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Abstract In this paper, a framework is developed for the identificationof causal effects
fromnon-stationary time series. Focusing on causalitymeasures thatmake use of delay
vectors from time series, the idea is to account for non-stationarity by considering the
ranks of the components of the delay vectors rather than the components themselves.
As an exemplary measure, we introduce the partial symbolic transfer entropy (PSTE),
which is an extension of the bivariate symbolic transfer entropy quantifying only the
direct causal effects among the variables of a multivariate system. Through Monte
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Carlo simulations it is shown that the PSTE is directly applicable to non-stationary
in mean and variance time series and it is not affected by the existence of outliers
and VAR filtering. For stationary time series, the PSTE is also compared to the linear
conditional Granger causality index (CGCI). Finally, the causal effects among three
financial variables are investigated. Computations of the PSTE and the CGCI on both
the initial returns and the VAR filtered returns, and the PSTE on the original non-
stationary time series, show consistency of the PSTE in estimating the causal effects.

Keywords Causality · Non-stationarity · Rank vectors · Multivariate time series ·
Financial variables

1 Introduction

The investigation of interactions among the components of a multivariate system
addresses three major issues: the detection of the couplings, their direction, and the
quantification of the coupling strengths.When evaluating the causal influence between
two variables from a multivariate time series, it is necessary to take the effects of
the remaining variables into account. Multivariate analysis is required to distinguish
between direct and indirect causal effects.

The concept of Granger causality is instrumental in the study of dynamic interac-
tions in multivariate systems (Granger 1969). Linear Granger causality suggests that
causes always precede their effects and it is implemented by fitting autoregressive
models. However, the selected model should be appropriately matched to the under-
lying dynamics of the examined system, otherwise model misspecification may lead
to spurious identification of causality.

Stationarity is not expected when examining real data possessing non-constant
mean and variance. Preliminary data treatment (i.e. detrending, differencing, filtering)
can be used to deal with non-stationarity, e.g. see Wei (2006) and Bossomaier et al.
(2013).

In econometrics, causality in non-stationary time series in the mean is typically
investigated through vector error correction models (VECM), and it is subdivided
into short-run and long-run (Lee et al. 2002; Cheng et al. (2010)). In this respect,
cointegration between two variables implies the existence of long-run causality in at
least one direction and a cointegration test can be viewed as an indirect test of long-
run dependence (Engle and Granger 1987). Testing for cointegration and causality are
thus jointly applied to investigate long- and short-run relationships among variables.
Regarding non-stationarity in variance, several methods have been proposed in the
literature, e.g.model fitting allowing for a time-varyingvariance andheteroskedasticity
tests (Xu and Phillips 2008; Kim and Park 2010), but we are not aware of any works
treating the problem of causality and non-stationarity in variance jointly.

Most Granger causality measures are developed for stationary time series, e.g.
conditional Granger causality (Geweke 1982), partial directed coherence (Baccala
and Sameshima 2001), coarse-grained information rates (Paluš et al. 2001), extended
Granger causality (Chen et al. 2004), and conditional mutual information (Vejmelka
and Paluš 2008). Methods, such as transfer entropy (Schreiber 2000) from information
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theory and linear Granger causality, are theoretically invariant under a rather broad
class of transformations (Barnett and Seth 2011). However, in practice, data transfor-
mations may have an impact on causal inference. Recently, many model-free causality
measures have been developed to address nonlinear signal properties, as for example
state space and information measures. On the other hand, these methods involve more
free parameters and are more data demanding than linear model-based methods, such
as linear Granger causality.

In financial applications, most causality tests are not applied to the raw data but to
the (log) returns. For example, we can mention the modified test of nonlinear Granger
causality that has been introduced byHiemstra and Jones (1994), corrected byDiks and
Panchenko (2006), and it is usually applied on theVectorAuroregressive (VAR)filtered
residuals. It is, however, reported that linear filtering of the data before the application
of a causality test can lead to serious distortions, e.g. seeKyrtsou (2005) andKaragianni
andKyrtsou (2011). On the other hand, it is claimed that the estimation of information-
theoretical quantities is typically improved by diminishing long-range second-order
temporal structure usingVARfilters, provided that the interactions between time series
are not purely linear (Gomez-Herrero 2010). The influence of filtering on the different
causality tests remains open for further investigation, but it is not within the scope of
the present work.

The developments above highlight the importance of building causality tests able
to take into account causal effects directly in non-stationary time series. In this work,
we propose a general framework to address non-stationarity when estimating causal-
ity which encompasses all causality measures that involve the delay vectors in their
computation. Specifically, we suggest to formulate and utilize the rank vector of the
corresponding sample vectors reconstructed from the time series, instead of the delay
vectors themselves.

The idea of using ranks instead of the values of a vector variable dates back to
Spearman (1904) andKendall (1938) suggesting the estimation of the statistical depen-
dence between two variables. This idea has been adopted for the estimation of corre-
lation and causality measures. Along these lines, the symbolic transfer entropy (STE)
(Staniek and Lehnertz 2008) and the generalized measure of association (Fadlallah
et al. 2012) have been introduced.

To demonstrate the efficiency of the proposed framework based on rank vectors,
we extend the bivariate information causality measure of STE (Staniek and Lehnertz
2008) to themultivariate case, called partial symbolic transfer entropy (PSTE), in order
to account only for direct causal effects among the components of a complex system.
The PSTE, as the STE, is estimated on rank vectors. It is evaluated onmultivariate time
series of known coupled and uncoupled systems, on stationary and non-stationary time
series in mean and in variance, on time series with outliers, and on VAR filtered time
series as well. Complementarily and for comparison reasons, the conditional Granger
causality index (CGCI) is also considered.

A corrected version of the STE and PSTE (namely TERV and PTERV) have been
recently introduced in Kugiumtzis (2012, 2013), but here we consider the initial def-
inition of STE, as used in different applications (Kowalski et al. 2010; Ku et al.
2011; Martini et al. 2011). To get further insight on the performance of the suggested
approach, besides an extensive simulation experiment, we look for causal relationships
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between three well-known financial time series, namely the 3-month Treasury Bill,
the 10-year Treasury Bond and the volatility index VIX.

The structure of the paper is as follows. In Sect. 2, the multivariate causality mea-
sures of PSTE and conditional Granger causality index are presented, and their statis-
tical significance is discussed. In Sect. 3, the two causality measures are evaluated in
a simulation study, while their performance is also examined in three financial time
series. Finally, conclusions are discussed in Sect. 4.

2 Materials and Methods

Let us consider the bivariate process (x1,t , x2,t ), i.e. two simultaneously observed time
series {x1,t }, {x2,t }, t = 1, . . . , n derived from the dynamical systems X1 and X2,
respectively. The delay vectors for X1 and X2 are defined as x1,t = (x1,t , x1,t−τ1 , . . .,
x1,t−(m1−1)τ1)

′, x2,t = (x2,t , x2,t−τ2 , . . . ,x2,t−(m2−1)τ2)
′, where t = 1, . . . , n′, n′ =

n−h−max{(m1−1)τ1, (m2−1)τ2},m1 andm2 are the embedding dimensions, τ1 and
τ2 are the time delays and h is the step ahead to address for the interaction. The rank
vectors are formed by ordering the amplitude values of the delay vectors. Considering
the delay vector x1,i , them1 amplitude values are arranged in an ascending order so that
x1,t−(ri,1−1)τ1 ≤ x1,t−(ri,2−1)τ1 ≤ . . . ≤ x1,t−(ri,m−1)τ1 , where ri, j , j = 1, . . . ,m, are
all different and ri, j ∈ {1, . . . ,m1}. Therefore, every delay vector is uniquely mapped
onto one of the m1! possible permutations. The rank vectors for X1 are defined as
x̂1,i = (ri,1, ri,2, . . . , ri,m1) and accordingly for x2,i . The advantage of using ranks
is that vectors formed by time series segments at different levels of magnitude can
be compared in terms of distance, and thus similar data patterns can be searched
regardless of their magnitude levels, accounting in this way for non-stationarity.

To indicate the suitability of this approach for non-stationary time series, we take
the example of a stationary time series {xt }, with outliers added to it, denoted as {yt }
(see Fig. 1). We construct also the time series {zt } by adding a linear trend to {xt }:
zt = xt + 0.1t (Fig. 1c). Further, we consider the embedding dimension m = 4 and
the time delay τ = 1, while we highlight all the delay vectors with corresponding rank
vectors {2, 1, 4, 3}. For {xt }, we observe 8 delay vectors in total with corresponding
rank vector {2, 1, 4, 3}. In {yt } there are again 8 delay vectors, all of which are at the
same time points as in {xt }, while in {zt } there are 6 in total delay vectors all of which
are at the same time points as in {xt }. We note that all the highlighted delay vectors
have identical rank vectors ({2, 1, 4, 3}), whereas the corresponding sample vectors
(delay vectors) are not necessarily close.

Thus one can base the distance measure on the relative magnitude ordering and
not the sample values of the delay vectors of the time series. The estimation of the
probability of occurrence of the rank vectors can be more robust than in the case of the
delay vectors. The possible combinations of the rank vectors are m! = 4!, while using
a binning approach for the delay vectors with b bins, there are bm possible vectors for
each component.

Therefore, measures that make use of embedding point distances, e.g. interdepen-
dence measures (Arnhold et al. 1999; Romano et al. 2007; Chicharro and Andrzejak
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Fig. 1 a A realization of the Henon map and its corresponding time series after adding outliers (b) and
after adding a linear trend (c). The delay vectors of the time series that correspond to rank vectors with the
pattern {2, 1, 4, 3} are displayed with grey in the printed version and cyan in the online one

2009)1 and information measures can be modified to use ranks instead of samples. As
an exemplary measure that uses rank vectors, we introduce here the PSTE.

2.1 Partial Symbolic Transfer Entropy

The transfer entropy (TE) is an information measure related to the concept of Granger
causality, which has been utilized for the detection of the directional couplings and
the asymmetry in the interaction of subsystems (Schreiber 2000). The TE and its mul-
tivariate extension, the partial transfer entropy (PTE), incorporate time dependence
by relating previous values of two variables X1 and X2 in order to predict X1 (or
similarly X2) h steps ahead. The TE quantifies the deviation from the generalized
Markov property, p(x1,i+h |x1,i , x2,i ) = p(x1,i+h |x1,i ), where p denotes the transi-
tion probability density. If the generalized Markov property holds, then X2 does not
drive X1. Different techniques have been proposed to estimate the TE and PTE from

1 The interdependence measure in Chicharro and Andrzejak (2009) uses ranks but on the basis of the
distances calculated on the embedding vectors.
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observed data, e.g. binning, kernel methods and nearest neighbor estimators (Cover
and Thomas 1991; Silverman 1986; Kraskov et al. 2004).

The STE has been introduced aiming to provide an alternative way of estimating
the TE, i.e. in terms of rank vectors (Staniek and Lehnertz 2008). For each of x1,i+h ,
x1,i and x2,i first the rank vectors are formed denoted x̂1,i+h , x̂1,i and x̂2,i . Note that
the scalar future response x1,i+h is treated as an embedding vector x1,i+h . Then the
STE is expressed similarly to TE as

STEX2→X1 =
∑

p(x̂1,t+h, x̂1,t , x̂2,t ) log
p(x̂1,t+h |x̂1,t , x̂2,t )
p(x̂1,t+h |x̂1,t ) , (1)

where p(x̂1,t+h, x̂1,t , x̂2,t ), p(x̂1,t+h |x̂1,t , x̂2,t ) and p(x̂1,t+h |x̂1,t ) are the joint and
conditional distributions estimated on the rank vectors as relative frequencies, respec-
tively.

The PSTE is the extension of the STE that accounts only for direct causal effects in
multivariate systems. It is defined conditioning on the set of the remaining variables
Z = {X3, X4, . . . , XK } of a multivariate system of K observed variables

PSTEX2→X1|Z =
∑

p(x̂1,t+h, x̂1,t , x̂2,t , ẑt ) log
p(x̂1,t+h |x̂1,t , x̂2,t , ẑt )
p(x̂1,t+h |x̂1,t , ẑt ) , (2)

where the rank vector ẑt is formulated as the concatenation of the rank vectors for
each of the delay vectors of the variables in Z .

The PSTE is a measure formed on nonparametric estimators from information
theoretical arguments. Its definition is built on the probability distributions or equiva-
lently on conditional entropies, and quantifies the reduction in conditional uncertainty
of x̂1,t+h when the conditioning changes from x̂1,t , ẑt to x̂2,t , x̂1,t , ẑt . Causality is
defined in terms of predictive power using an information theoretical statistic rather
than linear modeling tools and thus it accounts for nonlinearity in the data. Similarly
to PSTE, also other causality measures calculated using the delay vectors of the time
series could be estimated on the corresponding rank vectors.

2.2 Conditional Granger Causality Index

For comparison reasons, the Conditional Granger Causality Index (CGCI) is also con-
sidered in this study (Geweke 1982). To define CGCI from X2 to X1 for a multivari-
ate time series of the variables {X1, X2, . . . , XK }, two vector autoregressive models
(VAR) are considered, the unrestricted model

x1,t+1 =
P−1∑

j=0

a1, j x1,t− j +
P−1∑

j=0

a2, j x2,t− j +
K∑

i=3

P−1∑

j=0

ai, j xi,t− j + εU,t+1, (3)

and the restricted model
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x1,t+1 =
P−1∑

j=0

a1, j x1,t− j +
K∑

i=3

P−1∑

j=0

ai, j xi,t− j + εR,t+1, (4)

where ai, j are coefficients and εU,t and εR,t are residual terms. If the variance s2U of
the residuals of the unrestricted model in Eq. 3 for X1 is statistically significantly less
than the residual variance s2R of the restricted model for X1 in Eq. 4 that does not
include X2, then there is statistical evidence that the variable X2 Granger causes X1.
The magnitude of the effect of X2 on X1 in the presence of the other variables is given
by the CGCI defined as

CGCIX2→X1|Z = ln
(
s2R/s2U

)
. (5)

The CGCI is a causality measure able to detect the direct causal effects in multi-
variate systems with linear couplings.

2.3 Statistical Significance of the PSTE and CGCI

Kugiumtzis (2013) discussed the parametric approximation of the null distribution H0
of no coupling for PSTE (and the corrected version PTERV) was discussed but found
it insufficient in general and always inferior to approximation based on resampling.
Therefore, the statistical significance of the PSTE is assessed by a randomization test
making use of time-shifted surrogates (Quian Quiroga et al. 2002). The surrogate
time series are formed by time-shifting the time series of the driving variable by a
random time step, while the other time series remain intact. By this, the driving and
the response time series become independent to each other and the couplings are
destroyed. Explaining further time-shifting, we draw a random integer d (with d less
than the time series length n), and the first d values of the driving time series aremoved
to the end, so that the new driving series is {xd+1, . . . , xn, x1, . . . , xd}.

To test H0, denote q0 the PSTE value estimated from the original data and
q1, . . . , qM the PSTE values estimated from the M surrogate multivariate time series.
H0 is rejected if q0 lies at the tail of the distribution of q1, . . . , qM . The p-values for
the two-sided test are derived by rank ordering. Letting the original value have rank i
in the ordered list of M + 1 values, the p-value equals 2i/(M + 1) if i ≤ (M + 1)/2
and 2(M+1− i)/(M+1) if i > (M+1)/2 (the correction of the rank approximation
of the cumulative density function in Yu and Huang (2001) is applied).

The statistical significance of the CGCI can be assessed by means of a parametric
test, i.e. the F-test for the null hypothesis that the coefficients for the driving variable
in the unrestricted model are zero (Brandt andWilliams 2007). For example, applying
the F-significance test for each of the P coefficients a2, j in Eq. 3, constitutes the
parametric significance test for CGCI to test the null hypothesis that variable X2 is
not driving X1.
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3 Results

The effectiveness of the PSTE in detecting direct nonlinear causal effects at different
settings is assessed based on a simulation study. The PSTE and the CGCI are comple-
mentarily used, in order to determine both the linear and nonlinear couplings from the
simulation systems. The two causality measures are estimated from 100 realizations
of different simulation systems with linear and/or nonlinear couplings, for different
coupling strengths and for all directions. However, the CGCI is only estimated on
stationary data.

3.1 Simulation Study

The PSTE and CGCI are evaluated on multivariate time series from coupled and
uncoupled systems of different types: stationary, non-stationary in mean and in vari-
ance, with outliers, with linear and / or nonlinear causal effects. We also apply the
PSTE on VAR filtered time series in order to assess the ability to capture remaining
nonlinear couplings. Specifically, the following simulation systems are examined:

(1) A stationary system in three variables with one linear coupling (X2 → X3) and
two nonlinear ones (X1 → X2, X1 → X3) (Gourévitch et al. 2006, Model 7)
(see Fig. 2a)

x1,t = 3.4x1,t−1(1 − x1,t−1)
2 exp (−x21,t−1) + 0.4ε1,t

x2,t = 3.4x2,t−1(1 − x2,t−1)
2 exp (−x22,t−1) + 0.5x1,t−1x2,t−1 + 0.4ε2,t

x3,t = 3.4x3,t−1(1 − x3,t−1)
2 exp (−x23,t−1) + 0.3x2,t−1 + 0.5x21,t−1 + 0.4ε3,t ,

where εi,t , i = 1, 2, 3, are Gaussian white noise terms with unit covariance
matrix.

(2) A stationary system in three variables, with only nonlinear couplings (X1 → X2,
X1 → X3) (see Fig. 2b)

x1,t = 0.7x1,t−1 + ε1,t

x2,t = 0.3x2,t−1 + 0.5x2,t−2x1,t−1 + ε2,t

x3,t = 0.3x3,t−1 + 0.5x3,t−2x1,t−1 + ε3,t .

The model restricted to the two first variables was introduced in Baghli (2006).
The term product of the variables in the second and third equation causes the
variables X2 and X3 to have marginal distributions with long tails.

(3) A stationary system of three coupled Hénon maps with nonlinear couplings
(X1 → X2, X2 → X3) (see Fig. 2c)

x1,t = 1.4 − x21,t−1 + 0.3x1,t−2

x2,t = 1.4 − cx1,t−1x2,t−1 − (1 − c)x22,t−1 + 0.3x2,t−2

x3,t = 1.4 − cx2,t−1x3,t−1 − (1 − c)x23,t−1 + 0.3x3,t−2,
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Fig. 2 Couplings in a systems 1 and 9, b systems 2 and 8, c systems 3, 5, 6, 7, and d system 4

with equal coupling strengths c for X1 → X2 and X2 → X3, with c = 0, 0.05,
0.3, 0.5. The time series of this system become completely synchronized for
coupling strengths c ≥ 0.7.

(4) A system of four coupled Hénon maps with nonlinear couplings (two unidirec-
tional X1 → X2, X4 → X3 and a bidirectional coupling X2 ↔ X3) (see Fig. 2d),
defined as

xi,t = 1.4 − x2i,t−1 + 0.3xi,t−2, i = 1, 4

xi,t = 1.4 − (
0.5c(xi−1,t−1 + xi+1,t−1) + (1 − c)xi,t−1

)2 + 0.3xi,t−2, i = 2, 3

for coupling strengths c = 0 (uncoupled case), c = 0.2 (weak coupling) and
c = 0.4 (strong coupling).

(5) A stationary system with outliers, from the three coupled Hénon maps (system
3), where outliers have been randomly added to each variable drawn from the
standard uniform distribution. The number of outliers constitute 1 % of the total
number of data points.

(6) A non-stationary system in level (mean), from the three coupled Hénon maps
(system 3), where a stochastic trend ηt = ηt−1+εt is added to each variable; εt is
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Gaussian white noise with unit variance. The CGCI is estimated on the detrended
time series.

(7) A non-stationary system in level (mean), from the three coupled Hénon maps
(system 3) where a deterministic trend ηt = a · t is added to each variable, and
a is a constant. The value of a is randomly set for each realization of the system
and normally distributed with mean 0.01 and standard deviation 0.02. The CGCI
is estimated on the first differences of the data.

(8) A system which is non-stationary in variance, resulting from the addition of an
integrated generalized autoregressive conditional heteroskedasticity process of
order (1,1), IGARCH (1,1), to system 2:

zt = σtεt

σ 2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1,

where εt is Gaussian white noise with unit variance, α0 = 0.2, α1 = 0.9 and
β1 = 0.1. The zi,t of IGARCH (1,1) is first multiplied by a factor g and then
added to each xi , i = 1, 2, 3 of system 2, so that the derived time series of yi is
yi,t = xi,t + gzi,t , i = 1, 2, 3.

(9) It is a common practice in financial applications, to estimate causality measures
or apply causality tests to the VAR residuals of the data in order to specify the
underlying nature of the couplings. However, the influence of the filtering on the
different causality measures and tests has not been fully investigated so far. For
this reason, we consider here the VAR filtered residuals of system 1. The order
of the VAR filter is set from the Schwarz’s Bayesian Information Criterion (BIC)
(Schwartz 1978), for each realization.

(10) Finally, we consider aVAR(3) process in three variables with linear causal effects
X2 → X1 and X3 → X1, which is non-stationary in mean and there is one co-
integrating relationship between the variables (see Sharp (2010),Model 8, p.78):

x1,t = 0.4x1,t−1 + 0.4x2,t−1 + 0.5x3,t−1

+ 0.2x1,t−2 − 0.2x2,t−2

− 0.2x1,t−3 + 0.15x2,t−3 + 0.1x3,t−3 + ε1,t

x2,t = 0.6x2,t−1 + 0.2x2,t−2 + 0.2x2,t−3 + ε2,t

x3,t = 0.4x3,t−1 + 0.3x3,t−2 + 0.3x3,t−3 + ε3,t ,

where εi,t , i = 1, . . . , 3 are independent to each other Gaussian white noise
processes with unit standard deviation. Further, in order to generate a non-
stationary system both in mean and variance, we add to this stochastic system an
IGARCH(1,1) multiplied by the factor g = 0.2, as for System 8.

The time series lengths n = 512 and 2048 are considered in the simulation study, to
test the effectiveness of the measures on relatively small and large time series lengths.
Larger time series lengths have not been considered due to the long calculation time
that is required. For the PSTE, the time lag τi for all variables is set to τ = 1, as
all the systems are discrete in time. The embedding dimension mi is identical for all
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Table 1 Percentage of statistically significant PSTE (m = 2) and CGCI (P = 2) values for the simulation
system 1

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

PSTE

n = 512 13 5 66 5 2 5

n = 2, 048 68 5 100 6 6 8

CGCI

n = 512 12 2 100 7 7 4

n = 2, 048 7 7 100 4 7 5

variables (denoted as m) and for each system it is set according to its complexity. The
number of time steps ahead h equals 1, as in the original definition of transfer entropy
(Schreiber 2000). For the estimation of the order P of the VAR model used in CGCI,
the Bayesian Information Criterion (BIC) (Schwartz 1978) is applied to model orders
from 1 to 5 for all systems, taking into consideration that the true model order for each
system lies within this range.

3.2 Results from Simulation Study

The performance of the PSTE and the CGCI is quantified by the percentage of statis-
tically significant values in the 100 realizations for all the ordered couples of variables
in the system, i.e. the percentage of rejections of the null hypothesis H0 of no causal
effects. For both measures, the causal effects are always regarded to be conditioned
on the remaining variables. The true causal directions are appropriately highlighted in
the respective Tables.

System 1 The optimal choice for the embedding dimensionm is 1, since the equations
of system 1 are given only in terms of the first lag. By definition, however, we can
only set m ≥ 2 to estimate the PSTE. For m = 2, the PSTE correctly detects the
direct linear causal effect X2 → X3 and, to a lesser extend, the nonlinear causal effect
X1 → X2. For these directions, the power of the test increases with n. Nevertheless,
the PSTE fails to recognize the nonlinear causal effect X1 → X3 (see Table 1). The
percentages of significant PSTE values in the direction of no causal effects are low
(between 1 and 8%). Its inability to detect the relationship X1 → X3 is probably due
to the fact that the effect of X2 on X3 is much larger than that of X1 on X3. The weak
coupling of X1 on X3 might be arising from the small values of the variable X1 that
gets even smaller by squaring (x21 is included in the equation of the system).

The CGCI cannot take into account the nonlinear causal effects of the first coupled
system, for model order P = 1, 2 and 3. It captures only the linear causal effect
X2 → X3 with high confidence (see Table 1 for P = 2). The percentage of significant
CGCI values at the direction of no causal effects are low (e.g. between 4 and 7 % for
P = 2), as for the two nonlinear relationships.
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Fig. 3 a One realization of system 2, b the corresponding realization of system 8 (defined as a superim-
position of the realization of system 2 and a realization of an IGARCH(1,1) model) for g = 1

Table 2 Percentage of statistically significant PSTE (m = 2) and CGCI (P = 2) values for the simulation
system 2

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

PSTE

n = 512 20 2 6 3 19 1

n = 2,048 86 4 2 6 86 5

CGCI

n = 512 3 41 61 55 3 40

n = 2,048 1 41 78 81 5 45

System 1 is an example that shows the strength of the PSTE in detecting nonlinear
couplings (as opposed to CGCI) and its shortcoming, i.e. that it cannot detect weak
couplings (in the presence of other stronger causal effects to the same response).

System 2 It is a stationary system with long tails. Specifically, we consider the nonlin-
ear couplings X1 → X2 and X1 → X3, whereas the variables X2 and X3 come from
distributions with long tails. The maximum delay in the equations of this system is 2,
and therefore we set m = 2. One realization of system 2, for n = 512 is displayed in
Fig. 3a.

The PSTE correctly detects the nonlinear direct causality for m = 2, giving low
percentage of significant values for n = 512 (see Table 2). Again, the power of the
test increases with the time series length n. The percentage of significant PSTE values
at the direction of no causal effects are between 1 and 6 %.

The CGCI is not able to describe the two nonlinear interactions, but on the contrary,
it indicates four spurious causal effects (see Table 2). The CGCI is estimated for orders
P from 1 to 10, nevertheless the results are similar for all P values.
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Table 3 Percentage of statistically significant PSTE (m = 2) values for the simulation system 3

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

c = 0 6 9 6 4 3 8

c = 0.05 9 2 7 1 5 9

c = 0.3 19 7 18 8 4 5

c = 0.5 67 16 79 7 3 7

n = 2,048

c = 0 3 2 3 3 1 1

c = 0.05 6 5 3 4 2 3

c = 0.3 88 6 98 8 7 4

c = 0.5 100 31 100 31 7 0

Table 4 Percentage of statistically significant CGCI (P = 2) values for the simulation system 3

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

c = 0 19 13 13 7 10 10

c = 0.05 13 12 8 8 14 10

c = 0.3 99 9 96 31 7 10

c = 0.5 100 9 100 21 5 6

n = 2,048

c = 0 11 12 10 11 10 14

c = 0.05 29 20 20 10 11 10

c = 0.3 100 14 100 43 9 8

c = 0.5 100 65 100 52 8 7

System 3 Here, we discuss a chaotic system, the coupled Hénon maps, first in its
original form and then with outliers and drifts added to the generated time series. The
PSTE is estimated form = 2 as there are two delays involved in the system equations.
For the uncoupled case (c = 0), the PSTE indicates no interactions, while for the
weakly coupled case (c = 0.05) it gives very low percentage of significant values. For
coupling strength c = 0.3 and for strongly coupled systems (c = 0.5), it performs
well. The power of the test increases with n. For c = 0.5 and n = 2048, along with
100% significant PSTE for the true couplings, there is also a high percentage for false
couplings, approximately 30% for X2 → X1 and X3 → X2 (see Table 3). Form = 3,
the PSTE shows the indirect causal effect X1 → X3 and the spurious ones X2 → X1
and X3 → X2, but only for c = 0.5 and n = 2048.

The CGCI correctly finds the couplings for the coupled Hénon maps for P = 2, but
it also falsely detects at higher percentage than for the PSTE, the spurious causalities
X2 → X1 and X3 → X2 for strong coupling strengths (see Table 4). Results for
P = 3 seem to improve the performance of the CGCI, since it correctly captures
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Table 5 Percentage of statistically significant PSTE (m = 2) values for the simulation system 4

n = 512 n = 2,048

c = 0 c=0.2 c = 0.4 c = 0 c = 0.2 c = 0.4

X1 → X2 1 17 30 4 82 100

X2 → X1 6 2 16 1 5 39

X1 → X3 4 4 4 4 11 3

X3 → X1 4 8 9 4 2 19

X1 → X4 5 3 4 2 4 7

X4 → X1 2 4 2 7 6 1

X2 → X3 4 28 86 4 72 100

X3 → X2 0 17 83 3 77 100

X2 → X4 7 5 12 4 2 42

X4 → X2 4 4 6 6 8 3

X3 → X4 2 7 18 4 7 52

X4 → X3 3 21 32 2 75 100

the causal relationships for c = 0.3 and c = 0.5, while identifies only the indirect
coupling X1 → X3 for c = 0.5 and n = 2, 048 (52 %).

System 4 It is a coupled system in four variables with unidirectional (X1 → X2,
X4 → X3) and bidirectional nonlinear causal effects (X2 ↔ X3). The PSTE is
estimated for m = 2. Regarding the uncoupled case (c = 0), it correctly denotes the
absence of causal effects giving low percentage of rejection of H0 (see Table 5). In
the case of weak couplings (c = 0.2), it recognizes the true relationships but only
for large time series lengths, i.e. the power of the test increases with n. High value
of the coupling strength (c = 0.4) does not affect the detection of the true couplings
without avoiding however the presence of spurious results for n = 2, 048 (X2 → X1,
X2 → X4, X3 → X4).

The CGCI is estimated for P = 2 and 4 (based on BIC). Its performance is not
significantly affected by the selection of P . For the uncoupled case (c = 0), the CGCI
indicates no causal effects, but the actual level of rejections can be substantially higher
than the nominal level of 5 %, varying from 6 to 17 %when P = 2 and from 2 to 11%
when P = 4. Concerning the case of weak (c = 0.2) and strong coupling strength
(c = 0.4), the CGCI correctly shows the true couplings for both time series lengths,
however many spurious causal effects are also obtained (see Table 6).

System 5 For the coupled Hénon system with the addition of outliers (1 % of n),
the PSTE performs similarly as without outliers. Indicative results are displayed in
Table 7, for c = 0.3 and c = 0.5. We notice that the percentages of significant PSTE
values at the directions X1 → X3 and X3 → X1 vary between 3 and 10%.

On the other hand, the CGCI is significantly affected by the existence of outliers,
performing poorly for P = 2 and 3, failing to detect the direct causal effects for all
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Table 6 Percentage of statistically significant CGCI (P = 4) values for the simulation system 4

n = 512 n = 2,048

c = 0 c = 0.2 c = 0.4 c = 0 c = 0.2 c = 0.4

X1 → X2 8 100 100 9 100 100

X2 → X1 2 21 19 8 59 59

X1 → X3 6 9 51 4 16 100

X3 → X1 8 8 8 11 12 9

X1 → X4 6 11 9 6 7 6

X4 → X1 10 9 8 6 8 6

X2 → X3 8 85 100 7 100 100

X3 → X2 10 81 100 10 100 100

X2 → X4 8 0 3 7 7 11

X4 → X2 6 8 54 5 17 100

X3 → X4 10 18 6 8 62 66

X4 → X3 8 100 100 11 100 100

Table 7 Percentage of statistically significant PSTE (m = 2) values for the simulation system 5

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

c = 0.3 16 5 17 7 6 7

c = 0.5 69 15 67 6 3 8

n = 2,048

c = 0.3 88 9 98 9 4 3

c = 0.5 100 37 100 35 8 10

but the case of strong coupling strength c = 0.5 and n = 2, 048. The significance test
with CGCI reveals the spurious causalities X2 → X1 and X3 → X2 for the coupling
strengths c = 0.3 and 0.5.

System 6 The simulation systems 6 and 7 are non-stationary in mean, therefore only
the PSTE can be directly applied to the data. One realization of system 6, the coupled
Hénon maps with the addition of stochastic trends, for n = 512 and c = 0 is reported
in Fig. 4a.

The sensitivity of the PSTE is reduced by the addition of the stochastic trend, but
still it increases with n, indicating that the PSTE requires large time series lengths to
effectively identify the couplings. Representative results are displayed in Table 8, for
c = 0.3 and 0.5.

The CGCI is applied to the first differences of the data for P = 1 and P = 2. No
causal effects are identified in the uncoupled case (c = 0) for both P (percentage of
significant CGCI values range from 2 to 13 %). For c = 0.3 and c = 0.5, the CGCI
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Fig. 4 a One realization of system 6 (three coupled Hénon maps with addition of stochastic trends), b one
realization of system 7 (three coupled Hénon maps with addition of deterministic trends), for n = 512

Table 8 Percentage of statistically significant PSTE (m = 2) values for the simulation system 6

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

c = 0.3 4 4 9 7 4 4

c = 0.5 22 10 30 10 10 2

n = 2,048

c = 0.3 8 5 16 4 6 2

c = 0.5 77 28 93 22 3 5

Table 9 Percentage of statistically significant CGCI (P = 2) values for the simulation system 6, after
taking first differences

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

c = 0.3 48 9 40 24 7 4

c = 0.5 63 10 33 11 10 7

n = 2,048

c = 0.3 95 9 56 22 8 3

c = 0.5 100 9 82 13 25 3

has a poor performance for P = 1, failing to detect the coupling X1 → X2, while
indicating the spurious coupling X3 → X2. On the other hand, for P = 2, the CGCI
indicates the true couplings for both n (Table 9). The sensitivity of CGCI is reduced
compared to that for system 3, but it increases with n, as for the PSTE. The percentage
of significant CGCI values at the directions of no coupling are also lower compared
to those for system 3.

123



Detecting Causality in Non-stationary Time Series Using PSTE 357

Table 10 Percentage of statistically significant PSTE (m = 2) values for the simulation system 7

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

c = 0.3 21 8 18 11 2 4

c = 0.5 75 12 79 5 4 8

n = 2,048

c = 0.3 87 12 96 9 6 4

c = 0.5 100 36 100 34 7 3

Table 11 Percentage of statistically significant CGCI (P = 2) values for the detrended time series of the
simulation system 7

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

c = 0.3 99 9 96 32 7 10

c = 0.5 100 9 100 21 6 7

n = 2,048

c = 0.3 100 14 100 43 9 8

c = 0.5 100 65 100 52 8 7

System 7 The seventh simulation system consists of 3 coupled Hénonmaps (system 3)
with the addition of deterministic trend. One realization for n = 512 in the uncoupled
case (c = 0) is displayed in Fig. 4b. The addition of the deterministic trend does not
affect the performance of the PSTE, and the results are very similar to those for system
3 (see Table 10). The CGCI is applied to the detrended time series using a polynomial
fit of degree 1 (for higher degrees the fit reduces to linear). We estimate the CGCI from
the smoothed time series for P = 2, 3 and 4. When P = 2 and P = 3, the CGCI has
the same performance as for system 3 (see Table 11). Spurious and indirect couplings
are achieved when we set P = 4 for the coupling strengths c = 0.3 and c = 0.5, e.g.
for c = 0.3 and n = 2048, the percentage of significant CGCI values is 81% at the
direction X2 → X1, and 21% for X3 → X2.

System 8 It is a non-stationary system in variance, superimposing an IGARCH(1,1)
time series multiplied by a factor g to the time series of system 2, which has two
nonlinear causal effects (X1 → X2 and X1 → X3). One realization of the system
8 for n = 512 and g = 1 is displayed in Fig. 3b. The PSTE requires large time
series lengths here in order to detect appropriately the couplings. The percentage of
significant PSTE values for X1 → X2 and X1 → X3 increases with n (see Table 12).
At the directions of no causal effects, low percentages are obtained (between 2 and
5 %). When g = 1, the PSTE has the smallest power in detecting the direct causal
effects, which steadily increases with n, e.g. from n = 2, 048 to n = 4, 096 the
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Table 12 Percentage of statistically significant PSTE (m = 2) values for the simulation system 8 (stan-
dardized realizations of an IGARCH(1,1) multiplied by g and added to the time series of system 2)

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

g = 1 5 2 4 4 9 5

g = 0.5 5 4 6 4 11 6

g = 0.2 14 2 2 1 16 2

n = 2,048

g = 1 24 3 3 1 17 4

g = 0.5 46 5 3 4 61 7

g = 0.2 83 6 3 8 73 3

Table 13 Percentage of statistically significant CGCI (P = 2) values for the simulation system 8

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512

g = 1 23 6 55 53 34 5

g = 0.5 31 6 59 56 42 5

g = 0.2 39 4 57 61 42 6

n = 2,048

g = 1 26 4 74 77 37 4

g = 0.5 32 3 79 78 47 6

g = 0.2 40 3 81 78 47 5

percentage of significant PSTE raised from 24 and 17 % to 38 and 54 % for X1 → X2
and X1 → X3, respectively.

When g = 1, the variance of input noise in the IGARCH term is at the same
amplitude as the original system, and the effect of non-stationarity in variance turns
out to be very strong. For smaller g (g = 0.5 and g = 0.2), the PSTE provides
much higher percentages in the case of direct causality, and still around the nominal
significance level at the directions of no causal effects.

For comparison reasons, we also consider the results from the CGCI, directly
applied to the non-stationary in variance time series. To estimate CGCI, we set P = 1
and 2. It reveals the correct couplings but with low sensitivity for both n, and it pro-
duces spurious couplings in the opposite directions X2 → X1 and X3 → X1 (see
Table 13). Similar results are observed for both P .

System 9 It is represented by the VAR filtered residuals of the simulation system 1.
The PSTE has similar performance to system 1, revealing the nonlinear causal effect
but for large time series lengths (see Table 14). The percentage of significant PSTE
values remain low at the directions of no causal effects at all cases. As expected, the
CGCI finds no couplings when estimated on the VAR filtered data.
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Table 14 Percentage of statistically significant PSTE (m = 2) values for the simulation system 9

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

n = 512 11 3 3 8 6 1

n = 2,048 33 2 9 3 7 3

n = 4,096 73 6 11 6 5 4

Table 15 Percentage of statistically significant PSTE (m = 3) values for the simulation system 10

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

PSTE

n = 512 13 3 7 8 18 7

n = 2,048 5 84 1 3 2 100

CGCI

n = 512 5 100 9 3 4 100

n = 2,048 3 100 2 5 5 100

System 10 Since only nonlinear and chaotic models have been considered so far,
we will complete the simulation study displaying the performance of the PSTE on a
stochastic system. The PSTE (m = 3) is effective for system 10 and large n, therefore
performs equivalently for the stochastic system as for the previous ones (see Table 15).
The variables of this system are co-integrated. Moreover, the PSTE can be directly
applied to the original signal without any detrending and manages to detect the true
causal effects. In order to compute the CGCI, the time series of system 10 should be
detrended to render stationary. As for System 7, a polynomial of order one is fitted
prior to the estimation of the CGCI. The CGCI (P = 3) correctly detects the couplings
on the detrended data, for both time series lengths (see Table 15). The CGCI on the
detrended data is more effective than the PSTE on the original data especially for small
n, but it depends to the detrending.

Finally, we add a time series from an IGARCH(1,1) process (multiplied by g = 0.2
as in the case of System 7) to the original time series of System 10 in order to obtain a
signal which is non-stationary both inmean and variance. The PSTE is directly applied
to the non-stationary signal, while detrending (using a polynomial fit of order one) is
required for the estimation of the CGCI. The percentages of significant PSTE values
are very low for both n and all directions, however they increase with n for the true
couplings (see Table 16). Larger n is required for an efficient implementation of the
PSTE. The CGCI indicates spuriously the bidirectional coupling among all variables.
The failure of theCGCI is due to the non-stationarity in variance.Adifferent detrending
process could be more appropriate and could improve the performance of the CGCI.
Furthermore, the CGCI can be sensitive to the existence of co-integration between
the variables; a vector error correction model (VECM) may be applied in such cases.
The stationarity and the absence of co-integration are two requirements that should be
tested before estimating the CGCI.
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Table 16 Percentage of statistically significant PSTE (m = 3) values for the simulation system 10 with
an IGARCH(1,1) superimposed to it

X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

PSTE

n = 512 5 4 10 5 5 4

n = 2,048 5 14 7 7 7 22

CGCI

n = 512 36 99 42 23 65 100

n = 2,048 95 100 96 96 99 100
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Fig. 5 Time series of a original prices and b the returns of the studied economic variables

This example indicates the necessity of employing causality measures such as
the PSTE that are directly applicable to the original time series and do not require
detrending or filtering. Since most measures are sensitive to detrending and filtering,
their performance may depend on the effectiveness of these procedures.

3.3 Application to Financial Time Series

In the aim to investigate any direct causal effect of financial uncertainty in both the
short and long-term interest rates we apply our suggested methodology to the daily
time series of the 3-month Treasury Bill of Secondary Market Rate (denoted as X1),
the 10-year Treasury Constant Maturity Rate (X2) and the Chicago Board Options
Exchange (CBOE) Volatility Index or VIX (X3) (see Fig. 5). The data set spans the
period from 05/01/2004 to 18/5/2012. The choice of the variables addresses two main
issues: (1) how the short and long-term interest rates, determinant components of
the spread, interact and (2) how uncertainty shocks can affect the term structure of
interest rates. Financial uncertainty is taken into account by the well-known fear index
VIX (option-implied expected volatility on the S&P500 index with an horizon of 30
calendar days) while the stance of monetary policy is represented by the 3-month
Treasury Bill, taking into account its close positive relationship with the key-interest
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Table 17 Direct causal effects
based on the CGCI values for
the financial application

CGCI Returns

P = 1 X1 → X3, X2 → X1

P = 2 X1 → X2, X1 → X3, X2 → X1

P = 3 X1 → X2, X1 → X3, X2 → X1

P = 4 X1 → X2, X1 → X3

P = 5 X1 → X3

Table 18 Direct causal effects based on the PSTE values for the financial application

PSTE m = 2 m = 3

Prices X2 → X1 –

Returns X2 → X1 –

VAR filtered returns X2 → X1, X3 → X1 X2 → X1, X3 → X1

rate (FF) of the US central bank (Kyrtsou and Vorlow 2009). To the best of our
knowledge, this application is the first attempt to investigate the impact of a fear index
to interest rates of different maturities simultaneously, with means of either linear or
nonlinear causality tests.

The fact that real data obey rich underlying structures, together with the signifi-
cant power of the CGCI and PSTE in the presence of linear and nonlinear couplings
respectively, underline the need of a joint implementation. Both the CGCI and PSTE
are applied to the VAR-filtered and returns series in order to shed light on the nature
of the causal effects. Since the PSTE is not affected by non-stationarity, it is applied
directly to the original data (prices) as well, helping us gather additional information
about the possible links in the long-run.

Regarding the estimation of the CGCI, the BIC suggests using P = 1 and 2. To
examine also its sensitivity to the model order, we vary P from 1 to 5. As expected, the
CGCI indicates no causal effects after the VAR filtering. When the returns series are
taken, the test recognizes the couplings X1 → X2, X1 → X3, X2 → X1 for different
P values (see Table 17); while P increases, fewer couplings are emerged i.e for P =
6 to 10, only the coupling X1 → X3 is significant.

As stated previously, the PSTE is estimated on the original prices, the returns and
the VAR-filtered returns for m = 2 and 3, while the time delay is set to one. It
consistently indicates that the 10-year Treasury Bond drives the short-term interest
rate (X2 → X1) for all data sets when m = 2. Only in the case of the VAR residuals,
the additional coupling between the VIX and the 3-month Treasury Bill (X3 → X1) is
obtained. For m = 3, the estimated relationships for the VAR residuals do not change
(see Table 18). It is more than evident that the dominant driving X2 → X1 is not
affected by the non-stationarity of data.

Combining the empirical findings confirms the nonlinear direct causality from both
the VIX and the 10-year Treasury Bill to the short-term rate, emphasizing the signifi-
cant impact of expectations on the design of monetary policy. The latter finding comes
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to validate the results of Bekaert et al. (2011) supporting the view that the uncertainty
component of the VIX index determines the direction of the relationship.

On the other hand, the behavioral content of the long-term interest rate, which
is strongly related to the agents’ expectations about the future inflation levels, in
association with the specific character of factors affecting its evolution, explain the
detected nonlinear coupling. Such factors include budget deficits (Laubach 2009),
public debt (Ardagna et al. 2007), global shocks (Alper Emre and Forni 2011) and
sovereign spreads (Favero et al. 2010). The reverse causality from the long to the
short-term interest rate can find its source at the evolving connection betweenmonetary
policy actions and long-term rates. According to Roley and Sellon (1995) “while there
is considerable evidence that monetary policy has a large impact on short-term interest
rates, the connection between policy actions and long-term rates often appears weaker
and less reliable”.

4 Conclusions

ThePSTE is a nonlinear causalitymeasure designed to detect only direct causal effects.
It is not affected by the presence of outliers and non-stationarity, since it uses ranks
from the delay vectors of the data and not the sample values. However, it requires large
time series lengths in order to attain high power. The stability of the results based on
the PSTE is expected to be lost by increasing m, unless large data sets are considered
(see Papana et al. 2013). Besides, the PSTE is not effective when only linear couplings
are present in the systems. Additional results for the performance of the PSTE in case
of linear systems can be found in Papana et al. (2013).

In contrast, although the CGCI has proved to be efficient in different applications
(e.g. Geweke (1984) and Chen et al. (2006)), it has a poorer performance compared to
the PSTE when the causal couplings are nonlinear. The present simulation experiment
showed also the inadequacy of the CGCI in the presence of long tails and outliers.

The PSTE is compared only with the CGCI, since this is the most commonmeasure
for the detection of causal effects in financial time series. If the signal is non-stationary,
data are first transformed and the estimation of CGCI follows. Causality measures
that require detrending or filtering of the original data are sensitive to this procedure.
Since this is out of the scope of this paper, we do not consider alternative causality
measures. A joint implementation of the PSTE and additional causality measures
can be found in Papana et al. (2013) and Kugiumtzis (2013). Moreover, the VECM
methodology together with the partial transfer entropy on rank vectors (PTERV),
which is an extension of the PSTE are analytically presented and applied in economic
data in a recent paper by Papana et al. (2014).

It is well documented that financial time series are prone to stylized facts such
as non-stationarity in mean or in variance, heteroskedasticity, nonlinearity and out-
liers (Alexander 2008; Kyrtsou and Malliaris 2009). The sensitivity of the CGCI to
nonlinear structures is revealed when real data are considered. On the contrary, the
PSTE performs well, highlighting the interesting transmission mechanism between
the 10-year Treasury Bond and the VIX to the 3-month Treasury Bill. It turns out
that the PSTE remains robust with, either non-stationary or stationary in mean and

123



Detecting Causality in Non-stationary Time Series Using PSTE 363

variance, financial time series. As such, it constitutes a powerful tool when real data
with complex underlying properties are studied.
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