzzily weighted

extended input vector, and Φ = [
ΘT

1 ,ΘT
2 , . . . , ΘT

R

]T
is the vector of the rule base

parameters.
Since the target output is known at each step, the parameters of the consequents can

be updated using the recursive least squares algorithm (RLS), either locally or globally
(Ljung 1988). In this paper we use the local optimal error criterion Ei

L which is:

min Ei
L = min

k∑

t=1

λi

(
yt − (

xte
)T

Θ t
i

)2
. (15)

The optimal update of the parameters of the i th rule is:

Θk+1
i = Θk

i + Pk
i x

k
eλ

k
i

(
yk −

(
xke

)T
Θk

i

)
, Θ1

i = 0, (16)

Pk+1
i = Pk

i − λki P
k
i x

k
e

(
xke

)T
Pk
i

1 + λki

(
xke

)T
Pk
i x

k
e

, P1
i = Ω I, (17)

where I is a (q+ p+1)×(q+ p+1) identitymatrix,Ω denotes a large number, usually
Ω = 1000, and P is a dispersion matrix. Angelov (2010) performed simulations with
several benchmarks and verified the stability and convergence of the RLS updating
Eqs. (16) and (17).

A new fuzzy rule created at k requires a respective dispersion matrix which is set
as Pk

R+1 = IΩ . The parameters of a new rule are found from the parameters of the
existing R fuzzy rules as follows:

Θk
R+1 =

R∑

i=1

λiΘ
k−1
i . (18)

The parameters of all other rules are inherited from the previous step, and corre-
sponding dispersion matrices updated independently. When a center point is replaced
due to Condition (II), the parameters and the dispersion matrix are inherited from the
fuzzy rule replaced:

Θk
R+1 = Θk−1

i∗ , Ai∗,l
(
xkl

)
> e−1, ∀ l, l = 1, 2, . . . , q + p, (19)

Pk
R+1 = Pk−1

i∗ , Ai∗,l
(
xkl

)
> e−1, ∀ l, l = 1, 2, . . . , q + p. (20)

Once the consequent parameters are found, the model output is computed using (6).
Notice that the learning algorithm has only two control parameters, s (cluster spread)
and ε (rule utility threshold).

2.4 Evolving Fuzzy-GARCH Algorithm

The detailed steps of the evolving fuzzy-GARCHmodel are as follows. All the steps of
the algorithm are non-iterative. Themodel can develop/evolve an existingmodel when
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the data pattern changes, and by being recursive it means that it is computationally
efficient.

BEGIN
Set parameters p, q, s, ε;
Read zk = ([xT , y]T )k , k = 1;
Initialize rule base: z1

∗ ← z1, R ← 1;
For k = 2, 3, . . . do

Read zk = ([xT , y]T )k ;
Compute Dk

(
zk

)
using (7);

If Condition (I) (10) holds
Create new rule: z(R+1)∗ ← zk, R ← R + 1;
If Condition (II) (11) holds
Remove redundant rules: R ← R − 1;

Else

Adapt the density of existing rules, Dk
(
zi

∗)
, using (9);

If Condition (III) (13) holds
Remove rules with low utility: R ← R − 1;

Adapt consequent parameters with RLS;
END

3 Computational Results

To illustrate the performance of the evolving fuzzy-GARCH model for forecasting
stock market volatility, this section uses the daily prices of the S&P 500 (US) and the
Ibovespa (Brazil)5 over the period from January 3, 2000 throughSeptember 30, 2011 to
compare evolving fuzzy-GARCH against GARCH (Bollerslev 1986), EGARCH (Nel-
son 1991), GJR-GARCH (Glosten et al. 1993) and the fuzzy GJR-GARCH (Maciel
2012, 2013) models.6 The daily stock return series were generated by taking the dif-
ferences in the natural logarithm of the daily stock index and the previous day stock
index, multiplied by 100. The data set was partitioned into two. The in-sample period
consists of data from January 3, 2000 throughDecember 29, 2005. The forecast out-of-
sample period is from January 2, 2006 through September 30, 2011. This procedure
is only necessary for GARCH-type modeling because the evolving fuzzy-GARCH
learns recursively and does not require a pre-training phase.

Table 1 shows the basic statistics of the return series. The average daily returns are
negative for the S&P 500 and positive for Ibovespa. The daily returns display evidence
of skewness and kurtosis.

5 The S&P 500 index was selected in order to represent a developed economy, the USA equity market, due
to its more general composition, i.e., the 500 large companies having common stocks listed on the NYSE
or Nasdaq, instead of Dow Jones or even Nasdaq indexes that besides of their importance are composed by
a small number of companies.The Ibovespa index was selected to represent the emergent economy, Brazil,
since it is the main equity market index in the Brazilian financial market.
6 The data was provided by Bloomberg. All algorithms were implemented and run using Matlab®.
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Table 1 Descriptive statistics of S&P 500 and Ibovespa daily returns

S&P 500 Ibovespa

Mean −0.0073 0.0378

Max 10.9572 13.6766

Min −9.4695 −12.0961

Std. Dev. 1.3787 1.9493

Skewness −0.1580 −0.1066

Excess Kurtosis 3.6701 7.4814

J–Ba 234.9483∗ 277.1270∗

Q2(10)b 789.7362∗ 683.9531∗
ARCH Test (10)c 1109.1934∗ 1082.7409∗

a The statistics of Jarque–Bera normal distribution test
b The Ljung–Box Q-test for the 10th order serial
correlation of the squared returns
c Engle’s ARCH test also examines for autocorrelation
of the squared returns
∗ Significant at the 5% level

The return series are skewed toward the left and characterized by a distribution with
tails that are significantly thicker than for a normal distribution. The Jarque–Bera test
statistics further confirm that the daily returns are non-normally distributed. Compared
with a Gaussian distribution, the kurtosis in the S&P 500 and Ibovespa suggests that
their daily returns are fat tailed (Table 1). The Ibovespa index has a higher kurtosis
than the S&P 500, which explains the fact that emerging countries generally exhibit
more leptokurtic behavior. Under the null hypothesis of no serial correlation in the
squared returns, the Ljung–Box Q2(10) statistics infer linear dependence for both
series considered. Furthermore, Engle’s ARCH test for the squared returns reveals
strong ARCH effects, evidence in support of GARCH effects (i.e., heteroscedastic-
ity). Accordingly, these preliminary analysis of the data encourage the adoption of a
sophisticated model that embodies fat-tailed features and conditional models to allow
for time-varying volatility.

GARCH-type models capture fat-tails and conditional volatility, but they do not
capture volatility clustering, as characterized by Fama (1965). The stock indexes are
shown in Fig. 1, and the corresponding returns are shown in Fig. 2. In particular, in
Fig. 2, volatility clustering becomes clearer, especially when the context of the recent
US Subprime crisis is considered.

The Bayesian information criterion (BIC) andAkaike’s information criterion (AIC)
were used to select appropriate lag values for the evolving fuzzy-GARCH and
GARCH-type models Akaike (1974) and Schwarz (1978). Models with various com-
binations of (p, q) values ranging from (1, 1) to (15, 15) were developed using return
data. According to BIC and AIC criteria the best value for all volatility models was
(1, 1), i.e. p = 1 and q = 1.

To choose appropriate control parameters for the fuzzy-GARCH model, simu-
lations were conducted with different parameter values and compared in terms of
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Table 2 Volatility modeling
performance for one-step ahead
forecast

Index Model MSFE MAFE MPFE

S&P 500 Fuzzy-GARCH 0.2017 0.3980 0.4099

GARCH 0.5704 0.7076 0.8366

EGARCH 0.5733 0.7199 0.8422

GJR-GARCH 0.5839 0.7298 0.8420

Fuzzy GJR-GARCH 0.1983 0.3652 0.3795

Ibovespa Fuzzy-GARCH 0.8552 0.9020 0.3877

GARCH 1.4487 1.2403 0.6723

EGARCH 1.4300 1.2611 0.6831

GJR-GARCH 1.4230 1.1955 0.6511

Fuzzy GJR-GARCH 0.6099 0.7912 0.2852

accuracy. The value found for the spread and threshold were s = 0.05 and ε = 0.1,
respectively.7

Comparison of volatility forecasts was done assuming one-step ahead forecast and
the mean squared forecast error (MSFE), mean absolute forecast error (MAFE), and
mean percentage forecast error (MPFE):

MSFE = 1

N

N∑

t=1

(
σ 2
t − σ̂ 2

t

)2
, (21)

MAFE = 1

N

N∑

t=1

|σ 2
t − σ̂ 2

t |, (22)

MPFE = 1

N

N∑

t=1

|σ 2
t − σ̂ 2

t |
σ 2
t

, (23)

where N is the number of out-of-sample observations, σ 2
t is actual volatility at t ,

measured as the squared daily return, and σ̂ 2
t is the forecast volatility at t .

Table 2 summarizes the performance of the models when forecasting the S&P 500
and Ibovespa stock indexes volatilities. The evolving fuzzy-GARCH model performs
better than the remaining family-GARCHmodels because its structure provides a com-
bination of rules as a mechanism to deal with volatility clustering. The GARCH-type
models achieve similar performance. Comparing the fuzzy approaches, the evolv-
ing fuzzy-GARCH and the fuzzy GJR-GARCH models provide very similar results,
since both address the issues of volatility clustering and volatility nonlinear dynamic
on their structures. Furthermore, it worth to note that these both methodologies are
able to consider markets uncertainties and vagueness due to the fuzzy aspect.

7 The parameters of GARCH, EGARCH and GJR-GARCH models were estimated using the traditional
maximum likelihood method, the log-likelihood function computed from the product of all conditional
densities of the prediction residuals. Fuzzy GJR-GARCH tuning parameters were selected based on simu-
lations.
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The results of evolving fuzzy-GARCH and fuzzy GJR-GARCH are quite superior
than the remaining models (Table 2). The theoretical justification for this performance
may be summarized as follows. First, the fuzzy approaches are suitable for the identi-
fication of nonlinear, time-varying and complex systems. Since the volatility of assets
returns shows these features, the fuzzy methods are more appropriate than traditional
GARCH-family models that assume a linear relationship for volatility behavior. Sec-
ond, structure identification of the fuzzy techniques, considered in the paper, is a fuzzy
clustering problem, which means that data are divided into subsets or clusters, and
each subset represents similar data points, in terms of the distance of a data point
to its centroid (representative of the cluster center). Therefore, data are associated
by similarity. Volatility clustering stylized fact stands for that large changes tend to
be followed by large changes, of either sign, and small changes tend to be followed
by small changes, i.e., volatility changes are cataloged by similarity. In this case, the
fuzzy methods consider volatility clustering naturally due to its similarity-based fuzzy
clustering framework. Third, since financial markets are affected by news, expecta-
tions, and investors’ psychological states, uncertainties and vagueness are verified on
market dynamics. Thus, the fuzzy concept of evolving fuzzy-GARCH and fuzzy GJR-
GARCHmodels providesmechanisms to treat the uncertainties of volatility processes,
which also results in more accurate forecasts.

To illustrate the capability of the evolving fuzzy-GARCHmodel to dealwith volatil-
ity clustering, Figs. 3 and 4 show the “true volatility”, measured as the squared returns,
and the estimated volatility using GARCH and the fuzzy-GARCHmodels for the S&P
500 and Ibovespa indexes, respectively. Periods of high volatilities correspond to the
volatility clustering behavior in the series of stock returns, revealing also volatility per-
sistence. TheGARCH and fuzzy-GARCHmodels perform similarly in stability or low
volatility environments. Howsoever, during high variability movements, the evolving
fuzzy-GARCH model captures more accurately the volatility levels. The 11th Sep-
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Fig. 3 S&P 500 actual and estimated volatility using GARCH and the fuzzy-GARCH models
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Fig. 4 Ibovespa actual and estimated volatility using GARCH and the fuzzy-GARCH models

tember 2001 terrorist attack and the Subprime crisis initiated in the second semester of
2008 denote the events corresponding to the high volatility dynamics. For the S&P 500
(Fig. 3) and Ibovespa (Fig. 4) indexes, the evolving fuzzy-GARCH model captures
the instabilities suffered by the economies evaluated. In the Brazilian stock market,
characterized by a high volatility behavior, the effectiveness of the suggested method-
ology becomes more clear, surpassing the GARCH approach in capturing volatility
dynamic mainly in the presence of significant market fluctuations.

Although the forecasting accuracy is extensively employed in practice for compar-
ison purposes, it does not reveal whether a forecasting model is statistically superior
to another one. Therefore, additional tests must be pursued to compare two or more
competing models fairly.

This paper adopts the parametricMorgan–Granger–Newbold (MGN) test suggested
in Diebold and Mariano (1995). The MGN test is employed when the assumption of
contemporaneous error correlation is relaxed. The statistic for this test is computed
using the following:

MGN = ρ̂ab
(

1−ρ̂2
ab

N−1

) 1
2

, (24)

where ρ̂ab is the estimated correlation coefficient between a = e1+e2, and b = e1−e2,
with e1 and e2 the residuals of the two models, for example, the fuzzy-GARCH and
GARCHmodels. In this case, the statistics is distributed as a Student distribution with
N − 1 degrees of freedom, where N is the number of out-of-sample observations. For
this test, if the estimates are equally accurate (null hypothesis), then the correlation
between a and b is zero.

The results from the MGN test, shown in Table 3, agree with the previous results.
The MGN statistics reveal that the evolving fuzzy-GARCH and fuzzy GJR-GARCH
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Table 3 MGN volatility forecast statistics for the S&P 500 and Ibovespa

GARCH EGARCH GJR-GARCH Fuzzy GJR-GARCH

S&P 500

Fuzzy-GARCH 3.8746 3.7262 3.6552 1.5450

(0.0001) (0.0002) (0.0002) (0.1192)

GARCH – 1.5233 1.6180 3.6780

– (0.1279) (0.1058) (0.0001)

EGARCH – – 1.5534 3.9981

– – (0.1205) (0.0001)

GJR-GARCH – – – 3.8761

– – – (0.0001)

Ibovespa

Fuzzy-GARCH 3.3337 3.4653 3.3928 1.2879

(0.0008) (0.0005) (0.0007) (0.1970)

GARCH – 1.3299 1.6253 3.5662

– (0.1837) (0.1043) (0.0004)

EGARCH – – 1.5938 3.8871

– – (0.1112) (0.0002)

GJR-GARCH – – – 3.4409

– – – (0.0005)

The relevant p values are shown in parenthesis beneath each test statistic

forecasting models are statistically superior when compared against GARCH-family
models. By the same token, the remaining GARCHmodels, GARCH, EGARCH, and
GJR-GARCH are equally accurate. When evolving fuzzy-GARCH and fuzzy GJR-
GARCH models are considered, according to MGN statistics, they are also equally
accurate.

Figure 5 shows how the number of fuzzy rules changes during evolving fuzzy-
GARCHmodeling steps. The number of rules is similar for both markets, but the S&P
500 shows greater variability, revealing the continuous adaptation of the model struc-
ture. It is interesting to note that the number of rules increases significantly between
2008 and 2009, revealing the capability of evolving fuzzy-GARCH to capture crises
instabilities. This period corresponds to the US subprime mortgage crisis which has
led to plunging property prices, a slowdown in the US economy, and billions of dollars
in banks losses, affecting the world’s main financial markets, including the Brazilian
market.

The fuzzy-GARCH model exhibits a strong ability to forecast volatility of real
market returns once it considers both, stock market asymmetry and volatility clus-
tering. The fuzzy-GARCH approach statistically overperforms GARCH, EGARCH
and GJR-GARCH as well, and also showed comparable forecasts with fuzzy GJR-
GARCH methodology. Moreover, the adaptive modeling and incremental/recursive
nature of fuzzy-GARCH provides a more efficient algorithm and can be used on-line,
an essential requirement in volatility forecasting and actual decisionmaking instances.
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Fig. 5 Number of fuzzy-GARCH rules for the S&P 500 and Ibovespa indexes

4 Conclusion

Volatility forecasting plays a central role in several financial decisions such as asset
allocation and hedging, option pricing and risk analysis. This paper has introduced
an evolving fuzzy-GARCH approach for financial volatility modeling and forecast-
ing. Fuzzy-GARCH combines evolving fuzzy systems and the conditional variance
GARCH modeling to deal with stylized facts such as time-varying volatility and
volatility clustering. Since volatility mirrors behavior of nonstationary nonlinear envi-
ronments, evolving models have shown to be very suitable. Empirical evidence based
on S&P 500 and Ibovespa index market data illustrates the potential of the evolving
fuzzy-GARCH approach to forecast volatility. Statistically speaking, fuzzy-GARCH
develops more accurate forecasts than GARCH-type models, as well as comparable
results with fuzzy GJR-GARCH method. The fuzzy-GARCH was also able to handle
periods with high instabilities such as the recent subprime mortgage crisis. Future
work should include applications of the evolving fuzzy-GARCH approach in finan-
cial decision making problems related to volatility such as option pricing, portfolio
selection, and risk analysis, as well as the use of realized volatility as “true volatility”
and their use to construct series of jumps component as input to improve forecasts.
Moreover, the extension of the evolving fuzzy-GARCHapproach by using exponential
and threshold GARCH-type models also comprises issues of further investigation.
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