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Abstract Accurate quantification of the integration strength between dynamically
evolving markets has become a major issue in the context of the recent financial
predicament, with the typical approaches relying mainly on the time-varying aspects
of market indices. Despite its recognized virtue, incorporation of both temporal and
frequency information has still gained limited attention in the framework of market
integration. In this paper, a novel measure is proposed, which better adapts to the
time-frequency content of market indices for quantifying the degree of their inte-
gration. To this end, advanced statistical signal processing techniques are employed
to extract market interrelations not only across time, but also across frequency, thus
distinguishing between short and long-term investors. Specifically, probabilistic prin-
cipal component analysis is employed to extract the principal factors explaining the
cross-market returns, while a Hough transformation, applied on appropriate time-
scale wavelet decompositions of the original time series and the principal factors,
is exploited to extract global patterns in the time-scale domain by detecting local
features. Then, statistical divergence between the corresponding Hough transformed
time-scale decompositions is used to quantify the degree of market integration. The
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efficiency of the proposed measure is evaluated on a set of 12 equity indices in the
framework of well-diversified portfolio construction revealing an improved perfor-
mance against alternative market integration measures, in terms of typical financial
performance metrics.

Keywords Market integration · Time-frequency representation · Multiscale
decomposition · Wavelets · Hough transform · Probabilistic principal component
analysis

1 Introduction

Abasic feature of an economical system is thatmarkets constitute a dynamically evolv-
ing universe, comprising of individual components, which may compete or cooperate
with each other, while often hidden relations are formed. Such relational knowledge
can be crucial when investing in a market, where potential losses, for instance, due to
a sudden fall of prices in a group of shares, affect all those interrelated components of
the market. This behavior gave rise to the framework of market integration, which is
of special interest to a broad range of markets, such as, foreign exchange, commod-
ity, and derivative markets, to name a few, and appeared to be a key issue in distinct
application areas, such as asset allocation and risk management.

The commonly accepted and intuitive definition of market integration states that
“two financial markets are integrated when they evolve in a combined way”. In this
context, several studies try to formalize this concept andprovide numerical and analytic
integration measures. On the other hand, the increasing demand for improved market
integration measures is placing significant constraints on extracting highly accurate
descriptors of the variability of the distinct markets.

In general, a high degree of integration among markets indicates that investors
interested inwell-diversified portfolios will concentrate on the available assets without
taking into account the concrete markets. On the contrary, low integration implies
entirely different pricing rules affecting the diversification process. Based on this
consideration, numerous approaches have been proposed in the literature to quantify
the degree of integration between distinct markets. The majority of existing measures
ofmarket integration can be distinguished in twogeneral classes: (i)measures designed
by exploiting the principles of asset pricing theory; (ii) measures implied by statistical
and econometric methods.

The first class includesmethods based on asset pricingmodels in order to verify that
assets are correctly priced and assess market integration. Typical examples belonging
in this class aremethods based on cross-market arbitrage (Chen andKnez 1995; Balbás
and Munoz 1998), or equilibrium models (Garbade and Silber 1983; Bessembinder
1992) just to name a few. However, the main disadvantage of the methods belonging
to the second class is that their performance depends on the accuracy of the chosen
pricing model.

On the other hand, the second class comprises ofmethodswhich quantify the degree
of market integration based on the use of statistical and econometric concepts. The
most commonly adopted, yet intuitive, method employs the computation of pairwise
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cross-correlations between the corresponding time series. In particular, Kempf and
Korn (1998) suggested that the higher the correlation coefficient, the stronger the
market integration is. In the same direction, several methods have been introduced
recently exploiting time-varying cross-market correlations (Longin and Bruno 1995;
Goetzmann et al. 2005; Baur 2006). Although all those works rely on the observa-
tion that increased integration may lead to increased correlations between markets,
however, it has been shown that making inferences about market integration based on
changes in cross-market or cross-asset correlations only may be hazardous (Forbes
and Rigobon 2002). One reason is that correlations may increase simply due to more
volatile common factors, rather than to increased market linkages.

For this purpose, alternative methods were proposed incorporating the framework
of factor analysis, which rely on a factor decomposition of returns (Stock and Watson
1988).Themotivationbehind thesemethods stems from theAPT literature (Burmeister
and McElroy 1988), which states that markets are ruled by common factors and as
comovements become stronger, specific risk and diversification potential get lower.
However, amain disadvantage of factor analysis is the difficulty to interpret the factors,
except for the first factor which has been interpreted as a market factor closely related
to an equally weighted index (EWI) composed of all assets (Heston et al. 1995). To
overcome this limitation, principal component analysis (PCA) was used as a proxy to
factor analysis so as to yield amoremeaningful interpretation of the extracted principal
factors (Caicedo-Llano and Dionysopoulos 2008). Doing so, the first principal factor
explains the average percentage of variance over all the available assets, and can be
exploited to build “buy-and-hold” strategies. On the other hand, the second and third
principal factors explain the degrees of volatility and dispersion, respectively, among
the assets and can be employed in building “long-short” strategies.

A common characteristic of all the methods mentioned above is that the rely only
on information across time. In particular, the goal of such time-domain approaches is
to investigate the temporal behaviour of financial or economic variables. However, a
market integration analysis should also account for the distinction between the short
and long-term investor (Candelon et al. 2008). From a portfolio diversification per-
spective, a short-term investor is more interested in the integration of stock returns
at higher frequencies, which represent short-term fluctuations, whereas a long-term
investor focuses on identifying the relationship at lower frequencies, which are asso-
ciated with long-term fluctuations. This motivates a natural extension of the previous
time-domainmethods, in order to incorporate information from the frequency domain,
thus obtaining enhanced insights about the integration at the frequency level (A’Hearn
and Woitek 2001; Pakko 2004).

Simultaneous analysis in both the time and frequency domain by employing
efficient time-frequency representations has gained great interest in the financial prac-
tice (Gençay et al. 2002; Masset 2008). This is also impelled by the fact that different
investors and agents view the markets at different time resolutions (e.g., hourly, daily,
weekly or monthly), therefore, the dynamics of the potential interrelation between
markets consist of distinct scales that possibly behave differently. To this end, espe-
cially wavelet decompositions (Daubechies 1992; Mallat 2008), which constitute a
prominent family of time-frequency representations, have been applied on distinct
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economic and financial time series to decompose the data into time-scale1 compo-
nents of varying granularity. Typical early applications include the analysis of foreign
exchange data (Ramsey and Zhang 1997), the study of relationships between various
economic and macroeconomic variables (Ramsey and Lampart 1998; Crowley 2007),
and the investigation of the scaling properties of volatility (Gençay et al. 2001; Capo-
bianco 2004).More recently, new integrationmeasures were introduced, extending the
methods proposed in A’Hearn and Woitek (2001) and Pakko (2004), for the charac-
terization of international diversification benefits at different time horizons (Crowley
and Lee 2005; Rua and Nunes 2009), based on the computation of cross-correlations
between the wavelet spectra corresponding to the market time series.

Despite its recognized virtue, incorporation of frequency information for improving
the efficiency of time-varyingmarket integrationmeasures has not received a great deal
of attention. Motivated by the success of previous studies, where the inference accu-
racy about the degree of market integration is improved by exploiting time-frequency
information, in this work, our goal is to advance these methods by proposing a novel
market integration measure, which also exploits both temporal and frequency infor-
mation. Doing so, we can assess simultaneously the degree of integration at multiple
frequencies, thus accounting for both the short-run movements and long-run fluc-
tuations, and how the integration strength evolves over time. In this way, it is also
possible to distinguish between the diverse needs of short and long-term investors.
The performance of our proposed measure is then evaluated in the framework of
optimal portfolio construction based on the principles of the mean-variance portfo-
lio theory. In particular, the values of our market integration measure are computed
following a rolling time-frequency window approach, and are then used to estimate
optimal weights adapting to the varying integration strength, so as to increase portfo-
lio’s expected return.

We emphasize though that our proposed method should not be considered as an
attempt to dominate the complex model-based techniques of mainstream economet-
rics, but rather it should be seen as an alternative useful analysis tool in the applied
economist’s toolkit, which relies only on the available time series data without any
prior assumption on the data generating model.

1.1 Contributions

The main contribution of this work concerns the design of a novel measure for quan-
tifying the degree of integration among distinct markets. Specifically, similarly to
recent methods mentioned above, our proposed method exploits both temporal and
frequency information to enable adaptation not only across time, but also with respect
to short and long-run fluctuations. However, our approach differs from the previous
techniques in terms of two key points, which further affect the overall performance of
the proposed integration measure.

1 In case of wavelet decompositions the terms time-frequency and time-scale analysis are used interchange-
ably, since there is a one-to-one correspondence between frequency and scale.
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The first key difference of the integration measure introduced herein, when com-
paredwith the previous works, is related to the form of the time-scale (time-frequency)
information we use. In particular, in contrast to previous approaches, which employ
directly the two-dimensional wavelet spectrum, that is, the magnitude of the wavelet
coefficients associated with a given time series, our integration measure applies a fea-
ture extraction step to identify significant patterns in the two-dimensional (time-scale)
wavelet decomposition.

For this purpose, motivated by its success in various digital image processing and
computer vision tasks (Leavers 1992; Llebaria and Lamy 1999), a Hough transform
(HT) (Hough 1962; Duda and Hart 1972) is applied to detect complex patterns in the
corresponding wavelet decomposition. This is achieved by determining the values of
specific parameters, which characterize these patterns. The use of Hough transform
in our method is justified by two attributes: (i) it is very robust to outliers (points
that are not on a line or a curvilinear pattern have little influence on the estimation);
(ii) it detects accurately the linear (or curvilinear) structures in the time-scale domain,
which correspond to specific oscillation patterns in the original time series. The first
attribute is very important, since outliers in the time-scale domain, which may be due
to a transient phenomenon or the occurrence of singularities in the original time series,
are suppressed. This eliminates the possibility of yielding erroneous inference with
respect to the degree of integration between a pair of time series by accounting for
those isolated large-magnitude wavelet coefficients located near the singularities. The
second attribute is also significant, since the Hough transform, when applied on the
wavelet coefficients, enables a more compact and accurate extraction of the oscillation
patterns that exist in the original series, whichmay not be possible by simply relying on
the magnitudes of the wavelet coefficients. This subsequently affects the performance
of a market integration measure, which aims exactly on distinguishing between short
and long-run fluctuations.

The second key difference of our proposed integrationmeasure against the previous
approaches concerns the extraction of interrelations (correlations) among an ensemble
of time series. More specifically, as mentioned above, making inference about market
integration based on changes in cross-market correlations can be misleading (Forbes
and Rigobon 2002), since correlations may increase simply due to increased volatility
of the common factors, rather than to increased market linkages. Instead of adopting
the typical cross-correlation between pairs of time series, as the majority of previous
methods do, we employ the approach introduced in a recent study (Tzagkarakis et al.
2013). In particular, the integration strength is quantified by first extracting the main
factors explaining the cross-market returns in terms of the average percentage of
variance explained by the first significant principal factors. To this end, probabilistic
principal component analysis (PPCA) (Tipping and Bishop 2002) is employed to
extract the principal factors, yielding certain improvements when compared with the
standard PCA, such as decreased sensitivity to outliers, as well as increased robustness
to the presence of noise in the data. Having extracted the principal factors, the degree
of integration ismeasured by computing the correlations between the ensemble of time
series and the first principal factor, which explains the average percentage of variance
over all the available series. As it will be analyzed in the subsequent sections, this
PPCA-based approach for quantifying integration strength is coupled with a Hough

123



6 G. Tzagkarakis et al.

transformed wavelet decomposition in order to extract more meaningful principal
factors conveying information not only across time, but also across frequency.

To summarize, our major contribution in this work is threefold: (i) we illustrate
that the detection of complex local patterns occurring in financial time series can be
improved by combining appropriate time-scale decompositions with a Hough trans-
form; (ii) we incorporate efficiently the two-dimensional patterns extracted by Hough
transform to design an effective and robustmarket integrationmeasure, which achieves
improved adaptation across time and in multiple scales (short and long-run fluc-
tuations); (iii) we demonstrate the enhanced performance of the proposed market
integration measure, when compared against recently introduced and alternative mea-
sures, in terms of estimating optimal weights for maximizing the expected return of a
constructed portfolio. An increased performance of the constructed portfolios is also
revealed by applying the proposed measure on an ensemble of equity market indices,
in terms of typical financial performance indicators (e.g., return, volatility, information
ratio, and maximum drawdown).

The rest of the paper is organized as follows: Sect. 2 introduces themainmathemati-
cal properties of PPCA, time-scale wavelet decompositions, and the Hough transform,
which constitute the building blocks of our proposed method. In Sect. 3, the proposed
measure of market integration is described in detail, along with recently introduced
and alternative market integration measures. A performance evaluation in the frame-
work of portfolio optimization is carried out in Sect. 4. Finally, conclusions and further
research directions are drawn in Sect. 5.

1.2 Notation

In the subsequent analysis, the following notation is employed. Let Y = {y1, . . . , yN }
denote a time series consisting of N samples. Each sample yi ∈ Y is a pair (ti , xi ),
where ti is a time instant and xi ∈ R is the observed value at time ti . Notice that the
set of time instants T = {t1, . . . , tN } can be non-uniform (unequally spaced) in the
general case. For convenience, we ignore the time instants and we work directly with
the observed values xi , i = 1, . . . , N . Thus in the following, x = [x1, . . . , xN ] will
denote the vector of time series observations, which can be also considered as a vector
in the N -dimensional space, x ∈ R

N . In the rest of the text, Y and x will be used
interchangeably to denote a time series. In addition, capital bold letters are reserved
to denote matrices (e.g., A), while lowercase bold letters are used to denote vectors.

We also emphasize that our proposed market integration measure, as well as the
alternative integration measures introduced below, are designed and applied in rolling
windows of length w, which slide with a step size equal to s samples across the given
time series. Doing so, xi,w = [xi−w+1, . . . , xi ] denotes a window of length w whose
ending point is the i th sample of the original time series x.

2 Building blocks of the proposed market integration measure

This section introduces the main mathematical tools constituting the core of our pro-
posed market integration measure. In particular, the main properties of probabilistic
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principal component analysis (PPCA) are reviewed first, followed by a description
of the basic characteristics of time-scale decompositions. Finally, the main attributes
of the Hough transform are introduced, which is applied on the resulting time-scale
representations yielding spatially compact features in an appropriate parameter space.

2.1 Extraction of probabilistic principal factors from a time series ensemble

A remarkable feature of the typical PCA is the absence of a probabilistic model for
describing the observed data. A probabilistic formulation of PCA is obtained bymeans
of a Gaussian latent-variable model, with the principal axes emerging as maximum-
likelihood (ML) estimates,which canbe computed via an iterative and computationally
efficient expectation-maximization (EM) algorithm.Moreover, PPCA is characterized
by some additional practical advantages: (a) the probabilisticmodel offers the potential
to extend the scope of standard PCA.More specifically, multiple PPCAmodels can be
combined as a probabilistic mixture, increasing the explanatory power of the principal
factors, while also PPCA projections are robust to outliers and noise in the data; (b)
along with its use as a dimensionality reduction technique, PPCA can be employed
as a general Gaussian density model. The benefit of doing this is that ML estimates
for the parameters associated with the covariance matrix can be computed efficiently
from the data principal components.

LetXT = [x1, . . . , xM ] be the N ×M data matrix whose columns are the observed
time series. A latent-variable model aims to relate an M-dimensional observation
vector (rows ofXT ) to a corresponding K -dimensional vector of latent (or unobserved)
variables (rows of YT ) as follows,

XT = YTWT + 1N×1μ
T + 1N×1η

T (1)

where XT is the N × M data matrix, YT is the N × K (K ≤ M) matrix of latent
variables, WT denotes a K × M linear mapping between the original space and the
space of latent variables,1N×1 ∈ R

N×1 is a vector of all 1’s,μT ∈ R
1×M is a parameter

vector permitting the model to have non-zero mean, and ηT ∈ R
1×M stands for the

measurement error or the noise corrupting the observations.
In the subsequent analysis, xT and yT will denote an arbitrary row of the matrices

XT and YT , respectively. In addition, we make the following assumptions for the
parameters contained in (1):

1. The latent variables are independent and identically distributed (i.i.d.) Gaussians
with unit variance, that is,yT ∼ N (0, I),where I is the identitymatrix.A statistical
interpretation for the latent variables is that they explain correlations between the
original variables.

2. The error (noise) model is isotropic Gaussian, that is, ηT ∼ N (0, σ 2I). Notice
also that the mth element of ηT , ηT (m), represents the variability which is unique
to the mth variable (column of XT ).

3. By combining the above two assumptions with (1), a Gaussian distribution is also
induced for the observations, namely, xT ∼ N (μT , C), where the observation
covariance model is given by C = WWT + σ 2I.
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From the above we deduce that the model parameters can be determined by ML
via an iterative procedure. We also emphasize that the subspace defined by the ML
estimates of the columns ofWwill not correspond, in general, to the principal subspace
of the observed data.

The isotropic Gaussian noise model (ref. (2) above), in conjunction with (1) yields
that the conditional probability distribution of xT given yT is given by

xT |yT ∼ N (yTWT + μT , σ 2I). (2)

Then, the associated log-likelihood function is expressed as follows,

L = −N

2

(
M ln(2π) + ln(|C|) + tr

(
C−1�X

))
, (3)

where |A| and tr(A) denote the determinant and the trace, respectively, of a matrix A,
and

�X = 1

N − 1

N∑
n=1

(xTn − μT )T (xTn − μT ), (4)

with xTn denoting the nth observation (row of XT ). Notice that the ML estimate for
μT is given by the sample mean of the data, in which case �X is exactly the sample
covariance matrix of the observations. Finally, estimates for W and σ 2 are obtained
by iterative maximization of L via an EM approach, resulting in

σ 2
ML = 1

M − K

M∑
j=K+1

λ j (5)

WML = EK
(
�K − σ 2

MLI
)1/2R, (6)

where the K columns of EK ∈ R
M×K are the principal eigenvectors of �X, with

corresponding eigenvalues {λ j }Kj=1 constituting the diagonal matrix �K ∈ R
K×K ,

and R is an arbitrary K × K orthogonal rotation matrix. In practice, R could be
ignored by simply setting R = I. Finally, the N × K matrix P, whose columns are
the probabilistic principal factors of a given time series ensemble, is simply obtained
by projecting the data matrix on the probabilistic principal components, that is,

P = XTWML. (7)

2.2 Time-scale wavelet decompositions of time series

Several distinct transformations were introduced during the last decades for the analy-
sis of signals, such as time series, in multiple scales (or frequencies). Typical examples
include the wavelet transform (Mallat 2008) and the ridgelet transform (Do and Vet-
terli 2003), with the choice of the most appropriate representation depending on the
specific characteristics of the given signal, as well as of the structures we are interested
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in identifying. For instance, wavelets are widely used to distinguish the smooth parts
and detect singularities in one-dimensional (1-D) and two-dimensional (2-D) signals,
while ridgelets are efficient in extracting curvilinear structures in 2-D signals.

In the following, we focus on the wavelet transform, given its wide and successful
applicability in numerous distinct types of signals. Wavelet-based methods are among
the most important ones in statistics, in areas such as regression, density and function
estimation, factor analysis, modeling and forecasting of time series, in assessing self-
similarity, as well as in characterizing spatial statistics.

The first theoretical results in wavelets had been concerned with the continuous
wavelet transform (CWT) of functions in the early ’80s. CWT is used to divide a
continuous-time function intowavelets providing a very redundant (2-D representation
of an 1-D signal), but also very finely detailed description of a signal in terms of
both time and frequency. Besides, CWT is particularly efficient in tackling problems
involving signal identification and detection of hidden transients, that is, hard to detect,
short-lived elements of a signal. Unlike Fourier transform, the CWT possesses the
ability to construct a time-scale representation of a signal that offers increased time
and frequency localization. The CWT of a continuous, square-integrable function x(t)
at a scale a > 0 and translation b ∈ R is given by the following integral

Cx (a, b) = 1√
a

∫ ∞

−∞
x(t)ψ̄

( t − b

a

)
dt, (8)

whereψ(t) is a continuous function in both the time and scale (equivalently, frequency)
domain, called themother wavelet, and ψ̄(t) denotes its complex conjugate. Awavelet
associated with a time-scale decomposition is defined by two functions, namely, the
wavelet function ψ(t), which is responsible to extract the localized details, and the
scaling function ϕ(t), which is primarily responsible for improving the coverage of
the wavelet spectrum. Typical examples of widely used wavelets include the Haar
and Morlet wavelets, as well as the Daubechies’ (dbN) family, where the choice of
the most suitable wavelet depends on the specific signal characteristics (Mallat 2008).

The scale factor a either dilates or compresses a given time series. When the scale
factor is relatively low, the time series is more contracted, which results in a more
detailed representation. However, the drawback is that a low scale factor does not
cover the entire duration of the time series. On the other hand, when the scale factor
is high, the time series is stretched out, which means that the resulting representation
will be less detailed, while it covers a larger duration of the time series. In other words,

• low scale a ⇒ compressed wavelet ⇒ rapidly changing details⇒ high frequency
content,

• high scale a ⇒ stretched wavelet ⇒ slowly changing, coarse features ⇒ low
frequency content.

A feature that wavelets are very good at detecting is the presence of discontinuities,
or singularities.More specifically, smooth time series features produce relatively large-
magnitude wavelet coefficients at scales where the oscillation in the wavelet correlates
best with the time series feature. On the other hand, abrupt transitions in the time series
result in wavelet coefficients with large absolute values. Several signal processing
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tasks also employ the percentage of energy (or, equivalently, of squared magnitude)
associated with each wavelet coefficient, the so-called scalogram, which is defined as
follows

Sx (a, b) = |Cx (a, b)|2∑
a′

∑
b′ |Cx (a′, b′)|2 , a, a′ ∈ [1, amax], b, b′ ∈ [bmin, bmax]. (9)

On the other hand, any processing task performed on real data should be carried out
on a discrete time series, that is, on a time series that has beenmeasured at discrete time.
However, what distinguishes the CWT from its discrete analogue, the discrete wavelet
transform (DWT), is the set of scales and positions (translations) at which it operates.
In particular, unlike the DWT, the CWT can operate at every scale, from that of the
original time series up to somemaximum predetermined scale, which is set by trading-
off the requirements for detailed analysis with the available computational resources.
The CWT is also continuous in terms of shifting, namely, during computation, the
analyzing wavelet is shifted smoothly over the full time domain of the analyzed time
series.

Despite the decreased computational complexity of DWT, since the decomposition
is performed in a set of usually dyadic scales and translations, it results in a less
detailed visual interpretability when compared with CWT. Based on that, CWT is
adopted in our proposed market integration measure. To illustrate the difference of
the interpretability between the CWT and DWT, Fig. 1 shows the absolute wavelet

Fig. 1 Difference of the interpretability between the DWT and CWT of a financial time series, analyzed
using the db8 wavelet in 10 levels for the DWT or, equivalently, 210 = 1024 scales for the CWT
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coefficients corresponding to the DWT (upper plot) and CWT (bottom plot) of a
financial time series from our dataset, analyzed using the db8wavelet in 10 levels for
the DWT or, equivalently, 210 = 1024 scales for the CWT.

2.3 Hough transform of time-scale decompositions

In the computed scalograms associatedwithCWTasdescribed above,we are interested
in extracting and describing the localized features expressing the energy concentration
in the time-scale domain. In particular, we would like to represent the energy distri-
bution over the time-scale domain in a more compact fashion, so as to simplify its
further processing towards the design of an efficient market integration measure. The
key idea is that such features can be represented as distributed patterns of peaks in a
suitable parameter space.

The Hough transform (HT) (Duda and Hart 1972) is a technique, which can be used
to isolate patterns of distinct shapes within a 2-D signal (i.e., image). In practice, we
have to deal with complex patterns for which descriptions through analytic expres-
sions are unavailable. For this purpose, the generalized HT (Ballard 1981) raised as
an extension of the standard HT, enabling the detection of patterns with more compli-
cated non-regular shapes. In our proposed approach, we exploit the power of HT to
accumulate the energy in the time-scale domain, as expressed by the patterns in the
scalograms of the given financial time series, as well as of their dominant probabilistic
principal factor.

The use of (generalized) HT in our case is justified by two major attributes: (i) HT
is very robust to outliers, that is, points that do not lie on a line or a curvilinear pattern
have little influence on the estimation; (ii) HT detects accurately the linear (or curvi-
linear) structures in the time-scale domain, which correspond to specific oscillation
patterns in the original time series. The first attribute is very important, since outliers
in the time-scale domain, which may be due to a transient phenomenon or the occur-
rence of singularities in the original time series, are suppressed. This eliminates the
possibility of yielding an erroneous inference with respect to the degree of integration
between a pair of time series by accounting for those isolated large-magnitude wavelet
coefficients located near the singularities. The second attribute is also significant, since
the Hough transform, when applied on the scalogram, enables a more compact and
accurate extraction of the oscillation patterns that exist in the original series, which
may not be possible by simply relying on the magnitudes of the wavelet coefficients.
This subsequently affects the performance of a market integration measure, which
aims exactly on distinguishing between short and long-run fluctuations.

The generalized HT defines a set of parameters for an arbitrary shape, as follows,

a = {o, s, θ}, (10)

where o = (o1, o2) is a reference origin for the shape, s = (s1, s2) denotes two
orthogonal scale factors, and θ is the orientation. For convenience, we overview the
main principles of the standard HT, which are also the basis for its generalized coun-
terpart, and we omit the details of the generalized extension for the interested reader
(Ballard 1981).
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In the following, we consider that the pixels, that is, the scalogram coefficients,
whose magnitude exceeds some threshold are defined as edge pixels. Then, if a given
pixel lies on a curve we are interested in estimating the locus of the parameters spec-
ifying this curve. At the core of HT is the following interesting result about this locus
in the parameter space: if a set of edge pixels in an image (the scalograms in our case)
are arranged on a curve with parameters {o, s, θ}, the resultant loci of parameters for
each such pixel will pass through the same point {o, s, θ} in the parameter space.

First, the reference origin o is described in terms of a table of possible edge pixel ori-
entations. The computation of the additional parameters s and θ is then accomplished
by transformations applied on this table. Notice also that there is a correspondence
between the choice of parameters a and the analytic forms to which the standard HT
is applied. For instance, for lines and circles this correspondence is given by

• line: {s, θ} −→ x cos θ + y sin θ = s
• circle: {o, s} −→ (x − o1)2 + (y − o2)2 = s2

The generalization ofHT to arbitrary shapes is performed by using directional infor-
mation, which improves greatly its accuracy. An accumulator array A(a) is formed,
whose entries are incremented for those a such that a = p + ε, where p is an edge
pixel, and ε = o − pb is the difference between a reference point o and a boundary
point pb. For each boundary point pb we also compute the gradient direction ϕ(pb)
and we store ε as a function of ϕ. Finally, for each edge pixel p in the scalogram we
increment all the corresponding points p + ε in the accumulator array A. Doing so,
local maxima in A correspond to potential instances of a shape. We emphasize here
that the resolution accuracy of both the standard and the generalized HT depends on
the quantization level of the parameter space. In our case, we try to achieve a trade-off
between an increased resolution of the obtained HT representations and the associated
computational complexity by setting the quantization steps for the parameters neither
to a very low nor to a very high value.

Figure 2 shows the Hough transform of the scalogram corresponding to the CWT
shown in Fig. 1. We employ an (ρ, θ) parameter space to represent the energy distri-
bution, where ρ ≥ 0, θ ∈ [0, 2π ] denote the radius and angle, respectively. For both
parameters, their range of values is discretized in 512 bins. We observe that the gener-
alized Hough accumulator, which coincides with the standard Hough accumulator in
this test case, presents a more compact representation of the energy distribution in the
(ρ, θ) space, when compared with the associated scalogram. This behavior enables
a more concrete comparison between the Hough transformed scalograms, and subse-
quently, the design of a more efficient market integration measure, as we describe in
the following sections. Notice also that, in our current implementation, the outputs of
the standard and generalized HT coincide. However, without loss of generality, we
keep using both terms (HT and generalized HT) in the rest of the text.

3 Design of time-frequency adapted market integration measure

As mentioned in Sect. 1, until recently, the most commonly adopted approach to
extract correlations and quantify the integration strength among distinct markets was
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Time-Frequency Adapted Market Integration Measure … 13

Fig. 2 Scalogram and corresponding Hough transform for a financial time series (ρ and θ are discretized
in 512 bins, db8 is used)

by means of the typical (squared) correlation coefficient computed for their corre-
sponding time series. However, the main drawback of those approaches is that they
rely solely on characteristics of the time series which vary only across time. Never-
theless, incorporating additional information related to the frequency content of the
time series could provide enhanced insight for their inherent structures.

On the other hand, an efficient market integration analysis should account for the
distinction between the short and long-term investors, who are focusing on distinct
regions in the frequency domain. From a portfolio diversification perspective, a short-
term investor ismore interested in the integration of stock returns at higher frequencies,
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14 G. Tzagkarakis et al.

which represent short-term fluctuations, whereas a long-term investor focuses on iden-
tifying the relationship at lower frequencies, which are associated with long-term
fluctuations. This requirement motivates a natural extension of the previous time-
domain methods, in order to incorporate information from the frequency domain,
thus obtaining enhanced insights about the joint integration at both the temporal and
frequency levels.

In this section, we propose a novel market integration measure based on the
enhanced capabilities ofHough transformed scalograms in localizing the energy distri-
bution, which is related to the oscillating patterns across time andmultiple frequencies
in the original time series.More specifically, our proposedmethodquantifies the degree
of integration between distinct markets by employing the time-scale energy distribu-
tion of a given ensemble of time series and their corresponding dominant probabilistic
principal factor, p1. In particular, the problem of computing the integration strength
is reduced to measuring the statistical similarity between the associated Hough trans-
formed scalograms of the CWT representations of the given time series ensemble and
p1. The improved performance of the proposed market integration measure is revealed
by comparing against recently introduced and alternative integration measures, which
we also propose in this work based on 1-D scale-by-scale similarity measurement. In
the rest of the paper, a similarity function will be denoted by S(·, ·).

3.1 Proposed time-frequency adapted market integration measure

In the following, let XT = [x1, . . . , xM ] be the N × M data matrix whose columns
are the observed time series. First, in order to achieve adaptation across time, our
proposed market integration measure is applied on a rolling window of length w,
which slides with a step size equal to s samples across the given time series. Doing so,
let XT

i,w = [x1;i,w, . . . , xM;i,w] be the w × M matrix whose columns are the current
rolling windows associated with the time series, where the ending points are the i th
samples of the original time series xm , m = 1, . . . , M .

Moreover, in order to emphasize the short-run movements of the data, the relative
change between consecutive time instants is employed. This can be measured by
computing the returns series of the original time series, which is defined as the first
difference of the natural logarithm (dlog). Specifically, the i th sample of the returns
series, r ∈ R

N−1, is given by

rm;i = log(xm;i ) − log(xm;i−1), m = 1, . . . , M, i = 2, . . . , N , (11)

where xm;i is the value of the mth market variable at the end of time (e.g., day) i , and
rm;i defines the continuously compounded return during time i (between the end of
time i − 1 and the end of time i). It is also noted that, for numerical reasons, we set
rm;1 = NaN, since for i = 1 the sample xm;i−1 does not exist. Besides, to overcome
the limitation of significantly different variances or expression in different units (e.g.,
different currencies) between the distinct time series, a further normalization of the
current (dlog) windows, rm;i,w (m = 1, . . . , M), to zero mean and unit variance is
performed, namely,
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Time-Frequency Adapted Market Integration Measure … 15

r̂m;i,w = rm;i,w − μm;i,w
σm;i,w

, m = 1, . . . , M, (12)

where μm;i,w and σm;i,w are the mean and standard deviation, respectively, of the
current window of the mth returns series. Let R̂T

i,w = [r̂1;i,w, . . . , r̂M;i,w] be the
w × M matrix whose columns are the normalized windows of the returns series.

In contrast to Caicedo-Llano and Dionysopoulos (2008), Caicedo-Llano and
Bruneau (2009), where the dominant principal factor is computed via the standard
PCA, here we adopt the PPCA to extract the dominant probabilistic principal factor,
p1,i,w, for the ensemble of the current windows R̂T

i,w. As mentioned in Sect. 2.1, the
probabilistic principal factors are characterized by an increased robustness to the pres-
ence of outliers and noise in the data, which is inherent to any real dataset, as well as by
an increased explanatory power of the variance described by the first few significant
probabilistic principal factors.

The next step towards the design of our proposed market integration measure
involves the computation of the energy distribution in the time-scale domain. For this
purpose, a CWT is applied first on each window r̂m;i,w (m = 1, . . . , M), as well as on
the corresponding dominant probabilistic principal factor p1,i,w using the same para-
meter setting (that is, number of decomposition scales, and analyzing wavelet). Based
on the computed CWTs, the associated energy distributions for the current windows
and the dominant principal factor are expressed via the corresponding scalograms,
namely, Sr̂m;i,w (m = 1, . . . , M) and Sp1,i,w .

Then, the Hough transform is applied on the scalograms as a final step yielding a
more compact representation of the energy distribution in an appropriate parameter
space (ρ, θ). In order to account for the contribution of all returns series (that is, of
all the markets), the average Hough transform over all the returns series in the current
window is computed as follows,

Havg;i,w = 1

M

M∑
m=1

H
(
Sr̂m;i,w

)
, (13)

whereH(·) denotes the Hough transform operator, which maps the scalogram Sr̂m;i,w
to a Pbins × 
bins matrix, with Pbins, 
bins denoting the number of discretization
bins for the ρ and θ parameter, respectively. Let also Hp1,i,w = H (

p1,i,w
)
denote

the corresponding Hough transform of the scalogram associated with the dominant
probabilistic principal factor.

The statistical similarity betweenHavg;i,w andHp1,i,w is defined based on a 2-D cor-
relation analysis, which increases the frequency resolution by spreading overlapping
spectral peaks over two dimensions, resulting in a simplified, yet enhanced, interpreta-
tion of the individual 1-D spectra. Specifically, our proposed time-frequency adapted
market integration measure at time instant i is defined in terms of the 2-D correla-
tion coefficient between the average Hough transform of the windowed returns series
and the Hough transform of the associated dominant probabilistic principal factor, as
follows,

Gcorr2d,i = corr2
(
Havg;i,w, Hp1,i,w

)
, i = 1, . . . , N , (14)
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Fig. 3 Flow diagram for the design of the proposed time-frequency adapted market integration measure

where

corr2 (A, B) =
∑

ρ

∑
θ

(
A(ρ, θ) − A

) (
B(ρ, θ) − B

)
√(∑

ρ

∑
θ

(
A(ρ, θ) − A

)2) (∑
ρ

∑
θ

(
B(ρ, θ) − B

)2) , (15)

denotes the 2-D correlation coefficient between twomatricesA,B, withA andB being
the overall mean of A and B, respectively. Figure 3 shows the flow diagram for the
design of our proposed market integration measure.

3.2 Alternative market integration measures

In this section, we introduce recently proposed market integration measures, along
with some alternative approaches by considering the CWT representation of a given
time series in a (1-D) scale-by-scale fashion. In particular, each row of the associated
scalogram can be represented in several distinct ways, for instance, (i) as a discrete-
time series, (ii) by means of a probability density function (or a histogram), or (iii)
via a model fitted on the data, whose parameters are estimated from the observations
(transform coefficients). Based on that, geometric (norm-based) or probabilistic simi-
larity functions can be exploited to define market integration measures, depending on
the selected representation of the 1-D scalogram coefficients for each scale.

In the following, given a time series x ∈ R
N , we assume that, for the CWT, the

scale varies in a ∈ [1, amax], while the translation parameter b spans the whole
discrete-time range, that is, b ∈ [1, N ]. In the previous section, we defined R̂T

i,w =
[r̂1;i,w, . . . , r̂M;i,w] to be the w × M matrix whose columns are the normalized win-
dows of the returns series. As defined above, let Sr̂m;i,w (m = 1, . . . , M , i = 1, . . . , N )

be the scalogram of the mth column of R̂T
i,w, while Sr̂m;i,w,a

(a ∈ [1, amax]) stands
for the vector of scalogram coefficients of the mth returns series window at scale a.
Accordingly, we define Sp1,i,w and Sp1,i,w,a to be the scalogram and the vector of scalo-

123



Time-Frequency Adapted Market Integration Measure … 17

gram coefficients at scale a, respectively, for the associated first probabilistic principal
factor obtained by performing PPCA on R̂T

i,w.
To verify the enhanced performance of our proposed market integration measure,

we compare it against the following alternative integrationmeasures,which are defined
either in the time domain or in the time-frequency domain. For convenience, we use
the acronyms “TD” and “TFD” to indicate whether a given measure is applied in the
time or the time-frequency domain, respectively.

1. PPCA-based Correlation Coefficient (Corr-TD) In order to illustrate the supe-
riority of a time-frequency adaptive integration measure, we compare against the
time-domain approach introduced in Tzagkarakis et al. (2013). More specifically,
the integration measure proposed therein is defined as the average squared correla-
tion coefficient between each windowed returns series and their first probabilistic
principal factor, as follows,

GCorr-TD,i = 1

M

M∑
m=1

corr2
(
r̂m;i,w,p1,i,w

)
, (16)

where corr2 (·, ·) denotes the squared sample (Pearson) correlation coefficient
between two vectors. This measure improved the one introduced in Caicedo-Llano
and Dionysopoulos (2008) by substituting the typical PCA with its probabilistic
counterpart, while both were shown to outperform previous measures based on
the computation of correlations between pairs of returns series directly.

2. Cosine Similarity (Cos-TFD)Cosine similarity is ameasure of similarity between
two vectors of an inner product space thatmeasures the cosine of the angle between
them. It is thus an assessment of angular (orientation) similarity and notmagnitude.
We use the cosine similarity function to define an integration measure in the time-
frequency domain, which is applied on the returns series’ and the first probabilistic
principal factor’s scalograms in a scale-by-scale fashion. The scale-by-scale cosine
similarity is given by

SCos-TFD(Sr̂m;i,w,a
, Sp1,i,w,a ) =

∑w
t=1 Sr̂m;i,w,a,t

Sp1,i,w,a,t√∑w
t=1 S

2
r̂m;i,w,a,t

√∑w
t=1 S

2
p1,i,w,a,t

. (17)

Based on this similarity, the associated market integration measure is defined as
follows,

GCos-TFD,i = 1

M

1

amax

M∑
m=1

amax∑
a=1

SCos-TFD(Sr̂m;i,w,a
, Sp1,i,w,a ), (18)

which is the average cosine similarity over all returns series and scales.
3. Peak-to-Correlation Energy (PCE-TFD) In the frequency (energy) domain, an

alternative criterion is defined to extract pairwise correlations. Specifically, the
peak-to-correlation energy (Kumar and Hassebrook 1990) is employed, which is
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defined as the energy of the peak correlation normalized to the total energy of the
correlation plane:

SPCE-TFD(Sr̂m;i,w,a
, Sp1,i,w,a )

=
∑w

t=1 Sr̂m;i,w,a,t
Sp1,i,w,a,t∑w

t=1 S
2
r̂m;i,w,a,t

+ ∑w
t=1 S

2
p1,i,w,a,t

− ∑w
t=1 Sr̂m;i,w,a,t

Sp1,i,w,a,t

. (19)

In practice, SPCE-TFD measures similarity by measuring the sharpness of the peak
in the cross-correlation plane defined between the scalograms of the returns series
and the first probabilistic principal factor in a scale-by-scale fashion. Then, a
market integration measure is defined as the average PCE over all returns series
and scales as follows,

GPCE-TFD,i = 1

M

1

amax

M∑
m=1

amax∑
a=1

SPCE-TFD(Sr̂m;i,w,a
, Sp1,i,w,a ). (20)

4. SpearmanRankCorrelationCoefficient (SRCC-TFD)The Spearman rank cor-
relation coefficient is defined as the Pearson correlation coefficient between the
corresponding ranked variables (Myers et al. 2010), and assesses whether the rela-
tion between two random variables (time-scale coefficients in our case) can be
described using a monotonic function:

SSRCC-TFD(Sr̂m;i,w,a
, Sp1,i,w,a )

=
∑w

t=1

(
Sr̂rm;i,w,a,t

− S̄r̂rm;i,w,a

) (
Spr1,i,w,a,t

− S̄pr1,i,w,a

)
√∑w

t=1

(
Sr̂rm;i,w,a,t

− S̄r̂rm;i,w,a

)2 ∑w
t=1

(
Spr1,i,w,a,t

− S̄pr1,i,w,a

)2 , (21)

where Sr̂rm;i,w,a
and Spr1,i,w,a

denote the scalogram coefficients at scale a, for r̂m;i,w
and p1,i,w, converted to ranks, while S̄r̂rm;i,w,a

and S̄pr1,i,w,a
denote the corresponding

mean values at scale a. SSRCC-TFD is a valid similarity function for defining a
market integration measure, since its sign indicates the direction of association
between Sr̂m;i,w,a

(the independent variable) and Sp1,i,w,a (the dependent variable).
If Sp1,i,w,a tends to increase when Sr̂m;i,w,a

increases, the Spearman correlation
coefficient is positive. If Sp1,i,w,a tends to decrease when Sr̂m;i,w,a

increases, the
Spearman correlation coefficient is negative. A Spearman correlation equal to
zero indicates that there is no tendency for Sp1,i,w,a to either increase or decrease
when Sr̂m;i,w,a

increases.
The associated market integration measure is defined as the average Spearman
rank correlation coefficient over all returns series and scales, as follows,

GSRCC-TFD,i = 1

M

1

amax

M∑
m=1

amax∑
a=1

SSRCC-TFD(Sr̂m;i,w,a
, Sp1,i,w,a ). (22)
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5. Ultrametric Similarity (Ultra-TFD) The standard correlation coefficient varies
in the interval [−1, 1], thus we rise to the power of two (ref. measure (1) above)
to avoid negative values, so as to be a valid candidate for designing an integration
measure. Another way to do so is to transform the correlation function in order to
fulfill the distance axioms, resulting in the so-called ultrametric distance,

UltraDist(X,Y ) =
√
1

2
(1 − corr (X,Y )), (23)

which maps the linear space of the time series of length N onto the interval [0, 1].
Towards designing a market integration measure in the time-frequency domain,
the distance function (23) can be re-written as a similarity function, as follows,

SUltra-TFD(Sr̂m;i,w,a
, Sp1,i,w,a ) = 1 −

√
1

2

(
1 − corr

(
Sr̂m;i,w,a

, Sp1,i,w,a

))
. (24)

Based on the above similarity function, a market integration measure is defined as
the average ultrametric similarity over all returns series and scales, as follows,

GUltra-TFD,i = 1

M

1

amax

M∑
m=1

amax∑
a=1

SUltra-TFD(Sr̂m;i,w,a
, Sp1,i,w,a ). (25)

6. 2-D Correlation Coefficient between Scalograms (ScaloCorr2-TFD) To verify
the efficiency of the Hough transform in extracting the effective time-frequency
localized patterns of a given time series, our proposed market integration measure
is compared with a measure defined on the scalograms directly, without applying
a Hough transformation, as follows,

SScaloCorr2-TFD(Sr̂m;i,w , Sp1,i,w )

=
∑amax

a=1

∑bmax
b=1

(
Sr̂m;i,w (a, b) − S̄r̂m;i,w

) (
Sp1,i,w (a, b) − S̄p1,i,w

)
√(∑amax

a=1

∑bmax
b=1

(
Sr̂m;i,w (a, b) − S̄r̂m;i,w

)2) (∑amax
a=1

∑bmax
b=1

(
Sp1,i,w (a, b) − S̄p1,i,w

)2)
,

(26)

where S̄r̂m;i,w , S̄p1,i,w denote the overall mean of the scalograms of r̂m;i,w andp1,i,w ,
respectively. Similarly to the previous measures, the market integration measure
associatedwith the function (26) is given by averaging the pairwise 2-D correlation
coefficients between the scalograms of the returns series and the scalogram of their
corresponding first probabilistic principal factor, as follows,

GScaloCorr2-TFD,i = 1

M

M∑
m=1

SScaloCorr2-TFD(Sr̂m;i,w , Sp1,i,w ). (27)
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We note here that, as it can be seen in (18)–(25), the corresponding market integra-
tion measures are defined as weighted sums of equally-weighted (with a weight equal
to 1

M
1

amax
) scale-by-scale sub-similarities, which may provide improved insight into

their inherent regulatory relationship. Most importantly, by summing these pairwise
sub-similarities only up to a scale aK < amax, we can ignore high-frequency com-
ponents which may be due to noise, thus increasing the accuracy of the integration
measures. However, the determination of the optimal subset of scales is by itself a
very important topic, which is left for a future thorough study.

4 Performance evaluation

In this section, the performance of our proposed time-frequency adapted market inte-
gration measure, given by (14), is evaluated and compared against the performance
of the market integration measures introduced in Sect. 3.2. More specifically, the
efficiency of all the integration measures is examined in the framework of optimal
mean-variance portfolio construction.

To this end, a set of 12 developed equity markets are employed (Australia (XP1),
Canada (SPTSX), France (CF1), Germany (GX1), Hong Kong (HI1), Japan (TP1),
Singapore (QZ1), Spain (IB1), Sweden (OMX), Switzerland (SM1), United Kingdom
(Z1), and USA (ES1)), for which liquid index futures contracts are available in order
to enable short positions in the portfolio strategies. Closing prices at a daily frequency
for the main futures indices of each country have been gathered, expressed in local
currency, covering the period between January 2001 and January 2013. During this
time period, all markets had undergone through various financial crises, such as, the IT-
bubble (or dot-com bubble), whose collapse took place by the end of 2001, the global
subprimes/debt crisis, whose effects were perceived by the markets in 2007–2008, and
the European sovereign crisis in 2010. All crises were followed by a recovery period,
which might differ depending on the country and the continent, thus offering a good
opportunity to study integration and long-term portfolio performance.

Besides, to overcome the limitation of significantly different variances and expres-
sion in different currencies between the distinct time series, a further normalization
to zero mean and unit variance of their returns series is performed according to (12).
Furthermore, to account for the time-varying dynamics of our data, the performance
of all the market integration measures is evaluated in a rolling window of length
w = 250 with step size s = 25. Figure 4 shows the original time series, along with
their normalized returns.

In the subsequent evaluation, the CWTs, and thus the associated scalograms, are
computed by decomposing the normalized returns series windows, as well as the
extracted first probabilistic principal factor, using thedb8wavelet at amax = 75 scales.
For the Hough transform, the (ρ, θ) (radial, angle) parameter space is discretized in
a grid of size 512 × 512. The selected parameter values for both the CWT and the
Hough transform were set empirically on a basis of keeping a trade-off between the
achieved accuracy of the various market integration measures and their computational
cost. However, the development of automatic rules for choosing the best wavelet, along
with the optimal parameter values is of high importance and is left as a separate work.
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Fig. 4 Original and normalized returns series for the 12 equity markets

Figure 5 shows the values of our proposed time-frequency adapted market integra-
tion measure across time, along with the alternative integration measures introduced
above, for the 12 equity markets. As it can be seen, the proposed integration mea-
sure, as well as most of the alternative ones, achieve to track the important periods
of interest, such as, the increased integration around 2001 and between 2007–2008,
since the IT-bubble and the subprimes/debt crisis, respectively, affected all markets
globally, and the decreased integration around 2010, since the European sovereign cri-
sis affected mostly the European markets, thus leaving more opportunities for global
markets diversification.

For the construction of the optimal portfolios we follow the approach described
in Caicedo-Llano and Dionysopoulos (2008). More precisely, a two-stage process is
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Fig. 5 Market integration measures evolution across time for the 12 equity markets

adopted, by first estimating the optimal weights solving an optimization problem of
the form shown in (28), and then by adapting these weights so as to keep a constant risk
through the strategy or to achieve a time-varying risk allocation. The optimal weights
are estimated by solving the following optimization problem:

w∗ = argmax
w

(
E{rp} − ζ Var{rp}

)
, (28)

where E{rp} = wT z is the expected return of our portfolio, with z being the vector
of expected excess returns of the assets, Var{rp} = wT �̂w is the portfolio’s variance,
with �̂ being the estimated covariance matrix of the returns, and ζ is a parameter
representing the investor’s level of risk aversion. The adaptation of the estimated
weights is performed by employing the values of the computed market integration
measures G ·,i .

More specifically, the estimated optimal weights are modified according to three
different scaling rules: (i) (1-Gdet): a de-trending step is applied first on the computed
values of each integration measure before adjusting the weights; (ii) H: the estimated
optimal weights are smoothed. In particular, the optimal weights are modified linearly
for integration values ranging in an interval [Gmin,Gmax ] using the rule,

w∗
s =

(
1 − Ḡi − Gmin

Gmax

)
w∗, (29)

where Ḡi is the integration value at time i after removing the mean computed over all
the overlapping windows, so as to use the same thresholds for the whole time period
of study. On the other hand, for integration values larger than Gmax the weights are
set equal to zero and for integration values smaller than Gmin the optimal weights are
left unchanged. In practice, the values of the two thresholds Gmin , Gmax can be set
based on the quantiles of the distribution of the historical values for each integration
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Table 1 Performance of the proposed time-frequency adapted market integration measure (2), compared
with the Basic MV and alternative integration measures, for portfolio optimization using three scaling rules
(db8 wavelet, 75 scales)

Ret Vol IR MDD MDD/Vol

Basic MV 1.943 10.021 0.194 −44.328 −4.423

(1-Gdet) 1 2.161 3.991 0.541 −14.965 −3.750

H 1 2.431 5.789 0.420 −22.746 −3.929

(1-G) 1 1.153 4.647 0.248 −18.359 −3.951

(1-Gdet) 2 2.908 5.912 0.490 −14.508 −2.454

H 2 3.114 6.491 0.491 −13.989 −2.155

(1-G) 2 0.311 0.596 0.520 −2.209 −3.704

(1-Gdet) 3 1.535 3.767 0.408 −15.732 −4.177

H 3 2.856 5.680 0.503 −20.818 −3.665

(1-G) 3 0.635 2.049 0.310 −7.811 −3.812

(1-Gdet) 4 1.573 3.796 0.414 −15.128 −3.985

H 4 2.906 5.708 0.509 −19.348 −3.390

(1-G) 4 1.012 3.433 0.295 −12.942 −3.770

(1-Gdet) 5 1.496 3.970 0.377 −15.541 −3.914

H 5 3.117 5.931 0.525 −18.787 −3.167

(1-G) 5 1.181 4.165 0.284 −15.413 −3.700

(1-Gdet) 6 1.783 4.490 0.397 −16.411 −3.655

H 6 2.872 5.651 0.508 −18.189 −3.219

(1-G) 6 1.014 3.723 0.272 −13.409 −3.602

(1-Gdet) 7 1.799 4.107 0.438 −17.109 −4.166

H 7 2.437 5.683 0.429 −20.137 −3.544

(1-G) 7 1.335 4.693 0.284 −16.354 −3.485

Average 1.887 4.489 0.421 −15.709 −3.580

Enumeration of integration measures is as follows: 1 Corr-TD; 2 Proposed measure (corr2d); 3 Cos-TFD;
4 PCE-TFD; 5 SRCC-TFD; 6 Ultra-TFD; and 7 ScaloCorr2-TFD

measure separately; (iii) (1-G): the integration measure values are subtracted from
1. The resulting risk-adjusted performance measures for each modified strategy ((1-
Gdet), H, (1-G)) are presented in Table 1.

The constructed portfolio’s optimality is defined in terms of the following typical
financial performance metrics:

• Return (Ret)
• Volatility (Vol)
• Information ratio (IR): measures the excess annualized return of a portfolio, rp,
over the annualized returns of its benchmark, rB , divided by the volatility of these
excess returns,

IR = E{rp − rB}
σrp−rB
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• Maximum drawdown (MDD): it is defined as the maximum cumulated continuous
loss over a given period, measuring the degree of extreme losses

• Maximum drawdown over Volatility (MDD/Vol): it is a normalization of theMDD
for a fair comparison of portfolio optimization strategies resulting in different
MDD and volatility values.

Table 1 compares the performance of all themarket integrationmeasures introduced
in this work by adjusting accordingly the weights obtained as the solution of the
mean-variance optimization problem. The comparison is also carried out among the
three scaling rules mentioned above, which are used to adjust the optimal weights.
For convenience, the enumeration of the market integration measures, as they appear
in the following tables and figures, is as follows (Sect. 3): (1) Corr-TD; (2) Proposed
market integrationmeasure (corr2d); (3) Cos-TFD; (4) PCE-TFD; (5) SRCC-TFD; (6)
Ultra-TFD; and (7) ScaloCorr2-TFD. For each market integration measure and each
performance metric the optimal values are presented in italics, while the boldtype
numbers correspond to the best values for each performance metric among all the
compared market integration measures.

First, we observe that the PPCA-based method, Corr-TD, produces a portfolio with
higher risk-adjusted performance metrics. The basic mean-variance (Basic MV) strat-
egy, employing pairwise correlations among the time-domain returns series directly,
has a ratio of average performance over risk equal to 0.19, while the portfolios com-
posed of a risk scaling strategy based on PPCA have ratios of 0.54, 0.42 and 0.25,
respectively. For the first two scaling rules the performance over the whole time period
is improved from 1.94 to 2.16 and 2.43 %, whereas the volatility is reduced for the
three scaling rules from 10.02 to 4.48 % on average. Moreover, the MDD over the
monitored period is also reduced significantly from 44.3 to 15.7 % on average for the
different scaling rules, as well as the ratio of MDD over volatility.

Concerning our proposed market integration measure (corr2d), we observe that,
in general, it improves the performance, while the risk is reduced producing better
risk-adjusted performance metrics than the basic strategy. Moreover, it also improves
the majority of the main performance metrics for most of the scaling rules, when
compared with the alternative integration measures, while for the rest of the metrics
it achieves a performance which is close to the optimal one achieved by some of the
alternative scale-by-scale integration measures (methods 3–7 in Table 1).

In particular, our proposed time-frequency adapted integration measure combined
with the second scaling rule for the optimal weights, produces a strategy delivering
3.11 % return and 6.49 % volatility, which corresponds to a ratio of 0.49, significantly
improved compared with the basic strategy, and close to the optimal PPCA result.
The ratio of MDD over volatility is also improved significantly from −4.42 to −2.15,
which is the optimal value achieved among all the integration measures. In general,
our proposed integration measure is able to produce a portfolio construction strategy
with better overall performance for the chosen set of market indices and the selected
parameters values.

Furthermore, among the three scaling rules, the second one, H, corresponding to a
transformation to very low risk when the integration is high and a smooth transition
to high risk taking when the level of integration is low, is the one delivering the best
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results. From the three different scaling rules, two of them, namely, H and (1-G),
considerably improve the results.

As an overall conclusion, the time-frequency adapted market integration measure
proposed in this work achieves a significant reduction of the optimal portfolio’s volatil-
ity compared with the volatility of the basic strategy, which is also captured through
the drawdownmeasures to focus on the negative side of the returns, while improving or
maintaining the performance of the alternative integration measures. This is attributed
to the efficiency of our proposed integration measure to better capture the localized
patterns in the time-frequency domain, which are inherent in each time series, and
correlate them accurately among distinct markets.

5 Conclusions and further work

In this paper, we proposed a novel market integration measure, which adapts to the
time-frequency evolutionof an ensemble of financial time series. Theproposed integra-
tion measure was designed by exploiting the enhanced time-frequency representation
provided by multi-scale wavelet decompositions, which are able to capture the inher-
ent variability not only across time, but also in the frequency domain. Amore compact
and meaningful representation of the energy distribution was then obtained by apply-
ing a Hough transformation on the corresponding scalograms. The same procedure
was applied on the dominant probabilistic principal factor of the time series ensemble,
obtained via PPCA. Finally, the degree of market integration was measured by the 2-D
correlation coefficient between the associated Hough transforms of the time series and
the first principal factor.

An evaluation of the proposed integration measure in the framework of mean-
variance portfolio optimization, and its comparison against several alternative integra-
tion measures performing either in the time-domain or in the time-frequency domain
adopting a scale-by-scale approach, revealed an improved performance in terms of
various distinct performance metrics. The results also revealed an increased capability
of the proposed integration measure to deliver improved portfolio performance for the
short and long-term investors, by accounting simultaneously for the inherent short and
long-run fluctuations in the original time series.

The results presented in this work correspond to a specific selection of the window
length, the selected wavelet (db8was used in this study), and the number of scales. As
a future extension, an automatic rule for making optimal choices of these parameter
values, along with an adaptive selection of the most suitable wavelet according to
the original time series characteristics, will be studied. In addition, the representative
capability of the Hough transform can be enhanced by developing an appropriate peak
detection method, which will extract the significant energy peaks, yielding potential
improvements by easing the parameter space interpretation.

From a financial perspective, it could be of interest to extent the proposed market
integration measure in order to allow the incorporation of single or multiple sources
of risk. This stems from the fact that an omitted risk factor could potentially mask
itself through evidence of time-varying integration. Furthermore, measuring and mon-
itoring the degree of market integration could have implications beyond explaining
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why expected returns may differ across distinct countries. To this end, it is of high
importance to develop models that relate capital market restrictions and the stage of
financial market integration to economic growth, through the improvement of risk
sharing, which is reflected in the measured integration strength.
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