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Abstract Inspired by the analysis of the limit order book and order flows in the
order-driven model of Chiarella et al. this paper conducts a dynamic analysis of
a microstructure model and discusses the origin of price fluctuations. Agents are
assumed to use either a fully fundamental-value reversion or a trend following strat-
egy to form their expectation of future asset returns. Furthermore, the probability of
changing strategies and the parameters for the strategy are chosen based on a fitness
measure. In this way, the agents’ strategy choices are better related to the evolution of
the market. We also add a layer of intraday activity. This model can obtain the results
of the original model, such as the impacts of the traders’ strategy and the stylized facts.
Furthermore, we exhibit many empirically observed features in both the intraday and
the daily horizon. The results provide evidence that the agents’ expectations and trad-
ing volume can generate large daily price changes and that intraday price fluctuations
can be caused by large trading size or liquidity fluctuations in different conditions.

Keywords Continuous double auctions - Market microstructure - Heterogeneous
agents - Price fluctuations

1 Introduction

Traditional economic and finance theory is based on the assumptions of investor
homogeneity and rational expectations. Recently, the literature has witnessed an
increasing number of attempts to model financial markets by incorporating heteroge-
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neous agents and bounded rationality. Both theoretically and computationally oriented
heterogeneous-agent models are used to produce some common stylized facts regard-
ing financial market time series in empirical investigations (see Pagan 1996), including
excess volatility, some skewness and excess kurtosis, fat tails, and volatility cluster-
ing. There are two advantages to a computationally oriented model compared with
a theoretically oriented one. Firstly, computer simulation can link many behavioral
aspects at the micro level with the macro level. Secondly, more realistic market fea-
tures, including budget or wealth constraints, and the irregular intraday trading of
non-fractional shares, can be readily incorporated into the market microstructure of
continuous double auctions and dealer and hybrid markets.

In this paper, we use a continuous double auction mechanism, which has become a
widely used clearing device in many stock exchanges around the world. In the last few
years, several order-driven microscopic models have been introduced to explain the
statistical properties of asset prices (see Slanina 2008). Chiarella and Iori (2002) intro-
duced a simple order-driven market model with heterogeneous agents to investigate
how different trading strategies may affect the dynamics of price, bid-ask spreads,
trading volume and volatility. Their results indicate that all three trader types are
necessary in some form to generate realistic looking return dynamics. In addition,
fundamentalist behavior can stabilize the market by reducing the amplitude of price
excursions, whereas chartist behavior has the opposite effect and generates large price
fluctuations and volatility clustering.

Although the microstructure model of Chiarella and Iori (2002) is very simple and
can generate some properties in real asset prices, it does not consider the properties of
the generated order flows or of the order book itself. Therefore, Chiarella et al. (2009)
(CIP model, hereafter) built a model to incorporate the empirical findings of limit order
data. These authors extend three main aspects of the previous model: different time
horizons, more than one order submission, and heterogeneous risk aversion. Their
model has a properly specified demand function and incorporates feedback from the
ongoing evolution of the market. The CIP model has extended a number of the earlier
models in this literature that only allowed the agents to place orders of unit size. They
analyze the impact of the three trading strategy components on the statistical properties
of prices and order flows and find that the chartist strategy is primarily responsible
for fat tails and volatility clustering in the artificial price data generated by the model.
Their analysis of the order book data has also added to the debate on what causes
fat-tailed fluctuations in asset prices.

As we all know, the empirical distribution of asset price fluctuations is fat-tailed;
that is, there is a higher probability of extreme events than in a Gaussian distribution.
However, a consensus has not been achieved regarding the mechanism that causes fat-
tailed fluctuations in asset prices. Gabaix et al. (2003) proposed that large price changes
in stock market activity arise from large trading volumes. These authors presented
empirical evidence for the shape of the price impact and found the ‘square root’ price
impact of volume, emphasizing that the price impact of a trade size has an increasing
functional form that applies to a large number of stocks. In contrast, Farmer et al.
(2004) studied the distribution of price fluctuations generated by individual market
orders. These authors show that the price fluctuations caused by individual market
orders are essentially independent of the size of the orders. Gillemot et al. (2006)
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aggregated returns over a fixed number of transactions (or volume) and found that the
return probability density function remains fat-tailed with properties very similar to
those in a fixed interval of time. Their result also supports the idea that the heavy tail
of the return distribution is not due to variations in the number of transactions because
in this case, the number of transactions is held constant. Moreover, Farmer et al. have
shown that large price fluctuations are driven by liquidity fluctuation, indicating that
a large price change can be caused by a market order submission when a large gap is
present between the best price and the price at the next best quote. The gap size is a
measure of the liquidity available in the market as limit orders. Thus fluctuations of
liquidity—that is, in the market’s ability to absorb new market orders—are the origin
of large price fluctuations. The CIP model provides further evidence that large price
changes are likely to be generated by the presence of large gaps in the book.

To further study the origin of large price fluctuations and the factors that generate
the stylized facts, such as fat-tails and volatility clustering, this paper retains the
continuous double auction trading mechanism and the restrictions on short selling and
borrowing money and extends the CIP model in the following aspects.

Instead of blending three components (fundamentalist, chartist, noisy) in the strat-
egy, the agent uses fully fundamental-value reversion or the trend following strategy at
any given time in our model, specifically, using the fundamentalist or chartist behavior
to represent these two types of strategy users, respectively. The fluctuation of supply
and demand in the market may come from the response to information (such as the
fundamentalists who keep the prices from deviating from the fundamental value too
much and chartists who use the history trends of prices to forecast the price movement)
or just from the liquidity requirement (such as the noise traders who trade randomly).
The information hiding behind the supply and demand affects the order flow in the
market, causing the change of orders stored in the limit order book, and then the market
price changes. Therefore, the influence of market information on the price is directly
reflected in the formation process of the market price.

Moreover, agents hold two specific individual strategies (fundamentalist strategy
and chartist strategy) and can switch individually to another strategy depending on
the relative performance of their personal strategy. Instead of randomly selecting the
parameters for the fundamentalist and chartist expectation strategies, we choose para-
meters based on some fitness measure. In addition, we add a layer of intraday activity,
as in Chiarella et al. (2012), that is missing from the CIP model and the closing price
is formed after all of the agents enter the market.

We use some statistical tools such as cumulative distribution functions and the
rescaled range statistic to analyze the time series simulated by the model. We find
that, with the inclusion of the features mentioned, our model can reveal various types
of price behaviors in intraday and daily horizon. The chartists’ behavior can lead to the
price taking long excursions away from the fundamental value. Our model is able not
only to obtain the essential features of the CIP model but also to characterize most of
the stylized facts both in the daily price and the intraday price, such as volatility clus-
tering, the insignificant autocorrelations of returns and the significant, slowly decaying
autocorrelations of the absolute returns. We also discuss the statistical properties of
spread, which describes the observed stylized facts of double auction markets such as
the presentation of long-range correlations.
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In addition, we also discuss what generates the large price changes in stock markets.
Atthe daily trading horizon, trading volume is an influencing factor in generating larger
price fluctuations, and traders’ expectations are also closely related to the daily price
changes. Bubbles or crashes appear in the market as the market fraction of the chartist
traders rises. Specifically, at the intraday trading horizon, we use the definition of
liquidity from Farmer et al. (2004). The probability for larger returns conditioned on
larger trading sizes is higher than that conditioned on smaller trading sizes, indicating
that trading size is an influencing factor in generating larger price fluctuations. In the
transactions with relatively smaller trading sizes, large price changes are driven by
large gaps occurring in the price levels adjacent to the best bid and best ask, implying
that liquidity plays a role in causing large price fluctuations.

The paper is structured as follows. In Sect. 2, we introduce the model. In Sect. 3, we
show the simulation results of the model and compare them to the empirical studies.
Furthermore, we discuss the origin of price fluctuations in different time intervals.
Section 4 concludes the paper.

2 The Model
2.1 The Heterogeneous Agents

There are N agents in the market, who are initially endowed with a random amount
of stock SlQ and cash C?, withi = 1,2, ..., N. The difference between the agents’
endowments is not very large, although they are heterogeneous. The endowments Sf
and C l’ at time ¢ are updated when a new transaction occurs. In our model, the agents
are not allowed to short sell stocks or borrow money.

We use the subscript r = 1, ..., T to represent the calendar trading days where p;
represents the daily price or the closing price, referring to the transaction price of the
last trade in the trading day on the rth trading day, whereas 7 € R refers to intraday
time. The daily price fluctuation, which is the return from ¢ — 1 to ¢, is calculated as

1y =Inp, —Inp, . (D

We initialize the daily closing price p; in the first 7 days. All of the agents enter the
market sequentially in a randomly selected instant t < t < ¢ + 1 and trade with
others during the trading day. At the beginning of each day, a random permutation
¢y of {1,..., N} is drawn and the agents take action in the order dictated by ¢;.
In other words, the trading orders are issued sequentially in a random order that is
independently sampled every day. The agents have only one chance to trade each day
when it is their turn.

The CIP model assumes that all agents use a combination of fundamental value,
chartist and noisy rules to form expectations on stock returns, and price is formed as an
agent is randomly chosen to enter the market at any time . We extend this rule in the
following way. The agents make their investment choices based on their expectations
for the closing price on the trading day, and they trade sequentially. Agents are either
fundamentalists or chartists according to their expectation patterns. The agents switch
individually depending on their personal performance for the two types of strategies.
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The fundamentalists know the fundamental value p,f of the asset, which is fixed
for day 7. The fundamental value is exogenously given as

pler = pl exp(orur) @

which is to say, In p[f 4= p,f + oy, where o ¢ is the volatility of the fundamental
returns. v; ~ N (0, 1) follows a standard normal distribution. The fundamentalist, i,
believes that the closing price will reverse to the fundamental value p,f , forming an

expectation about the spot price at the end of the day:
EX(np) =Inpioy + k) (B (np! ) =1 pir). 3

where Kli represents agent i’s expected speed of mean reversion. Because the funda-

mental price p,f is known to each agent in our model, we can obtain

EN(np—npiy) =« (Inp/ —Inpii). o)
Moreover, we define
ki = 01 ©)

in our model, where B! is related to the historical performance of the fundamentalist
strategy and 6 is some reference level for the mean reversion speed. Therefore, the
expected spot return is estimated as

E' (r) = 6y (1n p/ —In p,_l) . (6)

The better the performance is, the bigger ,3; is and the quicker the reversion speed to
the fundamental value.

Chartists do not rely on their knowledge of the fundamental price but try to extrap-
olate the past price movements into the future and form expectations about the next
period’s return according to an adaptive scheme. More precisely, the agents’ expecta-
tions for stock returns E’(r;) are based on the observations of the spot daily returns
over the last 7 days. The expected return is given as

E'(r) =62 (Inpr1 —In py_ji_y), Q)

where r; and p; are, respectively, the spot return and spot price at time ¢.6; is a given
parameter. We choose the time horizon 7' of each chartist to form an expectation
according to

=iy, ®)
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where 7 is some reference time horizon. We assume that the chartists believe that the
return change in a day can be forecast using the historical return change for several
days, which is to say that the expected return E’(r;) is similar to the historical return
between the last 7/ days. Meanwhile, the agents use the historical performance of the
chartist rules to calculate the parameter ;.

In addition, we add a noise induced component s{, with zero mean and variance
¢, to the agent’s expectation with weight g’ in the decision process. The expected
closing price is given as

E"(p) = pivexp (E' () (14 g'e) ©)

For agent i, the initial weights are uniformly chosen from the interval g’ € [0, 1] and
remain constant.

To facilitate trading, we also introduce a small number of noise traders except for the
agents using the trading strategies. The noisy agents enter the market with probability
p = 0.1 and issue a random order with the same probability to buy or sell.

2.2 The Order Placement Mechanism

Once the agent forms an expectation for the future return and price, he decides the
order type and size to maximize his utility. We assume that the agents are risk averse
and that the utility is an exponential function of wealth W/, which is given as

U (Wi.a') ==V, (10)

where the coefficient o' measures the absolute risk aversion of agent i. We assume
that those agents using a fundamental strategy are more risk averse than those using a
chartist strategy. This effect is captured by setting

aiza(k+ﬁ)0uf=a/o+q4» (11)

where o is some reference level of risk aversion.
Define the portfolio wealth of each agent as

Wi =Sip +Cl, (12)

where S? and C!, respectively, represent the stock and cash position of agent i at time
t. The optimal composition of the agents’ portfolio is determined by trading off the
expected return against the expected risk, which is how it is determined in the CIP
model. The number of stocks that the agent wants to hold in his portfolio at a given
price depends on the choice of the utility function. For the CARA utility function, the
number of stocks that agent i/ wants to hold at a given price ﬁil is given by

@ Springer



Exploring Price Fluctuations in a Double Auction Market 195

o In (E p
i (ﬁ;)= n ( (Pz)/Pd)’ (13)

iVl 5
a'Varp,

where o is the risk aversion coefficient and Var! is the expected variance of returns.
We use the historical variance of the market price as the expectation for the variance
of the return in the future and define it as

t"i

Var! = ;l:z [rt_j _ ,:;']27 (14)

j=1
where 7' is the time horizon for observation, which we define it as

ii—ipi (15)
and

=ty (16)

for the fundamentalists and the chartists, respectively. From the formula, we can see
that the optimal number of stocks is independent of wealth and related to the expected
return and its variance.

The price that agent i submits is restricted in the range 132 e pfn, Pﬁw] because of
budget and stock constraints. We numerically estimate the price level p* at which the
agents are satisfied with the composition of their current portfolio and will not change
the number of stocks that they hold, which is given by

. In (E7(p) /p") _
! * = —-—-—-----= l, 1
) = e = (17)

Because the agents are not allowed to short sell, which is to say, S ; > 0, we ensure that
i( ﬁfi) > 0 and this equation admits a unique solution 0 < f’fl < E'(p,). Therefore,
the upper price bound is given as pj'w = E!(p,). Furthermore, to ensure that an agent
has sufficient cash to purchase the desired stocks, the smallest value p;, is determined
by the agent’s cash position, which is given by the condition

Py (7' (p) = 51) = Clor 2 (p),) = Ci/phy + 1. (18)

During the trading days, the agents use their own expectation pattern [ F, C] to form
the expected price E’ (p;), where F and C represent the fundamentalist and the chartist
strategies, respectively. Then, the agents calculate the buy/sell price interval [ pﬁ,w pﬁw]
and choose the willingness to trade price 13; with a uniform distribution. Bids, asks
and prices need to be positive and agents can submit limit orders at any price on a
prespecified grid, defined by tick size A. We next consider how the agent’s order is
determined. When the agent’s willingness price is ﬁ;, taking the condition in the limit

@ Springer



196 M. Ji, H. Li

Table 1 Summary of the trading mechanism of a typical trader i with willingness price ﬁﬁl to trade, which
is chosen from the buy/sell price interval [p},, p},]

Action Type of order Volume

i pl ~i q o . . .
L ipm : Pg <4 Buy Limit order Vi =na"(pl) -8
Pq =Py

if a2 ~i * : ; i
1 i“z <qu <P Buy Market order Vi =nl@al) - S}
Pg =4;
if ﬁ; = p* No order placement

¢ % . . .
if p* qud =< Sell Market order Vi =8 -l )

Pl =
if by <_1’d <Py Sell Limit order Vi =58 —n'(py)

Py =Py

order book into consideration, his actual quote pé and trading volume are given as
follows, where a; and b{ represent the current quoted best ask and bid, respectively
(Table 1).

After the agent issues his order at each moment t, all existing orders in the market
match with each other to form the transaction price under the rule of price priority and
time priority.

2.3 Switching Trading Strategies

In our model, we assume that each agent knows the fundamental value and holds two
specific individual strategies Jti —the fundamentalist strategy and the chartist strategy;
Jti € {F, C}. The agent i can calculate the performance measure of the expectation
strategy used J/ at day ¢ when the closing price becomes available and can choose
which strategy to use the next day. We use the switching rules as defined in Chiarella
etal. (2012). However, we emphasize the prediction accuracy of the strategy Jti, which
is to say, that the performance of strategy J,i is better if the expected price movement
direction is the same as the daily price movement direction in the market. In this case,
the agent will always update the performance of expectation strategy J; at the end of
the trading day. Agent i computes his performance index for the expectation strategy
J! used according to hlS quote p) and the daily closing price p,. Specifically, the

/

performance index Q, of the used expectation strategy J,’ is computed as follows:

i Ji — pl, i is a buyer,
QM = | PrT Pgo 1S 2DUY (19)
Dy — Dr, 1 is a seller.

while for the other strategy that is not used, SZ;’J’ =0.

;o
Then, the agents adjust an individual smoothed performance index U,Z’J’ for each
expectation strategy J; € {F, C} as
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= Ut et (20)

where 7 is a memory parameter. On the day 7+ 1, the agents choose the fundamentalist
strategy with the probability p;fl:

i,F EU;I’F
o= ——— 1)
t+1 eU’,F —i—eU/‘C
Equivalently, the probability of choosing the chartist strategy is given by
i,C i,F
P =1- Py (22)

As we have mentioned before, the weight coefficient for each expectation rule is
related with its performance, which is given as
i eV i v
B = —F eVt = T iF iC* (23)
U 4 eUr Ui 4 eUr

3 Simulation Results

In this section, we discuss the effect of the different strategies on the process of price
formation and analyze the various properties of the returns such as fat-tails, volatility
clustering and the long-memory of volatility. Moreover, we discuss the origin of the
price fluctuations. In particular, we focus on trading volume, agents’ expectations and
liquidity.

In the simulations, we set the number of agents at N = 500 with the initial stock
uniformly distributed on the interval S? € [10, 13] and an amount of cash Clp €

[500, 500 + 3x Pz{)o]' We choose an initial fundamental value P/ = 30 and volatility
oy = 0.005. The transaction price for the initial periods is given as p, € [ p,f —

0.005, ptf + 0.005], where r € [1,200]. We also fix o, = 107°,7 = 100, 0 =
1.5,6, =0.58, po =0.1, A = 0.001, o« = 0.085 and n = 0.8.

The results below are the outcome of 1,000,000 step simulations corresponding to
2000 trading days. We have also repeated the simulations varying the parameter set
within a small neighborhood of the parameters used in the model and the qualitative
features are robust to such variations.

3.1 The Effect of Trading Strategy on Price and Return

In this section, our aim is to gain some insight into the details of the price formation
in the model, especially into the influence of the trading strategy on the process of
price formation. Therefore, we display sample paths for the price under very different
assumptions concerning the trading strategies used. Figure 1 depicts the time series in
the market with fundamentalists only, setting the agents’ mean reversion speed between
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Fig. 1 Representative time series for only the fundamentalists. The rop figures show the relationship
between price and the fundamental value (left) and the return time series (right). The bottom figures show
the autocorrelation of raw (left) and absolute returns (right)

the interval [0.5, 1.5]. From Fig. 1a, we observe that the market price closely follows the
fundamental value. The traders form the expectation for # 4 1 according to the closing
price at ¢ and the new fundamental value, resulting in a closing price for ¢ + 1 that
converges to the fundamental value. Figure 1c, d show the autocorrelation function for
r; and |r;|, indicating that there is no evidence of along memory in volatility. Therefore,
the model with only fundamentalists cannot reflect the long memory phenomenon from
the real market.

Figure 2 displays sample paths for the price in the market with only chartists.
In addition, we set the price interval over which the agents can submit orders to be
[15, 45]. When the chartists occupy the market, the price will rise to the upper bound
or fall to the lower bound due to the positive feedback. The chartist trading strategy,
which means that traders follow the historical price tendency, will bring the persistent
increase or decrease of prices.

From the results, we can see that both the fundamentalists and the chartists need
to be included in the model to characterize the real market. The fundamentalists can
guarantee that the market operates around the fundamental value. The chartists bring
extreme movements such as the bubble and the crash to force the price to deviate from
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Fig. 2 Price and fundamental price for only the chartists. In addition, we set the price interval over which
the agents can submit orders to be [15, 45]

the fundamental value and to intensify the price fluctuation, which may also cause
volatility clustering and a long memory of volatility.

3.2 Stylized Facts in the Model

In this section, we discuss the price behavior in a model with fundamentalists, chartists
and noise traders using the parameters previously provided, and we display the stylized
facts obtained by the model’s simulation.

3.2.1 Fat-Tail and Volatility Clustering

Some representative time series are shown in Fig. 3. Figure 3a shows the time series
of the market price and the fundamental value. We can see that the price is tracking the
fundamental value, but deviations are persistent and sizable. For example, at ¢ = 500,
there is a sudden drop and at t = 1200, the price is fluctuating smoothly around the
fundamental value. Figure 3b shows that the trading volume V; fluctuates approxi-
mately 2000. The definition of the intraday price p, in our model is consistent with
the CIP model. At any time 7, the price is given by the price at which a transaction, if
any, occurs. If no new transaction occurs, a proxy for the price is given by the average
of the quoted ask a; (the lowest ask listed in the book) and the quoted bid b, (the
highest bid listed in the book):

pr = (ar +b7)/2, (24)

a value that we called mid-price, which is also used in Farmer et al. (2004). The price
reflects the change in the best prices when a market or a limit order arrives. The daily
return r; and the intraday return r; are represented in Fig. 3c, d, respectively, and
exhibit episodes of large changes in price and some degree of volatility clustering.
To provide a further description and a comparison of the daily returns and the
intraday returns, Fig. 4 gives an example of the density of the intraday returns r; and
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Fig.3 Some representative time series with fundamentalists, chartists and noise traders. From the fop, the
panels show the price and the fundamental value (left) and the trading volume (right). The bottom figures
show the daily returns (left) and the intraday returns (right)

the daily returns r,. There are more extreme values in the intraday returns. We can
see that the distributions tend to be non-Gaussian, sharp peaked and heavy tailed. The
kurtosis for the depicted returns’ time series is 25.18 (left) and 99.68 (right), showing
that these leptokurtic and fat-tailed properties are more pronounced for the intraday
values, which are consistent with the empirical features. Moreover, for the longer time
intervals, the tail behavior of the return distribution slowly becomes consistent with a
Gaussian tail in accordance with the central limit theorem.

3.2.2 Long Memory of the Volatility

Aside from the fat-tailed price fluctuations and the volatility clustering, Fig. 5 illus-
trates the autocorrelation function of the returns r, and the absolute returns |r;|, which
we use as a proxy for volatility to check the long memory of the volatility. We can see
the insignificant correlation between the returns for most of the time lags on the Fig. Sa,
while the autocorrelation of absolute returns is slowly decaying to up to 100 lags on
the figure at 5b. The linear predictability of returns is very weak, showing some form
of efficiency for the market. The absolute return displays a positive autocorrelation
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Fig. 4 (Left) Daily return distribution compared with the normal distribution. (Right) Intraday return
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Fig. 5 The autocorrelation function of the daily returns (left) and the absolute daily returns (right) as a
function of lag

over several days, which quantifies the fact that high-volatility events tend to cluster.
Moreover, the slow decay of the autocorrelation of volatility reveals the sign of the
long memory of volatility.

To make a comparison with the CIP model, we also calculate the autocorrelation of
the intraday returns. The intraday return is computed when a trader enters the market
just as in the CIP model. We plot the autocorrelation function of the returns and the
absolute returns of 10,000 simulations from # = 901 to + = 1100 in Fig. 6. The noise
levels are computed as £3/ JL (Bouchaud and Potters 2000; Raberto et al. 2001),
where L is the length of the time series. We can see that Fig. 6a also shares a common
feature found in the CIP model, as the autocorrelation coefficients of returns are within
the confidence band while those of the absolute returns are slowly decaying. From
Fig. 6b, shown for a longer time length, we can see that autocorrelation coefficients of
absolute returns decays slowly and displays pronounced peaks at multiples of 1 day
(500 transactions). Furthermore, we implement the modified R/S, or rescaled range,
analysis (see Lo 1991) to quantify the memory range. The modified R/S statistic of
absolute returns is 0.7201, which is bigger than 0.5, showing that the series is positively
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Fig. 6 (Left) The black solid curve and the black dashed curve represent the autocorrelation function of
the intraday returns and the absolute intraday returns for the time length of 100 transactions respectively.
(Right) The fork and dot symbols represent the autocorrelation function of the intraday returns and the
absolute intraday returns for the time length of 1000 transactions respectively

correlated, while that of the raw returns is 0.4106. This result verifies the long memory
property of the absolute return series. Therefore, some properties of the original model
are retained at the intraday horizon in our model.

As Chiarella et al. (2012) mentioned, there must be occasional large returns and
occurrences of ‘spikes,” but not too frequent, to obtain the uncorrelated raw returns and
along memory in the absolute returns. In our model, the parameters in the expectation
strategy affect the price movement indirectly because the agent’s quote depends on his
expectations. Increasing the reference level of fundamentalist strategy 61 influences
the statistical properties of returns because the market price quickly reverts to the
fundamental value. Moreover, by decreasing the parameter of the chartist strategy 6,
which is also related to the chartists’ expectations, the probability of the occasional
large return tends to decrease. In addition, increasing the probability of the noise
traders entering the market will frequently exaggerate the price fluctuations.

3.2.3 Long Memory of the Spread

Moreover, we investigate the property of the market book shape. Spread is an important
index of the order book and is defined as

s = log pa(t) —log pp (1) (25)

in Mike and Farmer (2008). In their empirical study, Plerou et al. (2005) find that the
spread for a typical stock displays large fluctuations, and the cumulative distribution
is consistent with a power law. The tail exponent is similar in value to the exponent
describing the distribution of volatility. These authors’ analysis of the autocorrela-
tion function of spread shows long-range power law correlations, similar to those
previously found for volatility.

We consider temporal correlations in the bid-ask spread. Figure 7 shows the autocor-
relation function of the spread from day 501 to day 1500. The figures give the autocorre-
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Fig. 7 The autocorrelation function of spread as a function of lag. We calculate the autocorrelation coef-
ficient of spread in the interval of transactions at different time length

lation function of the spread in the interval of transactions but at different time lengths.
We find that the autocorrelation function of the spread decays slowly and displays pro-
nounced peaks at multiples of 1 day (500 transactions), giving the same results as the
empirical study of Plerou et al. (2005). Stanley’s study explains that the peaks origi-
nate from the U-shaped intraday pattern in the bid-ask spread, similar to the previously
reported intraday patterns in volatility. The figure indicates the presence of long-range
correlations with the feature that the autocorrelation function decays slowly.

In summary, this model characterizes the stylized facts in an empirical study, such
as fat tails of the return distribution, volatility clustering, uncorrelated raw returns and
a long memory in the absolute returns and spreads. The model can reflect the real
market to some extent. Furthermore, we can see that the tail of the distribution of high
frequency prices is heavier than that of low frequency prices, showing that the number
of large price jumps in transactions is higher than that in days.

3.3 Origin of the Price Fluctuations

In this model, a fundamentalist uses the fundamental value information that is exoge-
nously given while the chartist processes the information contained in the history of
prices. Fundamental information entering the market will change the fundamental
value, and then it is processed and incorporated into prices, influencing the agents’
expectations. The agent’s expectation affects the quote of the agent’s orders, which
influences the transaction price. The fluctuations in liquidity during the day can also
affect the transactions, leading to price jumps in each transaction. Therefore, in this
subsection, we discuss the origin of price jumps in different time intervals.

3.3.1 Daily Fluctuations: Trading Volume or Agents’ Expectations
Firstly, we discuss the relationship between price fluctuations and trading volumes in

days. Figure 8 shows the cumulative probability for volumes V' conditioned on returns
generated r, i.e.,
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Fig. 8 The cumulative distribution of daily trading volume conditioned on returns generated. The daily
returns are sorted by values into five groups with roughly the same number of data in each group. The
black dashed curve represents the group with the largest returns. The other four groups, ranging from large
returns to small returns, are indicated with successively lighter shades of grey

F(V >x|r)= / fVIrHdV, (26)

for different ranges of returns r. We sum up the orders in transactions during a day to
obtain the daily trading data. Next, we sort the data by daily returns into five groups
with roughly the same number of data in each group. We can see that the volume
distributions for each range of r; are roughly similar except for the group with the
largest returns. The probability of a larger trading volume conditioned on larger returns
generated is higher than that conditioned on smaller returns generated, illustrating that
the trading volume is an influencing factor for generating larger price fluctuations.
When the returns generated are relatively small, the distribution characteristics of the
trading volumes are similar, showing that small price fluctuations are less likely to be
initiated by trading volume.

Aside from the trading volume, the agents’ expectations for the closing price
determine the orders that they submitted and the closing price is formed through a
continuous double auction. So, we investigate the influence of different expectation
strategies by considering the proportion of different types of traders. Figure 9 depicts
the relationship between the trading strategy and the price, with grey and black lines
representing the proportions of fundamentalists and chartists varying with time. The
proportion value changes in the interval of [0.3, 0.75] without any observations of
dramatic switching for all of the agents to either one of the expectation strategies. As
traders enter the market in sequence, the performance of the two types of expecta-
tion strategies is different due to the different market conditions that the traders face.
However, we can observe that the proportion of agents using a particular expectation
strategy increases in a short time. A bubble or a crash appears in the market as the
market fraction of chartists rises, while the price fluctuates around the fundamental
value when the fundamentalists and chartists are at approximately the same proportion
or when the fundamentalists dominate the market. Therefore, the traders’ expectations
are closely related to the daily price changes.
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Fig. 9 Evolution of the fraction of fundamentalists (grey) and chartists (black). For convenience, the price
and the fundamental value are shown as a black dashed line and a grey dashed line, respectively

In summary, the traders’ expectations primarily influence the daily price fluctu-
ations, and large trading volumes may bring the largest daily price fluctuations. If
there are more fundamentalists in the market, they expect the price to converge to the
fundamental value, issuing a quote near the fundamental value. If they submit market
orders that can be transacted immediately, this behavior will push the temporal price
toward the fundamental price. The limit orders submitted by the fundamentalists will
offer liquidity for the other traders and will influence the price in the future. Therefore,
the price will converge to the fundamental value in a market with more fundamental-
ists. The analysis of the conditions in a market with more chartists coincides with the
analytical method described above, and the price will surge or crash.

3.3.2 Intraday Fluctuations: Order Size or Liquidity in Transactions

Next, we focus on the price fluctuations in transactions. During the trading day, a piece
of news becomes available, and the market participants work out how this changes
the fundamental value of the stock. The informed traders trade accordingly and the
market price gradually converges to its new equilibrium value. In the empirical study,
the liquidity as measured by the number of standing limit orders is always low. Because
of the lack of liquidity, high frequency prices are not in equilibrium and the market
needs some time to converge to the new equilibrium price. Here, we discuss the features
in this process and assess whether large price fluctuations in transactions are due to
large order sizes or to the presence of these large gaps.

Firstly, we discuss the relationship between the price fluctuation and the market
order size. We compute the distribution of returns conditioned on the size of the incom-
ing market orders. Just as in the CIP model, we split the orders into five groups with
approximately the same number of orders in each. Figure 10 displays the conditional
distribution of returns given orders of different sizes and shows that the distribution
characteristics for each range of the four groups with smaller order sizes are similar,
with the conditional distribution of the range for the group with the biggest order sizes
being slightly fatter. Thus, for several different groups with a small order size value,
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Fig. 10 Dependence of returns on order size. The figure shows the probability of an absolute return |r| > x
conditioned on the order size and on the fact that the price shift is nonzero. The orders are sorted by size
into five groups with roughly the same number of orders in each group. Ranging from large orders to small
orders, the curves are indicated with successively lighter shades of grey
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Fig. 11 The cumulative distribution of the size of the bid-ask spread (black dashed line) compared to the
cumulative distribution of the returns generated by market orders (black)

there appears to be virtually the same curve independent of order size, meaning that
the probability of large price fluctuations is similar. A relatively smaller order size
does not play an important role in generating large price fluctuations while a large
order size can cause larger price fluctuations.

Secondly, we consider the relationship between the order book and the price series.

Figure 11 depicts the distributions of spreads and price fluctuations. The two curves
are similar in shape and the probability of large spreads is bigger than that of large
returns, indicating that the price fluctuation does not fully reflect the change in the
spread.

Next, we discuss the relationship between the liquidity as measured by the gap and
the size of the price moves in transactions. We define the gap as it is defined in Farmer
et al. (2004). The size of the first gap is denoted as the absolute difference between
the best log price &.5; and the log price of the next best quote &,..;, as

8= | In ébest —In ‘i:next|' 27

We assume that the behavior of the price increase is due to the execution of the best
sell orders, in which condition we use
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Fig. 12 The cumulative distribution of the size of the gap (black dashed) compared to the cumulative
distribution of returns generated by the market orders (black). The two distributions are very similar

8a = Inapess — Inapexy (28)

to calculate the gap while the execution of the best buy orders cause the price to fall,
in which condition equation

8h = In bbest —1In bnexl (29)

is used.

In Fig. 12, we compare the distribution of the gaps to the distribution of price
returns using the transaction data for the time interval [201, 2000]. The distributions
are very similar, showing that the fluctuation of the gaps in the limit order book plays
an important role in the price changes. Furthermore, the tail of the return distribution
is slightly fatter than that of the gap distribution, indicating that large returns may be
bigger than the gaps because of the large order sizes. In our model, the gaps reflect the
price fluctuations, implying that newly arriving market orders can cover the volume
at the best price with the resulting price changes.

In this subsection, we discuss the influential factors for large price fluctuations and
find that they are related to large gaps and large order sizes. When the order size is
relatively smaller, the return distributions are similar while the probability of extreme
events is higher when the trading size is large. Thus, the larger transactions can cause
relatively larger price fluctuations to some extent. Moreover, the distributions of the
intraday gap and the returns are similar except in the tail, indicating that the gap is an
influential factor.

Next, we further discuss the relationship between the gap and the return. Most large
changes in the intraday price are due to fluctuations in liquidity, manifested by gaps
in the filled price levels in the limit order book. Farmer et al. (2004) noted that the
distribution of large price changes merely reflects the distribution of gap sizes in the
order book at a microscopic time scale. In the empirical study, even for the most liquid
stocks in the London Stock Exchange, the limit order book often contains large gaps
that correspond to a block of adjacent price levels containing no quotes. When such
a gap exists next to the best price, a new market order can remove the best quote and
generate a large price change. A study of London Stock Exchange data indicates that
97 % of the trades having a nonzero price impact generate a price change equal to
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the first gap. As a consequence, even a small order can create a large price change,
creating a very large spread. Therefore, the fluctuations of the gap sizes in the book
are another key determinant of large price changes. The gap size is a measure of the
liquidity available in the market as limit orders. Thus, fluctuations in liquidity—that
is, in the market’s ability to absorb new market orders—are also the origin of large
price changes.

4 Conclusion

In this paper, we established an order-driven market model with heterogeneous agents.
We retain some points of the CIP model to allow the agent to determine his demand
through the maximization of his expected utility of wealth; we also allow the agent
to place orders of more than one size. We extend the original model in the following
aspects. Each agent uses a fundamental-value reversion or trend following strategy and
can switch individually to another strategy based on their personal performance. With
the incorporation of a fitness measure to the agents’ strategy choice and expectation
formation process, agents can adapt their beliefs over time and their expectations
are closely related with the ongoing evolution of the market. In this way, we can
investigate the role of agents’ behavioral traits on the property of the price series. The
agents submit orders according to their expectations for future returns. We also add
a layer of intraday activity. Therefore, we can analyze the statistical properties of the
price series in both the intraday and the daily horizon.

The simulated return series exhibits many empirically observed features such as
volatility clustering, fat tails and the long memory of returns and spreads, and we find
that both fundamentalists and chartists should be included to reproduce theses stylized
facts.

This model exhibits many empirically observed features in both the intraday and
the daily horizon. In the CIP model, the price is given when a trader is chosen to
enter the market, which is similar with the intraday price in our model. Our model
can obtain the essential features of the CIP model such as the fat-tailed distribution of
intraday returns, volatility clustering and significant slowly decaying autocorrelations
of absolute returns in the intraday horizon. Furthermore, our model can reproduce more
stylized facts. Besides of the features shown above, the autocorrelation coefficients
of absolute intraday returns displays pronounced peaks at multiples of 1 day. The
daily return series also shows volatility clustering, the fat-tailed distribution and long
memory properties. And the tail of the intraday return distribution is heavier than that
of daily return distribution. We also show the long memory property of daily volatility
and bid-ask spread.

We also discuss the source of large price changes both in intraday trading and at
the daily horizon. From the daily time series, we find that traders’ expectations are
closely related to price changes, and the role of the trading volume is minor except for
the largest returns. From the intraday time series, our simulation confirms the debate
on different conditions. Large price changes are driven by large gaps when the price
change values are relatively smaller while a larger transaction size can cause relatively
larger price fluctuations.
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Future research could add the interaction between the agents to the framework and
analyze the influence of the information sharing process on the time series simulated
by the model.
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